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We investigate analytically and numerically the interaction between grain boundaries and second
phase precipitates in two-phase coherent solids in the presence of misfit strain. Our numerical study
uses amplitude equations that describe the interaction of composition and stress [R. Spatschek and
A. Karma, Phys. Rev. B 81, 214201 (2010)] and free-energies corresponding to two-dimensional
hexagonal and three-dimensional BCC crystal structures that exhibit isotropic and anisotropic elas-
tic properties, respectively. We consider two experimentally motivated geometries where (i) a lamel-
lar precipitate nucleates along a planar grain boundary that is centered inside the precipitate, and
(ii) a circular precipitate nucleates inside a grain at a finite distance to an initially planar grain
boundary. For the first geometry, we find that the grain boundary becomes morphologically un-
stable due to the combination of long-range elastic interaction between the grain boundary and
compositional domain boundaries, and shear-coupled grain boundary motion. We characterize this
instability analytically by extending the linear stability analysis carried out recently [P.-A. Geslin,
Y.-C. Xu, and A. Karma, Phys. Rev. Lett. 114, 105501 (2015)] to the more general case of elastic
anisotropy. The analysis predicts that elastic anisotropy hinders but does not suppress the instabil-
ity. Simulations also reveal that, in a well-developed non-linear regime, this instability can lead to
the break-up of low-angle grain boundaries when the misfit strain exceeds a threshold that depends
on the grain boundary misorientation. For the second geometry, simulations show that the elastic
interaction between an initially planar grain boundary and an adjacent circular precipitate causes
the precipitate to migrate to and anchor at the grain boundary.

I. INTRODUCTION

Phase separation into domain structures of dis-
tinct chemical compositions occurs in a wide range
of technological materials. Nucleation and growth
of second phase precipitates inside the matrix of a
primary phase is commonly used as a strengthening
mechanism of structural materials1. Domain struc-
tures also commonly form by spinodal decomposi-
tion into two phases, which has been widely inves-
tigated in various contexts2–12. Due to the depen-
dence of the crystal lattice spacing on composition,
domain formation typically generates a misfit strain
that can be large in some cases, e.g. several percent
in phase-separating lithium iron phosphate battery
electrode materials7.

The effect of a coherency stress has been inves-
tigated theoretically in the context of both single-
crystalline and polycrystalline materials. In single-
crystalline materials, Cahn demonstrated that co-
herency stress hinders spinodal decomposition, re-
quiring a larger chemical driving force than in the
absence of misfit to generate phase-separation inside

a bulk material2. A recent extension of this anal-
ysis showed that stress relaxation near a free sur-
face can lead to spinodal decomposition for smaller
chemical driving forces than inside a bulk material,
with compositional domain formation confined at
the surface10. In polycrystalline materials, numeri-
cal simulations have been used to investigate the in-
teraction between compositional domain boundaries
(DBs) and dislocations using continuum dislocation-
based models4,5,8 phase-field approaches6. More
recently, the interaction between DBs and grain
boundaries (GBs) has also been investigated us-
ing phase-field-crystal (PFC) simulations11,12, and
amplitude equations derived from the PFC
framework13. Those studies have shown that
dislocations generically migrate to DBs to relax
the coherency stress thereby strongly impacting
microstructural evolution and domain coarsening
behavior5,11,12.

Experimental observations also testify of strong
interactions between GBs and precipitates. For ex-
ample, in Ni-Al superalloys, γ′ precipitates in the
vicinity of GBs have been shown to be responsible for
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FIG. 1. (a) Scheme representing the configuration con-
sisting of a misfitting lamellar precipitate centered on a
low angle grain boundary. (b-e) Color plots of the com-
position field c at times of (b) 0.03× 106, (c) 0.9× 106,
(d) 1.4× 106 and (e) 6.37× 106 illustrating the destabi-
lization of a low-angle GB (θ = 7.2◦) due to the presence
of a misfitting precipitate (red domain) computed with
the amplitude equation model for hexagonal symmetry
and with a misfit eigenstrain ε0 = 0.043. Dislocations
are visible because the composition profile is altered in
their vicinity. The system size is 249.6a×361.6a (a being
the lattice spacing) and periodic boundary conditions are
used in both x and y directions. Only part of the system
is shown in the y direction. (f) Time evolution of the free
energy, showing the relaxation of the system towards an
equilibrium state. Black dots locate the snapshots of
panels (b-e).

GB serration, leading to improved mechanical prop-
erties at high temperature14,15. In addition, in steel
and Ti-based alloys submitted to thermo-mechanical
treatments, acicular Widmanstätten precipitates,
are observed to grow from the GBs in a direction
normal to the GB plane16,17. While the station-
ary growth kinetics of these structures have been
recently clarified18, the initial stage of growth that
involves the nucleation of precipitates along the GBs
is not understood. In both examples, elastic inter-
actions between GBs and precipitates might play a
central role in the development of these microstruc-
tures. However, these interactions remain largely
unexplored due to the complexity of the problem at
hand that involves elastic interactions, grain bound-
ary migration, and solute diffusion.

In a recent study19, we provided further insight
into the complex interaction between crystal defects
and precipitates by investigating the situation in
which a planar GB is centered inside a misfitting
lamellar precipitate (see Fig. 1.a). This choice of
geometry is physically motivated by the fact that
dislocations act as preferred sites of nucleation20–22.
Hence GBs naturally seed the formation of lamel-
lar precipitates of this approximate geometry3,23.
Using a nonlinear elastic model24,25 and amplitude
equations (AE) that describe the interaction be-
tween composition and stress26, we showed that
this configuration is morphologically unsta-
ble. This instability is illustrated in Fig. 1.b-e
that shows a sequence of GB and precipitate
configurations obtained by AE simulations19.
Furthermore, we carried out a linear stability analy-
sis to predict the onset and wavelength of this insta-
bility. The starting point of this analysis is a free-
boundary problem governing the coupled evolution
of DBs and GBs, which corresponds to the sharp-
interface limit of the AE model (i.e. the limit where
the DBs and GB can be treated as sharp bound-
aries). The physical mechanism of this instability
can be qualitatively understood by considering a
small initial sinusoidal perturbation of DBs of wave-
length Λ = 2π/k. In the case of isotropic elasticity,
the elastic energy is unchanged by this perturbation
because the Bitter-Crum theorem27,28 implies that
this energy is independent of the shape of the precip-
itate and only depends on its volume, which remains
constant. In the absence of a GB inside the precip-
itate, the DB is stable because the perturbation of
its interface increases the total DB surface, there-
fore increasing the total energy of the system. In
contrast, with a GB present, the elastic energy can
be decreased by the relaxation of the shear stress, in-
duced by the DB perturbation, along the GB plane
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via shear-coupled GB motion29–41. Namely, the GB
can move normal to its plane under an applied shear
stress. This behavior referred as coupling is charac-
terized by the relation

v‖ = βvn (1)

between the velocity vn of the GB normal to the GB
plane and the rate v‖ of parallel grain translation. In
the case of pure coupling, the coefficient β is a geo-
metrical factor depending only on GB bicrystallogra-
phy with the coupling factor β obtained from the ge-
ometrical relation between dislocation glide motion
and crystal lattice translation29,30,42. Computations
and experiments have shown that a wide range of
both low- and high-angle GBs display shear-coupled
motion30–37. Furthermore, GB coupling has been
found to influence significantly the coarsening be-
havior of polycrystalline materials in more complex
multi-grain geometries where GBs form a complex
network35,38,39,43,44.

