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Isolated quantum systems with quenched randomness exhibit many-body localization (MBL),
wherein they do not reach local thermal equilibrium even when highly excited above their ground
states. It is widely believed that individual eigenstates capture this breakdown of thermalization
at finite size. We show that this belief is false in general and that a MBL system can exhibit the
eigenstate properties of a thermalizing system. We propose that localized approximately conserved
operators (l∗-bits) underlie localization in such systems. In dimensions d > 1, we further argue that
the existing MBL phenomenology is unstable to boundary effects and gives way to l∗-bits. Physical
consequences of l∗-bits include the possibility of an eigenstate phase transition within the MBL
phase unrelated to the dynamical transition in d = 1 and thermal eigenstates at all parameters in
d > 1. Near-term experiments in ultra-cold atomic systems and numerics can probe the dynamics
generated by boundary layers and emergence of l∗-bits.

PACS numbers:

I. INTRODUCTION

The development of synthetic quantum many-body
systems has rejuvenated interest in the foundations of
statistical mechanics. In particular, under what con-
ditions does an isolated system establish local thermal
equilibrium? While the general conditions are unknown,
there is growing evidence that strong quenched disorder
can localize interacting quantum particles and thereby
prevent the exchange necessary for equilibration [1–7].
The primary observational signature of such ‘many-body
localization’ (MBL) is the persistence of local memory of
initial conditions: this has been established in various lat-
tice models theoretically and numerically [2–4, 8–23] and
has also been observed in state-of-the-art experiments in
ultracold atomic [24–27] and trapped ion systems [28].
Although the understanding of MBL is in its infancy, it
has far-reaching consequences for quantum computation
[29–31], unconventional quantum phase transitions [32–
34] and out-of-equilibrium phases of matter [10, 31, 35–
40].

As the distinction between thermal and MBL phases
of matter lies in their long-time dynamics, many re-
cent studies have focused on the structure of many-body
eigenstates, which prima facie probe infinite time behav-
ior. There are good reasons for this. Thermalization in
classical Hamiltonian systems emerges from the unbiased
exploration of equal energy surfaces in phase space [41].
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After quantization, the closest analog of the fixed energy
surfaces are provided by the discrete collection of many-
body eigenstates. The eigenstate thermalization hypoth-
esis (ETH) holds that these eigenstates, like the classical
stationary states, are as random as possible subject to
the global energy constraint [42–45]. In particular, the
expectation values of few-body operators within individ-
ual eigenstates coincide with the thermal ones. There is
a growing body of theoretical and numerical work sup-
porting this hypothesis [45–50].

On the other hand, the seminal perturbative work of
Basko, Aleiner and Altshuler suggests that many-body
eigenstates in the MBL phase are localized in Fock space
[2]. As a vertex in Fock space is labelled by occupation
numbers, several groups conjectured that the localized
eigenstates are labelled by a complete set of dressed oc-
cupation numbers or ‘l-bits’ in addition to the energy
[51, 52]. This conjecture has been rigorously proven in
certain one-dimensional spin chains in the limit of strong
disorder [53] and many numerical and perturbative con-
structions of the l-bits are now available [54–57].

The eigenstate perspective has proven extremely useful
for studying localization. In this view, the many-body
localization transition appears as an eigenstate phase
transition between ETH-satisfying and ETH-violating
states. Such ETH-violating eigenstates have efficient ten-
sor product representations with area law entanglement
entropy [12, 58–63]. Further, they can exhibit quantum
and symmetry breaking orders disallowed by statistical
mechanics [10, 30, 31, 35, 36].

In this article, we critique the eigenstate perspective
and argue that eigenstates need not detect the break-
down of thermalization. It is entirely consistent, espe-
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FIG. 1: Phase diagram in d > 1 indicating dynamical phases
and eigenstate properties. The fully MBL phase is shaded
pink and described by l∗-bits at all disorder strengths. ETH
is satisfied everywhere in the phase diagram with the weight
in the spectral function vanishing as L→ ∞ in the fully MBL
phase. The black line marks the delocalization transition.

cially in d > 1, for the MBL phase to have eigenstates
which satisfy ETH at all finite sizes so long as the spec-
tral functions vanish appropriately in the thermodynamic
limit. Fundamentally, the limits L → ∞ and t → ∞ do
not commute: eigenstates are well-defined in the limit
t → ∞ followed by L → ∞, while the dynamical phase
of matter is well-defined in the opposite order of limits.
The incorrect order of limits may lead to the conclusion
that MBL does not exist in d > 1 and misidentify the
location of the dynamical transition in d = 1.

We propose a refined phenomenology of MBL in
terms of approximately conserved quasi-local operators
(l∗-bits), generalizing the strictly conserved l-bits of pre-
vious work. Such l∗-bit systems satisfy ETH at all energy
densities in d > 1 and in an energy density window in
d = 1. The corresponding phase diagrams are shown in
Figs. 1 and 2. In d > 1, we expect ETH to hold through-
out the phase diagram. In d = 1, as the MBL phase is
described by l-bits at strong disorder, there can be an
eigenstate phase transition within the MBL phase where
the description changes from l-bits to l∗-bits. In this
scenario, the eigenstate phase transition that has been
observed in many numerical studies [18, 21, 64, 65] does
not coincide with the true dynamical transition. We sug-
gest numerical tests of possibility. Like the l-bit ansatz,
the l∗-bit ansatz only describes localized systems without
many-body mobility edges.