Our recent study19 has highlighted the funda-
mental role of shear-coupled GB motion in the in-
teraction between GBs and precipitates. However,
this study only considered a limited range of mis-
fit strain and GB misorientation and was limited to
isotropic elasticity and a lamellar precipitate geom-
etry. Materials forming second phase precipitates
are often elastically anisotropic. This anisotropy
is known to influence the shape of misfitting pre-
cipitates by inducing DBs to align along preferred
crystallographic directions to minimize the elastic
energy45. Moreover, it also influences the elastic in-
teraction between GBs and precipitates. In particu-
lar, the Bitter-Crum theorem27,28 invoked above to
explain the destabilization of the GB for isotropic
elasticity no longer applies within elastic anisotropy.
In this case, deformation of the precipitate shape
increases the elastic energy and can hinder or even
potentially suppress the GB morphological instabil-
ity. Furthermore, in several important experimental
situations, precipitates interacting with GBs have
a circular or cuboid geometry if nucleation occurs
away from the GB at multiple sites, e.g. γ′ pre-
cipitates in Ni-Al superalloys. It is unclear how in
those situations, closed-shape precipitates interact
with GBs and what role shear-coupled motion plays
in this interaction.

In this paper, we extend the study of Ref. [19]
to investigate the interaction between GBs and pre-
cipitates of different shapes with and without elastic
anisotropy. We first focus on the lamellar precipitate
geometry and extend the linear stability analysis of
Ref. [19] to anisotropic elastic behavior. This ex-
tension is conceptually straightforward even though

the anisotropy makes the analysis more lengthy. The
analysis predicts that elastic anisotropy hinders the
instability, because of the energetic cost of deform-
ing the lamellar precipitate, but does not suppress
it. We test this prediction using the same AE ap-
proach as in Refs. [26] and [19], albeit with a free-
energy form that favors an elastically anisotropic 3D
body-centered-cubic (BCC) structure. The simula-
tion results are in good quantitative agreement with
the predictions of the linear stability analysis. For a
free-energy form that favors an elastically isotropic
two-dimensional (2D) hexagonal structure, we inves-
tigate the nonlinear development of the instability
over a wider range of misfit strain and misorienta-
tion than in Ref. [19]. Simulations yield the novel
insight that, in a well-developed non-linear regime,
this instability can lead to the break-up of low-angle
GBs when the misfit strain exceeds a threshold that
depends on misorientation. Next, we investigate in
2D the interactions between a circular precipitate
and a grain boundary. We find that a similar elastic
interaction mediated by shear-coupled GB motion
leads to the attraction of the precipitate to the GB.
The GB and precipitate shape are simultaneously
deformed in this process that can also lead to GB
break-up for large enough misfit strain.

Some properties of the amplitude equations (AE)
approach relevant to the present study are worth
pointing out. AE models can be generally derived
from the phase-field-crystal (PFC) model46–48 via a
multiscale expansion26,49,50. This expansion is for-
mally valid in the limit where the correlation length
of liquid density fluctuations (which sets of the width
of the spatially diffuse solid-liquid interface at the
melting point of a pure material) is much larger than
the lattice spacing. AE models can also be derived in
the spirit of Ginzburg-Landau expansions of a free-
energy functional in terms of complex density wave
amplitudes from symmetry considerations (see Ref.
[51] and earlier references therein for a comparison
of both approaches for solid-liquid interface proper-
ties). The latter approach provides more flexibility
to formulate AE models with a minimal set of model
parameters that can be related to material parame-
ters. For this reason, it was used in Ref. [26] to de-
rive the set of AEs that describes the interaction of
composition, stress, and crystal defects. The param-
eters of this AE model, used here and in our previ-
ous study19, are uniquely fixed by the DB energy γ,
the misfit strain ε0, linear elastic properties, and the
dislocation core size that is proportional to the cor-
relation length. Like PFC, the AE method describes
dislocation glide, therefore reproducing salient fea-
tures of GB shear-coupled motion for a wide range of
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GB bi-crystallography35, and also dislocation climb.
Since PFC and AE models do not track explicitly the
vacancy concentration, the climb kinetics is modeled
only heuristically. However, the incorporation of dis-
location climb is important in that it provides an
additional mechanism to relax the total free-energy
as is apparent in Fig. 1 where the final equilibrium
configuration was attained by a combination of both
dislocation glide and climb. Finally, as shown in
Ref. [26], the AE model can only describe GBs over
a limited range of misorientation due to the choice
of a fixed reference set of crystal axes to represent
the crystal density waves. However, this limitation
is not too stringent as the method is able to describe
both low-angle GBs with separate dislocations and
higher angle ones with overlapping dislocation cores.

This paper is organized as follows. We start by
introducing in section II the AE model for both
hexagonal (isotropic elasticity) and BCC ordering
(anisotropic elasticity). The following section III is
dedicated to generalizing the linear stability analy-
sis to the case of anisotropic elasticity. In particular,
we show that the introduction of elastic anisotropy
inhibits the instability by reducing the growth rate
and decreasing the range of unstable wavelengths.
Next, in section IV, we investigate more closely the
nonlinear regime of instability for isotropic elastic-
ity, showing that a sufficiently large misfit strain can
lead to GB break-up. Finally, in section V, we inves-
tigate the interactions between circular precipitates
and a GB, showing that similar elastic interaction
leads to the attraction of the precipitate to the GB
and can also lead to GB break-up.

II. AMPLITUDE-EQUATION MODEL

A. Free-energies

In the present study, we used the AE approach de-
veloped by Spatschek and Karma26, which provides
a general methodology for modeling the interaction
of composition and stress26. In this AE frame-
work, the atomic density field is expanded as
a sum of crystal density waves

n(~r, t) = n0 + δns

N/2∑
n=1

(
Ane

i~kn ·~r +A∗ne
−i~kn ·~r

)
,

(2)
where ±~kn (1 ≤ n ≤ N/2) correspond to the
N principal reciprocal lattice vectors (RLVs)
of equal magnitude |~kn| = q0 = 2π/a, where a

is the lattice spacing, n0 is a reference aver-
age value of this field, and δns is a scale fac-
tor that can be adjusted to match arbitrary
values of solid density wave amplitudes. The
amplitudes have a constant value |An| = As
in a perfect crystal, and decrease to low val-
ues in the atomically disordered core region
of dislocations, which is similar to the liquid
phase where the amplitudes vanish.

The total free-energy of the system is given by the
functional:

F =

∫
dV fc +

∫
dV fel, (3)

where the chemical and elastic parts of the free-
energy density are defined respectively by

fc =
K

2
|∇c|2 + fdw(c) (4)

and

fel = F0

[
ξ2d

N∑
n=1

|(�n + iε0q0c)An|2

+ fb({An}, {A∗n})
]
, (5)

where the “box operator” is defined by �n = k̂n · ∇−
i

2q0
∇2. This elastic free energy density represents

the energy cost of an arbitrary perturbation of the
atomic density field associated with linear elastic de-
formations and crystal defects (nonlinear deforma-
tions) such as dislocations or grain boundaries.

The free-energy cost of defects is captured by
the box operator that is introduced to insure that
the elastic part of the free-energy is rotationally
invariant26. In addition, the operator iε0q0c, ac-
counts for the influence of the compositional field
on the lattice spacing through the misfit strain ε0,
where we assume a linear relationship between strain
and concentration (Vegard’s law). The parameter ξd
is a dimensionless coefficient that is proportional to
the width of the solid-liquid interface at the melting
point and also sets the scale of the dislocation core.

As in our previous study19, we use a version of
the AE model where the bulk chemical free-energy
density has a standard double-well Cahn-Hilliard-
like contribution52 fdw(c) that favors phase sepa-
ration into two solid phases of distinct chemical
compositions19.

The bulk chemical free-energy density has the
double-well form

fdw(c) = g(c− c−0 )2(c− c+0 )2, (6)
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where the minima (c±0 ) represent the equilibrium
concentrations in the composition domains in the
absence of stress and the expressions

g =
12γ

wi(c
+
0 − c−0 )4

(7)

K =
3wiγ

2(c+0 − c−0 )2
, (8)

relate the parameters g and K to the width wi and
excess free-energy γ of the spatially diffuse boundary
between those domains.

The RLVs and the bulk part of the elastic energy
density, fb({An}, {A∗n}), can be chosen to stabilize
different crystalline structures53–55. In this study,
we consider the 2D hexagonal lattice described by
N = 6 RLVs ~kn = ±q0k̂n where

k̂1 =

(
−
√

3

2
,−1

2

)
, k̂2 = (0, 1) , k̂3 =

(√
3

2
,−1

2

)

and

fHEXb ({An}, {A∗n}) =
1

6

3∑
n=1

AnA
∗
n +

1

2
(A1A2A3 +A∗1A

∗
2A
∗
3) +

1

15

(
3∑

n=1

AnA
∗
n

)2

− 1

30

3∑
n=1

|An|4, (9)

which reproduce isotropic elasticity for small deformations26. To investigate the effect of anisotropic elasticity,
we also consider BCC ordering described by N = 12 RLVs ~kn = ±q0k̂n where:

k̂1 =
1√
2

(1, 1, 0), k̂2 =
1√
2

(1, 0, 1), k̂3 =
1√
2

(0, 1, 1), k̂4 =
1√
2

(1,−1, 0), k̂5 =
1√
2

(1, 0,−1), k̂6 =
1√
2

(0, 1,−1),

and the function26

fBCCb ({An}, {A∗n}) =
1

12

6∑
n=1

AnA
∗
n + +

1

90

{( 6∑
n=1

AnA
∗
n

)2

− 1

2

6∑
n=1

|An|4 + 2A∗1A2A
∗
4A5 + 2A1A2A

∗
4A
∗
5

+ 2A∗1A3A4A6 + 2A1A
∗
3A
∗
4A
∗
6 + 2A2A

∗
3A
∗
5A6 + 2A∗2A3A5A

∗
6

}

− 1

8

{
A2A

∗
3A
∗
4 +A2A

∗
3A4 +A1A

∗
3A
∗
5 +A∗1A3A5

+A1A
∗
2A
∗
6 +A∗1A2A6 +A∗4A5A

∗
6 +A4A

∗
5A6

}
. (10)

The effect of the anisotropic elasticity of the BCC
structure on the precipitate morphology is illus-
trated in Fig. 2. An initially circular precipitate
of radius R = 40.5a and eigenstrain ε0 = 0.043
(Fig. 2.a) evolves into a square with rounded corners
(Fig. 2.b). Even though this morphology increases
the surface energy, it is the equilibrium state of the
system because of the drop of elastic energy due to
anisotropic elasticity effects45.

B. Determination of model parameters

The free-energies of the AE model depend on eight
parameters c±0 , g, K, q0, ξd, ε0, and F0. Their

value can be generally determined uniquely in terms
of material parameters as follows. The phase dia-
gram determines c±0 , the lattice spacing a determines
q0 = 2π/a, the compositional domain width wi and
the interface free-energy γ determine g and K via
Eqs. (7) and (8). The misfit strain ε0 is a known
material parameter and the microscopic length ∼ ξd
can be in principle estimated by matching the dis-
location core size to experimental measurement or
the results of atomistic simulations; for simplicity
here we choose ξdq0 = 1. In addition, F0 can be
related to elastic constants of the material using re-
lations derived in Ref. [26]. In the case of the elas-
tically isotropic hexagonal model, the elastic con-
stants are C11 = C22 = λ + 2G = 9

4F0A
2
sξ

2
dq

2
0 and
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(a) (b)

FIG. 2. An initially circular precipitate of radius R =
40.5a and eigenstrain ε0 = 0.043 (a) relaxes to a square
shape with rounded corners (b) due to the anisotropic
elasticity in the BCC AE model.

C12 = C44 = λ = 3
4F0A

2
sξ

2
dq

2
0 , yielding a Poisson

ratio ν = λ/[2(λ + G)] = 0.25 (λ and G denote the
Lamé coefficients). For the elastically anisotropic
BCC model, C11 = C22 = C33 = 2F0A

2
sξ

2
dq

2
0 and

C12 = C23 = C44 = F0A
2
sξ

2
dq

2
0 . In these definition,

the coefficient As denotes the amplitude of solid den-
sity waves in a perfect crystal and can be expressed
as

As =
3 +

√
1− Zε20c20ξ2dq20

4
, (11)

where Z = 48 (Z = 96) for the hexagonal (BCC)
lattice. Let us notice that for small values of ε0, As
depends weakly on composition c0 via a shift of the
lattice constant induced by the misfit strain.

In this study, simulations are performed for a
generic set of material parameters similar to the one
used to model phase separation in Li-ion battery
materials10. In particular, we choose c−0 = 0.05,
c+0 = 0.95, γ = 0.2 J/m2, and wi = 2 nm, yielding
g = 1.8× 109 J/m3 and K = 7.4× 10−10 J/m using
Eqs. (7) and (8). In addition, we take a = 0.5 nm,
ξdq0 = 1, and G = C44 = 39 GPa, yielding F0 =
4G/(3A2

sξ
2
dq

2
0) = 5.2× 1010 J/m3 for the hexagonal

lattice and F0 = C44/(A
2
sξ

2
dq

2
0) = 3.9× 1010 J/m3

for the BCC lattice where As ≈ 1 is used in those re-
lations to compute F0. This is equivalent to neglect-
ing the dependence of As on c0 in Eq. (11), which
is negligible for small misfit strain. In the following,
the simulations used to test the predictions of the lin-
ear stability analysis are carried out with ε0 = 0.043
for both the hexagonal and BCC models. Additional
simulations are carried out for various values of ε0 to
explore the influence of the misfit strain on the equi-

librium state of the microstructure. Mathemati-
cally, the AE model is only valid for small mis-
orientations between grains. However, it has
been shown26 that the predictions of the GB
energy from AE remain valid over roughly
half the complete range allowed by the full
crystal symmetry. Therefore, the limitations
of the AE model on grain rotations does not
influence significantly the results obtained for
misorientations below 30◦ investigated in this
article.