In Sec. IV, we provide evidence that the refined phe-
nomenology is necessary in higher dimensions. Specifi-
cally, in d > 2, we show that the l-bit structure is always
unstable to the inclusion of a thermal boundary layer at
finite size, even as the dynamics remain localized in the
thermodynamic limit. The combined system is described
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FIG. 2: Phase diagram in d = 1 indicating dynamical phases
and eigenstate properties. At strong disorder, the system is
fully MBL with l-bits and violates ETH. At intermediate dis-
order (shaded pink), the system is fully MBL with l∗-bits. The
red line marks the eigenstate phase transition between ETH
and non-ETH states in this regime. The true delocalization
transition is denoted by the black line and can lie entirely to
the left of the eigenstate phase transition.

by l∗-bits and its eigenstates satisfy ETH. As the l-bit
structure is not robust to boundary perturbations even
at strong disorder, it is clearly not a stable character-
ization of the thermodynamic phase. The d = 2 case
is marginal for the specific boundary instability we con-
sider, although we believe that l∗-bits are generic here
as well. The arguments do not apply in d = 1 as the
boundary is finite. In contrast, for single particle Ander-
son localization in d > 1, a delocalized boundary layer
does not destabilize the l-bits which are given by the lo-
calized orbitals of the non-interacting problem. Thus,
some of the eigenstate diagnostics from single particle lo-
calization will not have a many-body analog in higher
dimensions.

Our analysis of the thermal layer coupled to a strongly
localized bulk is of independent interest in the study of
MBL systems (see for example Refs. [66–69] that study
MBL systems weakly coupled to large thermal baths). It
would be very interesting to measure the dynamical in-
fluence of a thermal boundary on a localized bulk. These
experiments are readily accessible with existing technol-
ogy in ultracold atomic systems [24, 26, 27, 70]. We take
up such experimental considerations in Sec. V.

II. BACKGROUND

Consider an isolated quantum system with Hamilto-
nian H prepared in the initial state |ψ〉. The dynamical
phase is defined by the behavior of expectation values of
local observables O at late times in the thermodynamic
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limit. More precisely, the objects of interest are

lim
t→∞

lim
L→∞

〈ψ|O(t)|ψ〉 (1)

In a thermalizing phase, for a large class of initial states
|ψ〉 [96], such expectation values agree with those in the
appropriate Gibbs ensemble,

lim
t→∞

lim
L→∞

〈ψ|O(t)|ψ〉 =
1

Z TrOe−βH (2)

where the inverse temperature β is fixed by the energy
density in the state |ψ〉. In a many-body localized phase,
local observables fail to reach their thermal values and
Eq. (2) does not hold.

In the opposite order of limits from Eq. (1), the expec-
tation values are controlled by the eigenstates |E〉. For
example,

lim
t→∞

1

t

∫ t

0

dt′〈ψ|O(t′)|ψ〉 =
∑
E

|〈ψ|E〉|2〈E|O|E〉 (3)

There are two standard ansätze for the structure of many-
body eigenstates: 1) the eigenstate thermalization hy-
pothesis (ETH) and 2) l-bits. The first is generally asso-
ciated with thermalization and the second with MBL at
all energy densities or full MBL [97]. One of the central
points of this article is that this association is incomplete.
Below we review the two ansätze in more technical detail.

For concreteness, we consider a system of V = Ld

spin 1/2 degrees of freedom σi on a d-dimensional lat-
tice. The Hamiltonian H is short-ranged with random
local couplings and traceless (so that E = 0 corresponds
to infinite temperature).

A. The l-bit ansatz

An l-bit (localized bit) is defined by a quasi-local Pauli
operator τzi localized near site i. Quasi-locality means
that the expansion of τ in the physical σ basis,

τzi =
∑
j,α

Kα
ijσ

α
j +

∑
jk,αβ

Kαβ
ijkσ

α
j σ

β
k + · · · (4)

has coefficients Kα1···αm
ij1···jm which typically decay exponen-

tially with both the radius dmax of the cluster i, j1 · · · jm
and the Hamming weight m:

Kα1···αm
ij1···jm ∼ exp

(
−dmax

ξ̃
− m

θ̃

)
. (5)

ξ̃ is a localization length and θ̃ may be viewed as a Ham-
ming localization length [98].

The l-bit ansatz posits that there exists a complete
set of mutually commuting l-bits that are constants of

motion [52, 71]. These l-bits completely diagonalize the
Hamiltonian:

H =
∑
i

J
(1)
i τzi +

∑
i,j

J
(2)
ij τzi τ

z
j +

∑
i,j,k

J
(3)
ijk τ

z
i τ

z
j τ

z
k + . . .

(6)

Here, the coefficients J
(m)
i1···im decay analogously to the K

coefficients above. L-bits have been proven to exist at
strong disorder in d = 1 [53].

As the l-bits are conserved, local memory of initial con-
ditions persists as t→∞ even at finite size L. Thus, the
dynamics generated by Eq. (6) leads to MBL on taking
the thermodynamic limit.

The properties of the eigenspectrum follow from the l-
bit structure. The eigenstates are completely specified by
their ±1 eigenvalues under the τz operators: |{τ}〉. Con-
sequently, eigenstates with the same energy density can
have different eigenvalues under τz, and can be distin-
guished by local measurements. Adjacent states in the
energy spectrum typically differ by an extensive num-
ber of l-bit flips. Thus, they do not repel on the scale
of mean level spacing, so that the level statistics of the
eigenvalues is Poisson distributed. Finally, the bipartite
entanglement entropy of eigenstates obeys an area-law
[12, 58]. Intuitively, this is because a partition only dis-
rupts the τz eigenvalues straddling its boundary. These
properties have been used in previous studies to diagnose
MBL [12, 18, 21, 65, 72–75].