C. Dynamical equations

The concentration field c is assumed to follow a
conserved dynamics

∂c

∂t
= M∇2 δF

δc
. (12)

where the mobility M = Df ′′dw(c±0 ) is chosen such
that Fickian diffusion is recovered for vanishing
stresses and composition close to the equilibrium
values c±0 . We note here that for finite misfit, the
equilibrium concentrations in the low (c−) and high
(c+) concentration domains are slightly shifted from
their equilibrium values c±0 as described further in
the paper, but this shift has a negligible effect on
the effective value of the mobility.

On the other hand, The amplitudes An are
evolved using a formulation of non-conserved dy-
namics introduced previously in the context of the
PFC model56,57 to relax the elastic field rapidly over
the entire system by the damped propagation of den-
sity waves:

ρ
∂2An
∂t2

+
∂An
∂t

= −MA
δF

δA∗n
, (n = 1 . . . N) (13)

where the parameters MA and ρ, which control the
wave damping rate and propagation velocity are cho-
sen such that the amplitudes and hence the elastic
field relax quickly on the diffusive time scale of the
concentration field evolution.

To see how to choose those parameters, and for the
purpose of numerical implementation, it is useful to
rewrite Eqs. (13) and (12) in dimensionless form
by measuring lengths in unit of 1/q0 and time in
unit of 1/(Mgqd0) where the space dimension is d =
2 (d = 3) for the hexagonal (BCC) lattice. After
rescaling space and time, Eqs. (13-12) become for
the hexagonal lattice:
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c−2w
∂2An
∂t2

+ βw
∂An
∂t

= α2
d

[
�2
nAn + 2iε0c�nAn + iε0An�nc+ ε0∇An · ∇c− ε20c2An

]
(14)

− 1

6
An −

1

2

3∏
j 6=n

A∗j −
2

15
An

3∑
j=1

AjA
∗
j +

1

15
An|An|2,

∂c

∂t
= ∇2

{
− α2

c∇2c+ 2(c− c−0 )(c− c+0 )(2c− c−0 − c+0 ) (15)

+ 2F ′0α
2
d

(
ε0

3∑
j=1

Im
{
A∗j k̂j · ∇Aj

}
− 1

2
ε0

3∑
j=1

Re
{
A∗j∇2Aj

}
+ ε20c

3∑
j=1

AjA
∗
j

)}
,

where we have defined the dimensionless parameters
αc = q0

√
K/g = q0wi(c

+
0 − c−0 )/(2

√
2), αd = q0ξd,

F ′0 = F0/g, c−2w = ρ(Mgqd0)2/(MAF0), and βw =
Mgqd0/(MAF0). For the choice of parameters given
in section II B, αd = 1, αc = 8, and F ′0 = 29.1
(F ′0 = 21.7) for the hexagonal (BCC) lattice. Fur-
thermore, in rescaled units, cw and βw determine the
wave propagation velocity and damping rate, respec-
tively. Since the diffusion constant is of order unity
in those units, choosing cw = 1 and βw = 0.05 in-
sures that the mechanical degrees of freedom relax
faster than the concentration field.

For the BCC lattice, the dimensionless dynamical
equations analogous to Eqs. (14) and (15) are quite
lengthy and are detailed in appendix A.

D. Numerical implementation

We use a pseudo-spectral method to solve the dy-
namical Eqs. (14) and (15). Following the same steps
as in Ref. [58], the evolution equations of the ampli-
tude equations in Fourier space read

c−2w ∂ttÃ
k
n + βw∂tÃ

k
n = LkAÃ

k
n + f̃kA({An}, c) (16)

where the linear operator LkA = α2
d(�̃

k
n)2−1/6 is the

Fourier transform of LA = α2
d�

2
n−1/6, and f̃kA is the

Fourier transform of the non-linear term of fA which
contains all the remaining terms in the right hand
side of Eq. (14). We use the algorithm described in
appendix A.2 of Ref. [58] to solve efficiently Eq. (16).

The evolution equation for the concentration field
becomes in Fourier space

∂tc̃
k = Lkc c̃

k + f̃kc ({An}, c), (17)

where the Fourier transform of the linear operator
Lc = −α2

c∇4 is Lkc = −α2
ck

4, and f̃kc is the Fourier

transform of the non-linear term fc containing all the
remaining terms in the right hand side of Eq. (15).
The algorithm described in appendix A1 of Ref. [58]
is used to solve Eq. (17).

Periodic boundary conditions are used in both di-
rections. Thus, two grain boundaries are introduced
in the simulation cell, located respectively at the
center and the edge of the simulation box. The do-
main size in the direction y (normal to the GBs)
is chosen sufficiently large to consider that the in-
fluence of the second grain boundary is negligible.
The simulations to obtain the growth rate of
the instability (see Fig. 5) are performed us-
ing a fine grid spacing ∆x ≈ 1 and a time
step ∆t = 0.05 to obtain fully converged nu-
merical results for an accurate quantitative
comparison with analytical predictions. The
simulations presented in Figs. 1 and 6 to 10
are performed with coarser discretization pa-
rameters ∆x ≈ 2 and ∆t = 0.2 to follow the
fully nonlinear development of the instability
on much longer time scales while retaining a
reasonable level of convergence.

III. LINEAR STABILITY ANALYSIS

We now analyze the morphological stability of a
lamellar precipitate centered on a GB such that the
GB is sandwiched between two parallel DBs as de-
picted schematically in Fig. 3. This geometry arises
naturally when it is energetically favorable for the
second phase precipitate to nucleate along the GB.
We denote by w the half-width of the lamellar pre-
cipitate. Its value depends on the composition and
growth history of the second phase after nucleation.
In the case of isotropic elasticity, the linear stability
is detailed in the supplemental material of Ref. [19].
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In this section, we will follow similar steps to ex-
tend this calculation to the more complicated case
of anisotropic elasticity for a cubic crystal symmetry.

We take advantage of the fact that the GB shape
and the elastic field (i.e. the displacive degrees of
freedom) adapt instantaneously to a change of DB
shape that occurs on a slow diffusive time scale. In
other words, the elastic fields and GB evolutions are
slaved to the DB evolution. This allows us to split
the analysis into two main steps.

In a first step, carried out in subsections A, B, and
C, we compute the equilibrium GB shape and stress
field resulting from imposing a wavy perturbation of
the DBs. We first write down the anisotropic elas-
tostatic equations in subsection A. We then solve
those equations in the four separate domains de-
picted in Fig. 3.b by imposing appropriate bound-
ary conditions on the displacement and stress fields
at the different interfaces (GB and DBs) separat-
ing those domains. We then compute the solutions
for unperturbed planar interfaces in subsection B,
and for an imposed DB perturbation of the form
h(x) ∼ sin(kx) in subsection C. In particular, it will
be shown that under the geometrical coupling rela-
tion given by Eq. (1), the GB relaxes to a stationary
shape H(x) ∼ cos kx with vanishing shear stress on
the GB.

The second main step of the analysis carried out
in subsection D consists of computing the growth
rate of the instability. For this we write down the
equivalent free-boundary problem governing the evo-
lution of the DBs in the limit where the DB width
is much smaller than the wavelength of the pertur-
bation, which allows to treat the DB as a sharp in-
terface. This free-boundary problem consists of the
diffusion equation for concentration coupled to two
boundary conditions that must be self-consistently
satisfied at the DBs: a Stefan-like mass conservation
condition that relates the normal interface (DB) ve-
locity to the normal gradient of chemical potential,
and a local equilibrium condition that determines
how the value of the chemical potential at the inter-
face is shifted by stresses and interface curvature (as
in the standard Gibbs-Thomson condition).

A. Elastostatic equations

We consider a straight symmetric tilt grain bound-
ary of angle θ obtained from a rotation of the two
grains of angles ±θ/2 around the z-axis as depicted
in Fig. 3.a. For low angle GBs, this tilt grain bound-
ary can be seen as a wall of edge dislocations.

θ/2

θ/2

Grain 1

Grain 2

x

y
x
′
1

y
′
1

x ′
2

y ′
2

h(x)

GB

DB

H(x)

x
y

w

w

(1)

(2)

(3)

(4)

u  
(1)

x
(1)

y, u , μ
(1)

u  
(2)

x
(2)

y, u , μ
(2)

u  
(3)

x
(3)

y, u , μ
(3)

u  
(4)

x
(4)

y, u , μ
(4)

u  
(3)

x
(2)

x- u   = β H(x)

σ   = σ   = 0
xyxy xy

(3) (2)

h(x)

DB

x x

xy

(a)

(b)

FIG. 3. Schematic representation of lamellar precipi-
tate geometry. (a) A low-angle symmetrical tilt GB of
angle θ with the reference frame (x, y) and the frames
(x′1, y

′
1) and (x′2, y

′
2) associated with both grains. (b)

a GB centered on a slightly perturbed lamellar precipi-
tate. We distinguish four regions (numbered 1 to 4). The
displacement fields and chemical potentials in the differ-
ent regions are respectively denoted u(n)

x , u(n)
y and µ(n)

(n = 1...4). The horizontal arrows show the directions of
grain translation resulting from GB coupled motion via
Eq. (1), which relaxes the shear stress induced by the
perturbation of the surface of the precipitate.

We consider that the reference frame (x, y) coin-
cides with the cubic axes of the crystal structure. In
this frame, the elastic constants are C̄11 = C̄22 =
C̄33, C̄12 = C̄13 = C̄23 and C̄44 = C̄55 = C̄66. The
system is invariant along the z direction such that
we can consider plain strain conditions. We define
S as the anisotropy coefficient by:

S = 1− C̄11 − C̄12

2C̄44
. (18)

We note that for isotropic elasticity, we have S = 0.
In the frames (x′1, y

′
1) and (x′2, y

′
2) associated to the

grains rotated by an angle ±θ/2, the values of the
elastic constants are given by:
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C11(ψ) =C̄11 + SC̄44 sin2(2ψ), (19)

C12(ψ) =C̄12 − SC̄44 sin2(2ψ), (20)

C44(ψ) =C̄44 − SC̄44 sin2(2ψ), (21)

C14(ψ) =
SC̄44

2
sin(4ψ) (22)

where ψ = ±θ/2 is the rotation angle between the
crystal axis of the grains 1 and 2 and the reference
frame.

To keep the elastostatic equations analytically
solvable, we consider the limit of small θ where the
elastic constants are the same in both grains and in
the reference frame and we note them C11, C12 and
C44.

We consider that the concentration is homoge-
neous in the different domains and is denoted by
c(n) (where the superscript (n) denotes different do-
mains, n = 1 . . . 4). The stresses can therefore be
simply expressed in terms of the displacements in
the different domains:

σ(n)
xx =C11(∂xu

(n)
x − ε0c(n)) + C12(∂yu

(n)
y − ε0c(n))

(23)

σ(n)
yy =C12(∂xu

(n)
x − ε0c(n)) + C11(∂yu

(n)
y − ε0c(n))

(24)

σ(n)
xy =C44(∂xu

(n)
y + ∂yu

(n)
x ) (25)

where the coordinate x and y refer to the reference
basis (x, y). Substituting these equations for stresses
into the elastic equilibrium ∇ ·σ = 0, we obtain the
following elastostatic equations in terms of the dis-
placements fields:

C11
∂2u

(n)
x

∂x2
+ C44

∂2u
(n)
x

∂y2
+ (C12 + C44)

∂2u
(n)
y

∂x∂y
=0

(26)

(C12 + C44)
∂2u

(n)
x

∂x∂y
+ C44

∂2u
(n)
y

∂x2
+ C11

∂2u
(n)
y

∂y2
=0

(27)

B. Non-perturbed problem

We first consider the non-perturbed problem
where the DBs and the GB are perfectly straight
(h(x) = H(x) = 0) and solve for the equilibrium
displacement field ū and composition field. In this
case, the problem is invariant along the x direction
and ūx = 0 in all the domains. For the component
ūy, Eqs. (26-27) admit the following solution in the
different domains

ū(1)y =α−(y + w)− α+w

ū(2)y =ū(3)y = α+y (28)

ū(4)y =α−(y − w) + α+w

where α+ = (C11 + C12)ε0c
+/C11 = ε0c

+
(

1 + 1
ζ

)
and α− = (C11+C12)ε0c

−/C11 = ε0c
−
(

1 + 1
ζ

)
with

ζ = C11/C12.
Because of the stresses arising from the precipitate

eigenstrain, the equilibrium concentrations c+ and
c− inside and outside the precipitate differ slightly
from c+0 and c−0 . This deviation can be computed
by minimizing the total free energy with respect to
∆c = c+0 −c+ = c−−c−0 . The free energy is minimum
for

∆c =
1

2

(c+0 − c−0 )−
√

(c+0 − c−0 )2 − (C2
11 − C2

12)ε20
gC11

 .
(29)

C. Perturbed problem

1. Solutions of the elastostatic equations

We consider now that the DBs position are per-
turbed by a periodic function h(x) = h0 sin(kx)
whose amplitude h0 is assumed to be small com-
pared to its wave length 2π/k and the width of the
precipitate w. The total displacement u(n)(x, y) can
be decomposed into a non-perturbed part ū(n)(x, y)
derived in Eq. (28) and a perturbed part ũ(n)(x, y)
arising from the perturbation:

u(n)x (x, y) =ū(n)x (x, y) + ũ(n)x (x, y) (30)

u(n)y (x, y) =ū(n)y (x, y) + ũ(n)y (x, y) (31)

Following the supplemental material of Ref. [36], we
consider that the perturbed displacements take the
following form in the different domains:
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• In domain (1):

ũ(1)x = Re
{
eikx(A1e

−ikp1(y+w) +B1e
−ikp2(y+w))

}
(32)

ũ(1)y = Re
{
eikx(M1A1e

−ikp1(y+w) +M2B1e
−ikp2(y+w))

}
(33)

• In domain (2):

ũ(2)x = Re
{
eikx(A2e

ikp1(y+w) +B2e
ikp2(y+w))

}
+ Re

{
eikx(C2e

−ikp1y +D2e
−ikp2y)

}
(34)

ũ(2)y =− Re
{
eikx(M1A2e

ikp1(y+w) +M2B2e
ikp2(y+w))

}
+ Re

{
[eikx(M1C2e

−ikp1y +M2D2e
−ikp2y)

}
(35)

• In domain (3):

ũ(3)x = Re
{
eikx(A3e

−ikp1(y−w) +B3e
−ikp2(y−w))

}
+ Re

{
eikx(C3e

ikp1y +D3e
ikp2y)

}
(36)