B. The eigenstate thermalization hypothesis

The eigenstate thermalization hypothesis for H posits
that the extreme limit of the microcanonical ensemble
defined by a single eigenstate is locally indistinguishable
from the appropriate canonical ensemble [42–45]. Fur-
ther, the matrix elements of any local operator O be-
tween eigenstates |Eα〉 in a small energy window follow
random matrix theory. Mathematically:

〈Eβ |O|Eα〉 = Othδαβ +
rαβ√
ρ(Ē)

f(Ē, ω) (7)

where Ē =
Eα+Eβ

2 is the mean energy, ω = Eβ − Eα
is the energy difference, ρ(Ē) is the many body density
of states at energy Ē, Oth is the thermal expectation
value of O at the same energy and rαβ are i.i.d Gaussian
distributed with zero mean and variance one [99]. The
many-body density of states is related to the thermal en-
tropy as ρ(Ē) ∼ exp(S(Ē)). We have included a smooth
energy dependence of the off-diagonal matrix elements
on the scale of the many-body level spacing through the
spectral function f(Ē, ω). At fixed Ē, f(Ē, ω) decays
exponentially at large ω. It is closely related to the spec-
tral density ofO and encodes the dynamic susceptibilities
within linear response [76, 77].

Using the ETH ansatz, it is easy to show that every ini-
tial state reaches local thermal equilibrium as t→∞, up
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to corrections that are exponentially small in the volume
V . However, as we will see, the system need not thermal-
ize in the thermodynamic limit if the spectral functions
f vanish as L→∞.

The properties of the eigenspectrum follow from
Eq. (7). Eigenstates with the same energy density are
locally indistinguishable from one another and the ther-
mal ensemble as 〈E|O|E〉 = Oth for all such states (up to
exponentially small corrections in the volume V ). Next,
as the off-diagonal matrix elements in Eq. (7) are much
larger than the typical level spacing, we expect that the
many-body spectrum exhibits level repulsion. Further,
the entanglement entropy in eigenstates coincides with
the thermal entropy, and thus obeys a volume law at all
finite energy densities. All these properties differentiate
the l-bit from the ETH system.

III. APPROXIMATELY CONSERVED L∗-BITS

A finite sized system that locally equilibrates and sat-
isfies ETH can nevertheless fail to do so in the thermo-
dynamic limit if the local dynamics become sufficiently
slow. Below, we show that a system with approximately
conserved quasi-local l∗-bits realizes this scenario. The
information about the dynamical phase of the system is
hidden in the functions f which vanish as L→∞.

We propose that MBL should be described by these
l∗-bits. In Sec. III B, we discuss the consequences and
contrast them with the fully conserved l-bit ansatz. We
then turn to the well-studied d = 1 case and show that
the l∗-bit ansatz permits an eigenstate phase transition
as a function of energy density from ETH violating to
ETH satisfying states. This leads to the phase diagram in
Fig. 2, in which the MBL system is described by l-bits at
strong disorder and l∗-bits at intermediate disorder, and
the dynamical and eigenstate transition do not coincide.

A. The l∗-bit

A l∗-bit is a quasi-local operator τ∗zi localized in the
vicinity of site i that approximately commutes with the
Hamiltonian. The norm of the commutator with the
Hamiltonian is a random number that typically vanishes
exponentially with L [100]:

‖[H, τ∗zi ]‖ ∼ K exp(−L/ζ) (8)

where ‖ · ‖ denotes the operator norm, ζ is a localization
length and K has units of energy and depends subex-
ponentially on L. For simplicity, we assume ‖τ∗zi ‖ = 1
below.

Many dynamical consequences follow from the defini-
tion in Eq. (8). Suppose the system is prepared in the
state |ψ〉 at t = 0. The subsequent dynamics is probed

�E ⇠ e�sLd

⌧�1
min ⇠ e�L/⇣

f(Ē,!)

FIG. 3: Schematic diagram showing the f function in Eq. (7)
for a l∗-bit system which satisfies ETH in d > 1. The f
function is smooth on the scale of the many-body level spacing
∆E, while vanishing on the much longer frequency scale τ−1

min.

by unequal time correlators of the form:

C(t) ≡ 〈ψ|τ∗zi (t)O|ψ〉 (9)

where O is some local operator (for simplicity of norm
1). The variation of C(t) is exceedingly slow. Taking the
time derivative of C(t) and using the Heisenberg equation
of motion:

dC(t)

dt
= i〈ψ|[H, τ∗zi (t)]O|ψ〉 (10)

This derivative is upper-bounded by:∣∣∣∣dC(t)

dt

∣∣∣∣ . K exp(−L/ζ) (11)

using Eq. (8) and the sub-multiplicative property of the
norm. Thus, the minimum time required for C(t) to
change by some fixed amount ∆C is:

τmin =
∆C

K
exp(L/ζ) (12)

Note that the system need not reach a steady state (ther-
mal or otherwise) on the time scale τmin; Eq. (12) is
merely the minimum time needed to do so (with proba-
bility going to 1).

As τmin diverges as L → ∞, the l∗-bit becomes con-
stant in the thermodynamic limit. That is, C(t) = C(0)
for all times and

lim
t→∞

lim
L→∞

C(t) = C(0) (13)

Generic local operators in the vicinity of i overlap τ∗zi
and similarly fail to reach their thermal values for any
state |ψ〉.

At finite system size, however, the l∗-bit is not con-
served and nothing prevents it from decaying to its ther-
mal value,

lim
L→∞

lim
t→∞

C(t) = Cth (14)
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where Cth is the disconnected expectation value in the
appropriate Gibbs ensemble:

Cth =

(
1

Z Tr τ∗zi e−βH
)(

1

Z TrOe−βH
)

(15)

Indeed, ETH is perfectly consistent with the existence of
l∗-bits for suitable functions f . As a system that satisfies
ETH thermalizes at finite size, this allows for Eq. (13)
and Eq. (14) to be satisfied simultaneously.