ũ(3)y = Re
{
eikx(M1A3e

−ikp1(y−w) +M2B3e
−ikp2(y−w))

}
− Re

{
eikx(M1C3e

ikp1y +M2D3e
ikp2y)

}
(37)

• In domain (4):

ũ(4)x = Re
{
eikx(A4e

ikp1(y−w) +B4e
ikp2(y−w))

}
(38)

ũ(4)y =− Re
{
eikx(M1A4e

ikp1(y−w) +M2B4e
ikp2(y−w))

}
, (39)

where Ai, Bi, Ci, Di, Mi and pi are constants left
to be determined. One can show (see 36) that these
equations are solutions of the elastostatic equations
Eqs. (26) and (27) only if the coefficients M1 and
M2 are written as:

M1 =
(C12 + C44)p1
C44 + C11p21

(40)

M2 =
(C12 + C44)p2
C44 + C11p22

, (41)

where p1 and p2 are solutions of the equation

p4 +
C2

11 − C2
12 − 2C12C44

C11C44
p2 + 1 = 0. (42)

This polynomial admits two complex roots of the
form

p1 = eiξ, p2 = −e−iξ (43)

with

ξ =
1

2
arccos

C2
12 − C2

11 + 2C12C44

2C11C44
. (44)

In the limiting case of isotropic elasticity, p1 = p2 =
i and Eqs. (32) to (39) reduce to the displacements
function used in Refs. [59],[36] and [19].

The other coefficients Ai, Bi, Ci, Di can be de-
termined from the boundary conditions at the DBs
and GB as detailed in the following sections.

2. Boundary conditions on the DBs

We first examine the boundary conditions at the
DB located at y = w + h(x) separating domains
(3) and (4). Because the DB is coherent, the total
displacement u(x, y) must be continuous across the
boundary. We first consider the continuity of the
x-component: u(3)x (x,w+ h(x)) = u

(4)
x (x,w+ h(x)).

Using Taylor expansions around y = w and keeping
only the lowest order terms in h0k yields a continuity
equation on the perturbed part of the displacements:

ũ(4)x (x,w) = ũ(3)x (x,w). (45)

For the same boundary, a similar procedure ap-
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plied to the component uy yields

ũ(4)y (x,w) = ũ(3)y (x,w) + αh(x), (46)

where α = α+ − α− = ε0

(
1 + 1

ζ

)
(c+ − c−).

Also, the stress vector across the DBs of nor-
mal n defined as T = [Tx, Ty] = σ ·n must be
continuous60.

Substituting Eqs. (30) and (31) into Eqs. (23)
to (25) and using Eq. (28), we get the stress ex-
pressed in terms of the perturbed displacements in

different domains:

σ(n)
xx =C11∂xũ

(n)
x + C12∂yũ

(n)
y − C2

11 − C2
12

C11
ε0c

(n)

σ(n)
yy =C11∂yũ

(n)
y + C12∂xũ

(n)
x (47)

σ(n)
xy =C44[∂yũ

(n)
x + ∂xũ

(n)
y ]

where c(2) = c(3) = c+ and c(1) = c(4) = c−.
Substituting Eq. (47) for domains (3) and (4)

into the continuity of the stress vector and keeping
only the lowest order terms after performing Taylor
expansions in h0k � 1, we obtain two additional
boundary conditions on the perturbed displacement
components ũx and ũy. Finally, the boundary con-
ditions on the DB located at y = w + h(x) can be
summarized as follow:

ũ(4)x (x,w)− ũ(3)x (x,w) =0 (48)

ũ(4)y (x,w)− ũ(3)y (x,w) =αh(x) (49)[
∂yũ

(4)
x + ∂xũ

(4)
y

]
y=w
−
[
∂yũ

(3)
x + ∂xũ

(3)
y

]
y=w

=
C11 − C12

C44
αh′(x) (50)[

∂xũ
(4)
x + ζ∂yũ

(4)
y

]
y=w
−
[
∂xũ

(3)
x + ζ∂yũ

(3)
y

]
y=w

=0 (51)

We derive similar boundary conditions for the DB between domains (1) and (2) located at y = −w+h(x):

ũ(1)x (x,−w)− ũ(2)x (x,−w) =0 (52)

ũ(1)y (x,−w)− ũ(2)y (x,−w) =αh(x) (53)[
∂yũ

(1)
x + ∂xũ

(1)
y

]
y=−w

−
[
∂yũ

(2)
x + ∂xũ

(2)
y

]
y=−w

=
C11 − C12

C44
αh′(x) (54)[

∂xũ
(1)
x + ζ∂yũ

(1)
y

]
y=−w

−
[
∂xũ

(2)
x + ζ∂yũ

(2)
y

]
y=−w

=0 (55)

3. Boundary conditions on the GB

The perturbation of DBs produces shear stresses
on the GB which is considered to relax entirely the
shear stresses by coupling. We note H(x) the per-
turbation of the GB position whose amplitude is as-
sumed to be of the order of h0. Boundary conditions
accounting for the GB coupling behavior can then be
written assuming that the GB behaves like a sharp
interface located at H(x).

As explained in Section I, the coupling behavior
of the GB can be translated into the well-known ge-
ometrical relation of Eq. (1) between the normal GB

velocity vn and the velocity of parallel grain transla-
tion v‖29,30. A simple time integration of this equa-
tion leads to a relationship between the GB pertur-
bation,H(x), and the jump of the total displacement
ux across the GB. After performing Taylor expan-
sions around y = H(x) and keeping the dominant
term, we obtain

ũ(3)x (x, 0)− ũ(2)x (x, 0) = βH(x). (56)

Substituting the displacements ũ(2)x and ũ
(3)
x de-

scribed in Eqs. (34) and (36) into this equation,
we deduce that the function H(x) takes the form
H(x) = H0 cos(kx), where H0 is a constant un-
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known at the moment. Therefore, the GB pertur-
bation H(x) is out of phase compared to the DB
perturbation h(x), as depicted in Fig. 1.

The coupling behavior of the GB does not influ-
ence the component uy of the displacement field,
which remains continuous across the boundary. The
procedure explained in section III C 2 can be applied
straightforwardly to the component uy, yielding:

ũ(3)y (x, 0)− ũ(2)y (x, 0) = 0. (57)

Just like in the case of DBs, the components of
the stress vector T is continuous across the GB. The
continuity of the component Tx leads to the following
equation:

[
∂xũ

(3)
x + ζ∂yũ

(3)
y

]
y=0
−
[
∂xũ

(2)
x + ζ∂yũ

(2)
y

]
y=0

= 0

(58)
In addition to the continuity of the component Ty,

we assume that the GB relaxes completely the shear
stresses through coupling. In other words, the GB
adapts its shape to the shear stress environment pro-
duced by the perturbation on the DBs such that the

shear stresses vanish at y = H(x). This leads to the
following relation on the perturbed displacements:

[
∂yũ

(2)
x + ∂xũ

(2)
y

]
y=0

=0 (59)[
∂yũ

(3)
x + ∂xũ

(3)
y

]
y=0

=0 (60)

Finally, we obtained five boundary conditions
(Eqs. (57) to (60)) that have to be fulfilled on the
GB by the displacement field.