In a bit more detail, let us suppose that the system
satisfies ETH at finite size L but also contains an l∗-
bit τ∗zi . To translate the constraint imposed by the l∗-
bit Eq. (8) to functions defined by ETH, consider the
correlation function:

I = 〈E|[H, τ∗zi ]2|E〉 (16)

in the eigenstate |E〉. Using the ETH ansatz, it is
straightforward to show that I is related to the spectral
function f of τ∗zi as:

I =

∫ ∞
−∞

dω e−βω/2ω2|f(E,ω)|2 (17)

so long as f is smooth on the scale of the many-body level
spacing. For completeness, we include the derivation in
Appendix A. Using Eq. (8),∫ ∞

−∞
dω e−βω/2ω2|f(E,ω)|2 . K2 exp(−2L/ζ) (18)

As τ∗zi is a quasi-local operator, its connected correla-
tor is O(1) in the eigenstate:

〈E|τ∗zi τ∗zi |E〉 − 〈E|τ∗zi |E〉2 ∼ O(1), (19)

This imposes a second sum rule on the spectral function:∫
dωe−βω/2|f(E,ω)|2 ∼ O(1) (20)

The derivation follows the same steps as Appendix A.
Eq. (20) implies that e−βω/2|f(E,ω)|2 is proportional

to a probability density. The first sum rule, Eq. (18),
then forces the weight in the distribution to concen-
trate around ω = 0 on a scale that vanishes atleast as
quickly as τ−1

min ∼ exp(−L/ζ) (Fig. 3). In d > 1, f can
be smooth on the scale of the many body level spacing
∆E ∼ exp(−sLd) at entropy density s, while showing
variation on the much longer scale τ−1

min:

τ−1
min ∼ exp(−L/ζ), ∆E ∼ exp(−sLd) (21)

⇒ τ−1
min � ∆E as L→∞, d > 1 (22)

Thus, ETH and l∗-bits are perfectly consistent for suit-
able functions f at all energies E.

We end with a few comments. In the l-bit model of
Ref. [71], it is argued that the effective decay of two-
l-bit interactions is controlled by an energy dependent

localization length [101]. This arises due to correlations
in the higher-body couplings J in Eq. (6) rather than
any explicit energy dependence in the typical decay of
couplings. Similarly, it seems likely that an effective en-
ergy dependent localization length ζ(e) can be defined,
for example by projecting the commutator in Eq. (8) into
energy windows. In the analysis of the boundary insta-
bility in Sec. IV for d > 1, it is clear that ζ(e) coincides
with the effective decay length defined in Ref. [71]. The
energy dependence of ζ does not qualitatively modify the
argument for the coexistence of ETH and l∗-bits in d > 1
and for simplicity we will ignore it henceforth.

Next, d = 1 is clearly special as τ−1
min and the level

spacing compete. Thus, the above argument only applies
at energy density e = E/V if:

ζ(e)s(e) > 1 (23)

where we have explicitly indicated the energy depen-
dence. We discuss the implications on the phase dia-
gram in the next section. Next, the definition of the
l∗-bit assumes exponential spatial localization of the op-
erator and exponential suppression of the commutator in
system size. It is clear that it could be generalized to
other kinds of decays with L. Finally, we note that a
system with a single l∗-bit is not likely to be robust, be-
cause a generic local perturbation would mix the l∗-bit
with other operators that are not conserved.

B. Phenomenology of MBL with l∗-bits (d > 1)

The discussion above suggests that a more general phe-
nomenology of full MBL is provided by a collection of
N = Ld − O(Ld−1) algebraically independent l∗-bits.
This relaxes the l-bit construction in two ways. First,
the localized bits are only approximately conserved at
finite size. Second, as we will see in Sec. IV, this ac-
commodates the inclusion of thermal layers. Further, we
assume that the eigenstates are as random as possible
subject to the constraint in Eq. (11) – i.e. they satisfy
the ETH ansatz with f appropriately vanishing in the
thermodynamic limit. Note that l-bits and l∗-bits lead
to MBL at all energy densities due to their definition in
terms of operator norms.

We summarize the properties of the MBL system with
l∗-bits in Table I for d > 1, and contrast it with a MBL
system with conserved l-bits and a thermalizing ETH sys-
tem. Many of the properties follow immediately from the
previous discussion. A few warrant further consideration.

The scaling of the eigenstate entanglement entropy SE
with subregion size is a commonly used measure of MBL
[18, 21, 65, 73, 78]. With l-bits, SE scales with an area
law, while in ETH systems, SE coincides with the ther-
mal entropy and accordingly exhibits volume law scaling.
As the eigenstates in the l∗-bit system satisfy ETH, SE
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TABLE I: Properties of systems that are thermal, have l-bits or have l∗-bits

Thermal l-bits l∗-bits
Eigenstate thermalization hypothesis (ETH) Yes No Yes
Eigenstate entanglement entropy Volume Area Volume
Level repulsion Yes No Yes
Local equilibration time Poly(L) Infinite Exp(L)
Forbidden eigenstate orders No Yes No
Dynamical phase at all energy densities Thermal MBL MBL

shows a volume law despite being MBL in the thermo-
dynamic limit. The special structure of f in the l∗-bit
system could be captured by a sub-leading term in SE at
O(L); we leave this question for future study.