4. Solution of the elastostatic equations

Substituting the expression of the displacements
Eqs. (32) to (39) into the boundary conditions (48)-
(60) yields 13 linear equations. The 13 unknowns
of the problem (Ai, Bi, Ci, Di, H0) are then de-
termined uniquely by solving the linear system of
equations. In particular, we obtain an expression of
the GB amplitude H0:

H0 =
(
2ih0(M1p1 −M2p2)α(1 + ζ)

[
(eikp1wM2(−M1 + p1)− eikp2wM1(−M2 + p2))(−1 + ζ)C12

+ (eikp1w − eikp2w)(−M1 + p1)(−M2 + p2)C44

])
(61)

/ ((M2p1 −M1p2) [−p1 + p2 +M1(1 +M2(p1 − p2)ζ − p1p2ζ) +M2(−1 + p1p2ζ)]C44β)

The full expression of the other unknowns Ai,
Bi Ci and Di are quite lengthy and are detailed
in appendix B. To highlight the influence of the
anisotropic elasticity on the instability, we express
the elastic constants C11, C12 and C44 as a function
of an equivalent shear modulus G = C44, Poisson’s
ratio ν = C12/(C11+C12) and the anisotropic factor

S = 1− C11−C12

2C44
:

C44 =G (62)

C12 =
2(1− S)Gν

1− 2ν
(63)

C11 =
2(1− S)G(1− ν)

1− 2ν
(64)

Finally, we expand Eq. (44) in the limit of small S:
ξ =

(
π −

√
2S/(1− ν)

)
/2. After substituting these

expressions into Eq. (61) and performing a Taylor
expansion for small S, we obtain

H0 = −4ε0(c+ − c−)h0e
−kw

β
+
ε0(c+ − c−)h0e

−kw(1− 3kw + k2w2)S

β(1− ν)
+O(S3/2) (65)

In the isotropic limit (S = 0), we recover exactly
our previously derived result (Eq. (13) in Ref. [19]).

The role of anisotropic elasticity enters as a correc-
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FIG. 4. Ratio |H0β/h0| versus the dimensionless wave-
vector kw obtained from Eq. (65) for different values of
the anisotropic coefficient S, showing the influence of the
elastic anisotropy on the relative amplitudes of the GB
and DB perturbations.

tion proportional to ε0h0/β in the limit of small S.
We note that the term (1−3kw+k2w2) entering this
corrective term can be positive or negative depend-
ing on value the kw. This is illustrated in Fig. 4
where |H0β/h0| is plotted as a function of kw for
different values of S.

D. Linear stability analysis

In the previous section, we solved the elastostatic
equations when the DB position is modified by a
periodic perturbation. In this section, we formulate
a Stefan-like free boundary problem that governs the
diffusion-controlled motion of the DBs in the sharp-
interface limit where the DB width is much smaller
than the perturbation wavelength. Furthermore, we
perform a linear stability analysis of the evolution
equations for the DBs to obtain the growth rate of
the morphological instability driven by the elastic
interaction between the DBs and GB. This analysis
makes use of the results of the previous section for
the stresses on the perturbed DBs.

Far from the DBs, the concentration is close to its
equilibrium value c̄± such that Eq. (12) reduces to
the diffusion equation. Moreover, in this limit, the
chemical potential defined as µ = δF/δc is propor-
tional to the solute concentration. Therefore, the
same diffusion equation holds for µ:

∂µ(n)

∂t
= D∇2µ(n), n = 1 . . . 4, (66)

where D = Mf ′′dw(c±) is the diffusion coefficient.
Similarly to what has been done for the displace-

ment field in the previous section, the chemical po-
tential is decomposed as a sum µ = µ̄ + µ̃ where
µ̄ is the equilibrium chemical potential for the non-
perturbed configuration and µ̃ is a small variation
due to DB perturbations.

We first consider the non-perturbed DB located
between domains (1) and (2), at y = −w. The
composition field c(x, y) does not depend on x and
adopts an equilibrium profile along y denoted by
c̄(y), reaching the values c̄− and c̄+ in domains (1)
and (2) respectively. At equilibrium, the chemical
potential is constant across the DB interface and is
given by

µ̄ = f ′dw(c̄(y))−ε0(σ̄xx(y)+σ̄yy(y))−K∂2y c̄(y) (67)

where σ̄xx(y) and σ̄yy(y) are the stress profiles along
the y direction. The second term emerges from the
derivative of the elastic energy density Eq. (5) lin-
eralized for small deformations f linel = 1

2σij(εij −
δijε0c).

We then consider a perturbation h(x) of the DBs
and elastic displacements. Using the linearity of
elasticity, the total stress fields can be written as
σij = σ̄ij + σ̃ij , where σij is the stress field induced
by the perturbation. Considering that the perturba-
tion h(x) is a slowly varying function of x, we can
assume that, in the vicinity of the DB, the concentra-
tion field takes the form c(x, y) ≈ c̄(y − h(x)). Sub-
stituting these expressions for the stress and compo-
sition fields into the definition of the chemical poten-
tial and keeping only the dominant terms, we obtain

µ = µ̄− ε0(σ̃xx + σ̃yy) +K∂y c̄κ (68)

where κ is the domain interface curvature. The
chemical potential µ and the stress fields σ̃xx and σ̃yy
vary on a much larger length-scale than the interface
width and can be assumed to be constant across the
DB. We then multiply Eq. (68) by ∂y c̄ and integrate
over the interval [−w−δ,−w+δ] where δ is an arbi-
trary intermediate length, larger than the interface
width but much smaller than the characteristic scale
on which the stresses and chemical potential vary.
We finally obtain the chemical potential acting on
the DBs:

µDB = µ̄− ε0[σ̃xx + σ̃yy]DB +
γκ

c̄+ − c̄− (69)

where γ = K
∫ −w+δ

−w−δ (∂y c̄)
2dy is the interfacial energy

and [σ̃xx + σ̃yy]DB is the sum of the stresses at the
DB.
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In the case of a periodic perturbation h(x) =
h0 sin(kx), the stresses at the DB are obtained by
substituting Eqs. (32) to (39) into Eq. (47) and us-
ing the expression of Ai, Bi, Ci and Di listed in

Appendix B. Similarly to the expression of the GB
perturbation, the stresses can be expressed as a Tay-
lor expansion, treating the anisotropic coefficient S
as a small parameter:

[σ̃xx + σ̃yy]DB = Re{−k(C11 + C12)[(A1 +B1)− (M1p1A1 +M2p2B1)]y=−w} (70)
= Re{−k(C11 + C12)[(A4 +B4)− (M1p1A4 +M2p2B4)]y=w}

=

{
−4ε0(c̄+ − c̄−)kGe−2kw

1− ν +
ε0(c̄+ − c̄−)kGS[1 + (4(1− ν)− 4kw + 2k2w2)e−2kw]

(1− ν)2
+O(S3/2)

}
h

(71)

In the limit of isotropic elasticity (S = 0), we
recover the stresses obtained in Ref. [19].

We now perform a linear stability analysis by con-
sidering that the amplitude of the perturbation h0(t)
evolves exponentially in time: h0(t) = hi exp(ωkt),
with ωk the growth rate of the instability and hi the
initial amplitude of the perturbation.