Level repulsion arises when the off-diagonal matrix el-
ements of local operators between adjacent eigenstates
are much larger than the level spacing. In thermal and

l∗-bit systems, by the ETH ansatz, the former ∼ e−sLd/2
are much larger than the latter ∼ e−sL

d

. The matrix
elements are only enhanced by the exponentially in L
divergent f(Ē, 0) in the l∗-bit system. Thus, the levels
repel. In the l-bit system, on the other hand, typical ma-

trix elements ∼ e−L
d/2θ have to be much less than the

level spacing ∼ e−sLd in order for the l-bits to be stable.
See Ref. [64] for more details.

By assumption, l∗-bits change on a time scale longer
than τmin ∼ eO(L). In thermalizing systems, on the other
hand, the slowest modes are typically diffusive and the
equilibration time for local operators is at most poly-
nomially large in L. Moreover, the short time dynam-
ics of any local operator would still take place on O(1)
timescale. This differentiates thermal systems from l∗-bit
systems at finite size.

Finally, the seminal work of Huse et al [35] proposed
that MBL could protect long-range order at finite energy
densities even when forbidden by equilibrium statistical
mechanics. They argued that the order manifests in indi-
vidual eigenstates and sub-classified MBL phases accord-
ing to their eigenstate orders. Several works have since
extended these classifications [31, 36–40, 58, 79]. These
extended classifications rely on the identification of l-bits.
In the presence of l∗-bits, it is still possible to have dy-
namically frozen order in the thermodynamic limit. This
order would however not show up as an eigenstate order.

C. Phenomenology of MBL with l∗-bits (d = 1)

As mentioned at the end of Sec. III A, d = 1 is special
because τ−1

min and the many-body level spacing compete
(see Eq. (23)). There are also rigorous results at strong
disorder about the existence of a complete set of l-bits
at finite size [53]. The l-bits impose ζ = 0 and Eq. (18)
cannot be satisfied by a smooth f function.

As the strength of disorder is reduced, ζ could become
non-zero producing an intermediate l∗-bit regime. In this
section, we will explore the consequences and the existing

evidence for this scenario. The general mechanism for
producing l∗-bits in d = 1 is an interesting open question;
the instability identified in Sec. IV only applies in d > 1.

1. Apparent many-body mobility edges

An outstanding theoretical problem regards the ex-
istence and description of many-body mobility edges
[18, 19, 21, 74, 80, 81] — that is, delocalization tran-
sitions as a function of energy density within a single
sample. Neither the l-bit nor the l∗-bit ansatz permit
mobility edges as they lead to MBL at all energy den-
sities in the thermodynamic limit. However, in d = 1,
there can be an eigenstate phase transition within the
l∗-bit phase between ETH-satisfying and ETH-violating
states when ζs = 1. This is shown as the red line in Fig. 2
which lies entirely within the MBL phase. This transi-
tion need not coincide with the true dynamical mobility
edge in the thermodynamic limit, shown as a black line
in Fig. 2.

Eigenstate based studies could incorrectly identify the
red line as the mobility edge. A physical diagnostic of the
true MBL transition is provided by the relaxation time of
local observables after global quenches. The l∗-bit phase
would exhibit an exponentially growing relaxation time
with system size even when the eigenstates satisfy ETH.
In contrast, in the thermal phase, relaxation is limited by
(sub-)diffusion which produces power laws in system size.
In the well-studied random field Heisenberg chain, there
is some evidence that the transition identified from the
variance of late time observables after global quenches
[23] lies at a lower disorder value than the eigenstate
phase transition [21], consistent with the phase diagram
of Fig. 2. This is worthy of further investigation.

2. Inverse participation ratios

The l∗-bit ansatz suggests an numerically accessible
measure to detect the delocalized eigenstates in the pink
region in Fig. 2. Consider e = 0 for simplicity. The
inverse participation ratio (IPR) in the energy basis of an
eigenstate acted on by a local operator O|Eα〉 typically
decays as:

I =
∑
β

|〈Eβ |O|Eα|〉|4 ∼ 2−Lη. (24)
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FIG. 4: Left: A MBL system with l-bits τzi . The shading in-
dicates that the operators are quasi-local with exponentially
decaying weights away from the localization center. Middle:
The l-bit system coupled to a thermal boundary layer at tem-
perature T . The boundary induces incoherent l-bit flips in
the bulk with a rate that decreases exponentially with the
distance from the boundary. Right: As t → ∞ at finite size,
the bulk and boundary are locally thermal at temperature T .

For an ETH system without l∗-bits, I ∼ 2−L from
Eq. (7). For the l∗-bit system on the other hand, I ∼
2−Lτmin ∼ 2−Le+L/ζ , so that η < 1. Previous numerical
studies [21, 74, 82] have looked at other (Hilbert space)
IPRs but we expect the IPR defined above to be more
sensitive to l∗-bit structure of the eigenstates.

IV. BOUNDARY INSTABILITY OF L-BIT
SYSTEMS

In this section, we show that l-bits are unstable due
to their extreme sensitivity to boundary effects. Specifi-
cally, we argue that a thin thermal boundary layer at the
surface is sufficient to cause all local operators to decay
on an exponentially divergent time scale. The original l-
bits remain long-lived only in the thermodynamic limit,
becoming the l∗-bits discussed in the previous section.
Our arguments do not apply in d = 1 where boundary
regions are finite. It turns out that the d = 2 case is
marginal as we describe at the end of the section.

A. Long-time Thermalization

Consider a finite, d-dimensional l-bit system of linear
dimension L with Hamiltonian Hb. This system is cou-
pled to a (d − 1)-dimensional boundary layer with spin
1/2 degrees of freedom γi and Hamiltonian H∂ that sat-
isfies the ETH ansatz (see Fig. 4). We assume that the
coupling is local and only connects the physical spins σ
at the edge of the system to the boundary. For example,

Hint = λ
∑

i∈edge

σxL,iγ
x
i (25)

λ characterizes the strength of the interaction between
the system and the boundary. In terms of the τ opera-
tors, Hint contains τx,y,z operators with weights decaying
exponentially into the bulk:

Hint = λ
∑

i∈edge

∑
j

Cijτ
x
j + . . .

 γxi (26)

where Cij ∼ exp(−Rij/ξ), Rij is the distance between the
site (L, i) and j and we have not written out the other
terms in the quasi-local expansion. For convenience, we
assume Hb, H∂ , Hint are traceless.

In the absence of the coupling (λ = 0), the eigenstates
of the system are given by |E, {τ}〉 where E specifies
an eigenenergy of the boundary and {τ} is an l-bit con-
figuration in the bulk. The τxγx terms in Hint induce
single l-bit flips in the bulk and transitions between eigen-
states in the boundary. To leading order in λ, the total
transition rate from |E, {τ}〉 to all states |E′, {τ ′}〉 in
which only the mth bit is flipped (τ ′m = −τm) is given
by Fermi’s Golden Rule:

Γm
+→− = πλ2

∑
i∈edge

C2
ime
−β∆m/2|fi(E,−∆m)|2 (27)

Above, β is the inverse temperature of the boundary
layer, ∆m is the energy difference between the l-bit state
with +τm and −τm and fi is the spectral function as-
sociated with γxi in the ETH ansatz. Note that the ex-
pression neglects the shift in the energy of the bath E
as ∆m ∼ O(1) � E ∼ O(Ld−1). As Cim decays expo-
nentially with Rim, the transition rate is dominated by
the term with the smallest Rim. Denoting the distance
to the boundary by R,

Γm
+→− ∼ πλ2e−2R/ξe−β∆m/2|f(E,−∆m)|2 (28)

The Fermi’s Golden Rule calculation assumes that the
boundary layer is ‘large’, so that its many-body level
spacing is not visible to the l-bits. More quantitatively, it
is only valid when the rates Γm

+→− far exceed the many-
body level spacing on the boundary ∆E. The smallest
transition rates are associated with the l-bits deep in the
bulk at a distance R ∼ αL away from the boundary:

Γmin ∼ e−2αL/ξ (29)

In d > 2, these exceed the many-body level spacing on
the boundary:

Γmin � ∆E ∼ e−sLd−1

d > 2 (30)

with the inequality getting better at larger L. Above s
is the boundary entropy density at energy E. Thus, at
weak coupling λ, the perturbative estimate of the decay
rate in Eq. (28) is trustworthy for all bulks l-bits in d > 2.

In d > 2, the boundary layer induces single l-bit flip
transitions everywhere in the bulk. Further, the transi-
tion rates satisfy detailed balance:

Γ+→−
Γ−→+

= e−β∆ (31)
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where we have suppressed the index m for clarity. This
follows from the symmetric property of the f function:
|f(E,−∆m)|2 = |f(E,∆m)|2. Any f function asso-
ciated with a local operator O must be symmetric as
|〈Eβ |O|Eα〉|2 = |〈Eα|O|Eβ〉|2.

If we assume that the induced dynamics is Markovian,
then detailed balance guarantees the equilibrium distri-
bution of the bulk is the Boltzmann-Gibbs distribution
at the same temperature as the boundary. Thus, a ther-
malizing ETH boundary layer destabilizes a bulk l-bit
system in d > 2 and leads to local thermal expectation
values at infinite time. This does not mean that the com-
bined system thermalizes in the thermodynamic limit as
the time-scale for single l-bit flips diverges exponentially
with L. The system is therefore MBL and is rightly de-
scribed by l∗-bits, as we discuss next.

We end this subsection with several comments. First,
higher order terms in the quasi-local expansion of Hint

(Eq. (26)) lead to multi l-bit flip processes at leading or-
der in λ. As the transitions are incoherent, we expect
these terms to enhance local thermalization but continue
to satisfy detailed balance. Second, the single spin flip de-
cay rate in Eq. (28) neglects the shift in the boundary en-
ergy. This is clearly a good approximation for the initial
decays. As the bulk system explores its phase space, it
typically needs to absorb O(Ld/2) energy from the bath.
For d > 2, this energy is boundary subextensive and it is
consistent to neglect it. Finally, as the stationary states
are thermal, we expect the eigenstates themselves to be
thermal. Within the Markov approximation, the joint
eigenstates can be represented with Lorentzian weights
in |E, {τ}〉.

The marginal case for the above argument is d = 2.
First, the rate in Eq. (28) and the level spacing on the
boundary e−sL can compete. For strong enough disorder
in the bulk (small enough localization length ξ), the indi-
vidual l-bits further than R = ξsL/2 from the boundary
fail to decay to leading order in λ. Moreover, even in the
case where R > L and all l-bits can decay, the typical
energy fluctuations O(Ld/2) = O(L) in the bulk in the
presumed Markov equilibrium are of order the energy in
the boundary O(L). This implies that the Markov as-
sumption cannot hold.

B. Emergence of l∗-bits

At finite λ, the original l-bits deep in the bulk become
l∗-bits. Consider,

[H, τzi ] = [Hb +H∂ +Hint, τ
z
i ] = [Hint, τ

z
i ]. (32)

Hint only involves the physical bits on the boundary. As
the expansion of each physical bit in terms of the l-bits
is quasi-local,

‖[Hint, τ
z
i ]‖ ∼ λe−R/ζ′ , (33)

where ζ ′ is a localization length and we have neglected
a polynomial prefactor in L. Thus, τzi is an l∗-bit if
R ∼ O(L). Further, the number of independent l∗-bits
N scales as Ld as L→∞, as required in Sec. III B. Note
that the scaling is only asymptotic as N < Ld at any
finite size L. This is because τ bits at a finite distance
away from the boundary always have a finite lifetime and
are not conserved as L→∞.

Finally, we comment on the connection with the per-
turbative calculation of l-bits presented in Ref. [55],
which is valid for sufficiently strong statistically homoge-
nous disorder in the thermodynamic limit. At finite size,
the same method produces l∗-bits at distance r ∼ L if
one stops the real-space perturbation theory when the
support of the operator reaches the boundary. The com-
mutator with H would then be gO(L) where g is the bulk
coupling. Continuing with the perturbation theory in-
cluding operators on a thermal boundary layer would
cause the series to diverge. This suggests that l-bits do
not exist in this system while the l∗-bits do.

V. EXPERIMENTS

In this section, we describe experiments in current cold
atomic setups that directly test the l∗-bit phenomenology
of MBL. With the observation of MBL in two dimen-
sions using a quantum-gas microscope [27], such exper-
iments are well within the scope of current technology.
The single-site resolution for imaging and manipulating
hyperfine states of atoms in an optical lattice [83–85] al-
lows to study the local deviations from thermal equilib-
rium. This has been exploited to probe the diverging
length scale at the dynamical transition between MBL
and thermal phases in two dimensions [27].

Briefly, the current experiments prepare an initial Mott
insulating state of bosonic Rubidium-87 atoms with a
spatially varying density profile in the x − y plane. Ini-
tially, all the atoms occupy the left half of the harmonic
trap at an average filling of one per site, resulting in a
sharp domain wall at x = 0. On release, the atoms ex-
pand into the right half of the trap in the background of
on-site disorder that is varied from run to run. In the
thermal phase, the cloud reaches a steady state with uni-
form density (up to trap effects), while in the localized
phase, the memory of the inhomogeneity in the initial
density profile persists at late times. The authors mea-
sure the parity of the atoms on each site at different times
and characterize the two phases according the long time
imbalance in the number of atoms between the right and
left halves.

The geometry of a localized bulk connected to a ther-
mal boundary is easily accessible in the current experi-
mental setup as the on-site disorder of the atoms can be
spatially varied at will and can be experimentally char-
acterized. The simplest possibility is to create a domain
wall in the on-site disorder in each run, as shown in Fig. 5
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FIG. 5: (a-d) Real space pictures of potential ultracold atomic experiments to probe the effect of thermal layers on localized
bulk. Red indicates the cloud of atoms and grey the speckle potential applied to only part of the cloud. White spots indicate
holes in the initial density. (e) The mean parity of density in the hole as a function of time in the experiments indicated in
(a-d).

(a-d) in gray scale. In these plots, the on-site disor-
der is drawn from a uniform uncorrelated distribution
in the bottom ` rows and is absent in the top rows. The
disorder-free region thus functions as the thermal region,
while the strength of the disorder is chosen to be suffi-
ciently large so that the bottom ` rows are localized. For
a finite-size system in d > 2, the exponentially long re-
laxation time of local observables in the localized region,
is independent of the volume of the thermal region as
long as the level spacing of the thermal region is para-
metrically smaller than the inverse relaxation time, so
that Fermi’s Golden Rule is applicable. It still depends
exponentially on r, the distance of the local observable
from the thermal region.

In order to characterize the dynamics of the combined
system, we propose using the single-site control in the
experiments to create density holes in the trapped cloud
at t = 0 and track their parity in time. In Fig. 5 (a-d), the
cloud of atoms in the trap is shown in solid red, while the
density hole is shown in white. In Fig. 5(a) for example,
the hole is created at a distance r from the domain wall
in the disorder distribution in the localized region. The
setup is flexible and offers many experimental knobs to
test different aspect of the dynamics. The experimental
knobs include the distance r, the strength of the disorder,
the number of density holes (b), the size of the localized
region ` (c) and the environment of the density hole (d).

The discussion in Sec. IV suggests how the density hole
relaxes in time. Consider first a hole created in the disor-
dered region. If the localized region is described only by
l∗-bits, then the relaxation time tdis should be exponen-
tially sensitive to r/ξ, where ξ is a localization length.
We expect that this time is insensitive to the number of
holes and to the size of the disordered region `, as long as
the disorder-free region acts as a thermal bath. In con-
trast, in the disorder-free region that is expected to be
thermal, the relaxation time tth should be independent
of r and other details of the disordered region.

The proposed experiments are interesting for many
reasons. First, the discussion in Sec. IV is marginal in

d = 2. Specifically, at strong enough disorder, we expect
l-bits far away from the boundary to be stable despite
the coupling to the thermalizing region. However, the
l-bits close to the boundary will decay; mapping out the
dependence of the relaxation time with r, the strength
of the disorder and the size of the thermalizing region
would provide invaluable insight into the dynamics of the
combined system. It would allow us to test the general
validity of arguments like those in Sec. IV that rely on
the competition between the typical matrix elements and
typical level spacing alone. Next, the relaxation time tdis
provides access to a different localization length ξ than
the imbalance studied in current experiments. Testing
the relation between the two would shed light on the is-
sue of multiple localization lengths in the localized phase.
Finally, the set-up offers a controlled way to de-stabilize
the localized phase and study its response to a small ther-
mal reservoir, an important piece in the puzzle of the
dynamical transition.

VI. CONCLUSIONS

The properties of finite size samples have played a piv-
otal role in our understanding of Anderson localization
beginning with the work of Thouless and the Gang of
Four in the late 70s [86–88]. For example, Thouless ob-
served that finite size conductance can be measured by
the sensitivity of non-interacting eigenstates to boundary
conditions and many numerical studies have since relied
on the associated spectral statistics as a diagnostic tool
[89]. The success of this approach relies implicitly on the
stability of the statistical properties of the eigenstates to
the varying boundary conditions encountered as the ther-
modynamic limit is taken. Indeed, for non-interacting
electrons, the analysis of Sec. IV does not lead to an
eigenstate instability as the Fermi Golden Rule rate is
much less than the polynomially small level spacing.

In this article, we have argued that this stability sim-
ply does not hold for interacting systems in dimensions
greater than one. Rather as the thermodynamic and
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late time limit fail to commute, the eigenstate proper-
ties of a many-body localized system may satisfy finite
size ETH. We have offered a refined phenomenology of
fully MBL systems in terms of approximately conserved
l∗-bits which we believe is more robust than the current
l-bit scenario. The most striking consequence for existing
studies is that the eigenstate transitions need not coincide
with the localization transition. We have also proposed
experiments which can probe the boundary instability
and test the l∗-bit scenario.

An analogy can be drawn between the theory of l∗-bits
and that of the weakly interacting Fermi liquid. Both
have effective Hamiltonian descriptions which are diag-
onal in a basis of dressed operators. These Hamiltoni-
ans, however, neglect terms which cause the decay of
the quasiparticles or l∗-bits. In the Fermi liquid case, the
quasiparticle lifetime is controlled by the deviation of the
single-particle energy from the Fermi surface while in the
l∗-bit case it is controlled by finite size. For a conceptu-
ally different analogy between MBL and Fermi liquids,
see Ref. [90].

It is widely believed that Griffiths-type effects play an
important role in the theory of the MBL transition, es-
pecially in d = 1 [32, 34, 91–94]. Indeed, in phenomeno-
logical descriptions of the transition in d = 1, a sparse
collection of weakly coupled thermal regions drives the
delocalization transition [32, 34]. In higher dimensions,
little is known about the transition, except in simple solv-
able models [33]. As the boundary instability in Sec. IV
relies on a thermalizing region whose size diverges, we do
not expect to find such large thermal subregions except
perhaps at the physical boundaries in d > 1. Never-
theless, the typical size of thermalizing puddles grows as
disorder is reduced towards the transition and the asso-
ciated l∗-bits should play an important role.

A number of questions are raised by the possibility of
l∗-bits and ETH MBL. The arguments regarding the ab-

sence of many-body mobility edges of Ref. [80] hinge on
the association of finite-size ETH with thermal phases
and are thus inconclusive in light of the thesis of this ar-
ticle. Many of the classifications of ‘allowed’ MBL quan-
tum orders in both Floquet and Hamiltonian systems rely
heavily on the l-bit model [10, 31, 35–40]. It would be
very interesting to determine what of these orders and
classifications survives on relaxing to the l∗-bit scenario.
The phase diagram of Fig. 2 suggests that the transitions
identified in previous d = 1 numerics can lie within the
MBL phase. This raises questions about the identifica-
tion of sub-diffusive phases and more generally how to
identify the true dynamical transition.
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Appendix A: Spectral representation from the ETH
ansatz

Consider the correlation function:

I = 〈Eα|[H, τ∗zi ]2|Eα〉 (A1)

in the eigenstate |Eα〉. In this appendix, we use the ETH
ansatz to show that:

I =

∫ ∞
−∞

dω e−βω/2ω2|f(Eα, ω)|2 (A2)

where f is the spectral function associated with τ∗zi .

Inserting a complete set of states in Eq. (A1) and using

the ETH ansatz for τ∗zi :

I =
∑
β

ω2

ρ(Ē)
r2
αβ |f(Ē, ω)|2 (A3)

where Ē = (Eα + Eβ)/2 and ω = Eα − Eβ . Assuming
that f is a smooth function on the scale of the many-body
level spacing ∆E ∼ 1/ρ(Ē), the sum can be replaced by
the integral:

∑
β

r2
αβ →

∫
dEβρ(Eβ) (A4)

Note that ρ(E) ∼ eS(E), where S(E) is the microcanon-
ical entropy at energy E, and the many body density of
states has units of inverse energy. On further changing
the integration variable to ω, we obtain:

I =

∫ ∞
−∞

dω
ρ(Eα − ω)

ρ(Eα − ω/2)
ω2|f(Eα − ω/2, ω)|2. (A5)

The f function is expected to decay exponentially
at large ω on a scale ω0 that is at most O(L0). As
Eα ∼ O(Ld), ω0 � Eα and the domain of integration
in Eq. (A5) may be restricted to ω � Eα to obtain a
very good approximation to I. Quantitatively, the error
in this approximation is exponentially small in Ld/ω0.

Expanding S(E) and f for ω � Eα:

S(Eα − ω)− S(Eα − ω/2) ≈ −ωβ/2 +O(1/Ld)

f(Eα − ω/2, ω) ≈ f(Eα, ω) +O(1/Ld)

where β is the inverse temperature dS
dE

∣∣
Eα

= β. Putting

it all together, we obtain the desired result:

I =

∫ ∞
−∞

dω e−βω/2ω2|f(Eα, ω)|2. (A6)

In the same way, we can show from

〈E|τ∗zi τ∗zi |E〉 − 〈E|τ∗zi |E〉2 ∼ O(1), (A7)

we get: ∫
dωe−βω/2|f(E,ω)|2 ∼ O(1). (A8)
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