For simplicity, we define the function61

Γ(k) = −ε0[σ̃xx + σ̃yy]DB

h(x, t)
+

γk2

c̄+ − c̄− , (72)

such that the chemical potential on the DB between
domains (1) and (2) is simply given by

µ
(1,2)
DB (t) = µ̄+ Γ(k)h(x, t) (73)

Similarly, the chemical potential on the DB be-
tween domains (3) and (4) is:

µ
(3,4)
DB (t) = µ̄− Γ(k)h(x, t). (74)

Eqs. (73) and (74) serve as boundary conditions
for the solution of Eq. (66). In addition, two addi-
tional boundary conditions are obtained by consid-
ering that the chemical potential reaches µ̄ far from
the DBs (i.e. for y → ±∞). The solution of Eq. (66)
satisfying these boundary conditions is of the form

µ(1) =µ̄+ Γ(k)eq(y+w)h(x, t) (75)

µ(n) =µ̄− Γ(k)
sinh(qy)

sinh(qw)
h(x, t), n = 2, 3 (76)

µ(4) =µ̄− Γ(k)e−q(y−w)h(x, t) (77)

where q =
√
k2 + ωk/D.

Next, the normal velocity of the DBs is given by
the mass conservation (Stefan-like) condition

vDB = − M

c̄+ − c̄− J∂yµKDB, (78)

where the double brackets denotes the jump of the
normal gradient of chemical potential ∂yµ across the
DB, neglecting higher order nonlinear terms origi-
nating from the change of normal direction induced
by the perturbation of the DB (i.e.

√
1 + (∂xh)2 ≈

1). Using the fact that vDB = ∂th = ωkh(x, t) and
Eqs. (75) to (77) to evaluate the right-hand-side of
Eq. (78), we obtain an implicit transcendental equa-
tion for ωk:

ωk =
MΓ(k)

c+ − c−
√
ωk
D

+ k2
(

1 + coth

(
w

√
ωk
D

+ k2
))

.

(79)
We can consider the quasistatic limit where the

concentration field that evolves on a time-scale
1/Dk2 reaches quickly an equilibrium profile com-
pared to the time-scale of the evolution of the DB
1/ωk. Our simulations are performed within this
quasistatic limit. With ωk � Dk2, q ' k and
Eq. (79) reduces to a straightforward expression for
ωk:

ωk =
MΓ(k)k

c+ − c− (1 + coth(kw)) (80)

We note that for typical material values of ν <
1/2, the second term of Eq. (71) has the same sign
as the anisotropic coefficient S. Therefore, if S > 0
(S < 0), the elastic anisotropy inhibits (promotes)
the development of the instability compared to the
isotropic case.

To check the validity of this analysis, we per-
formed AE simulations with both the isotropic
hexagonal and anisotropic BCC models. In both
cases, we choose C44 = 39 GPa. In the BCC AE
model, we have necessarily C11 = 2C12 = 2C44, fix-
ing S = 0.5. The misfit eigenstrain is ε0 = 0.043.
In addition, the GB misorientation is 7.2◦ and 11.5◦
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FIG. 5. (a) Amplitude of perturbed DB v.s. time for the
simulation shown in Fig. 1. Black dots locate the snap-
shots in Fig. 1. The dashed line represents the exponen-
tial fit performed to obtain the growth rate of the insta-
bility. (b) Dimensionless growth rate ωk as a function
of the normalized wavevector kw (w is the half-width
of the compositional domain) in the isotropic case (red)
and anisotropic case (blue) with S = 0.5. In both cases,
w = 32a and ε0 = 0.043 while the GB misorientation
is 7.2◦ and 11.5◦ in the isotropic and anisotropic case,
respectively. For the anisotropic case, both the exact
solution (derived using Eq. (70)) and the approximate
solution (derived using Eq. (71)) are represented respec-
tively with a dashed and continuous line. (c) Marginal
wavevector ks as a function of the domain half-width w
for both isotropic (red) and anisotropic (blue) elasticity.
The theoretical prediction in the anisotropic case is ob-
tained from the exact solution (derived using Eq. (70)).

in the isotropic and anisotropic simulations, respec-
tively.

To obtain the growth rate numerically, we per-
form simulations where the DBs are initially gen-
tly deformed from their planar configuration with a
small amplitude sinusoidal perturbation. As demon-
strated by the linear stability analysis, the stresses
induced by this perturbation lead to an increase of
the perturbation amplitude h0(t). Fig. 5.a displays
the amplitude of the DB perturbation as a func-
tion of time for the simulation presented in Fig. 1.
The black dots along the curve locate the snapshots
shown in Fig. 1. We can distinguish two regimes.
First, the perturbation amplitude grows exponen-
tially with time as predicted by the linear stability
analysis. The growth rate of the simulation is ob-
tained by performing an exponential fit on this part
of the curve. Second, at longer times, nonlinearities
play a significant role and are responsible for the
deviation of the simulation results from the expo-
nential fit. As depicted in Fig. 1.c, the DBs collide
with the GB, leading to a highly non-linear regime
where GB breaks-up and the position of the individ-
ual dislocations are relaxed by both glide and climb
(see Fig. 1.d).

The growth rates are obtained for different sim-
ulations performed with various wavevector k and
for a precipitate width w = 32 a. We note that
large wave-lengths (i.e. kw < 0.7) are not in-
vestigated computationally due to the large
simulation box sizes necessary to explore this
part of the dispersion diagram. For both the
isotropic and anisotropic AE models, the results are
compared to analytical predictions in Fig. 5.b. For
the sake of consistency with Ref. [19], the growth
rate ωk is normalized by the characteristic time
d20/GM where d0 is defined for an isotropic mate-
rial by d0 = γ(1 − ν)/[8Gε20(c+ − c−)]. As already
discussed in Ref. [19], the simulation results in the
isotropic case (S = 0) agree well with the analytical
prediction.

As discussed previously, Fig. 5.b clearly shows
that for our choice of parameters (S = 0.5),
the anisotropic elasticity reduces significantly the
growth rate and shifts the unstable range (where
ωk > 0) to larger wavelengths, therefore inhibiting
the instability. This can be understood with the fol-
lowing qualitative argument: in the isotropic case,
the Bitter-Crum theorem27,28 insures that the elas-
tic energy of a precipitate does not depend on its
shape. Therefore, the perturbation of the DB inter-
face leads automatically to a decrease of the elastic
energy due to the relaxation of the shear stresses at
the GBs. If this energy drop compensates the in-
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crease of energy attributed to the lengthening of the
perturbed DBs, the system is unstable. This rea-
soning does not hold in the anisotropic case where
the Bitter-Crum theorem does not apply. In our
case, the lamellar precipitate is oriented along an
elastically soft direction. Any perturbation of such
a well-oriented precipitate increases the elastic en-
ergy. Therefore, the destabilization of the system
occurs only if the stress relaxation at the GB com-
pensates this additional amount of energy. We note
that a lamellar precipitate oriented along an elasti-
cally hard direction (e.g. with a 45◦ angle with the
x-axis) is intrinsically unstable45.

The simulations performed with the BCC AE
model show a good agreement with the growth rate
predicted by the linear stability analysis. The small
discrepancy between the numerical and analytical
results is attributed to the homogeneous elasticity
approximation. Indeed, to perform the linear stabil-
ity analysis, we considered that the elastic constants
are the same in both grains, regardless of the rota-
tions introduced by the GB. Also, numerical limi-
tations such as limited system sizes might also con-
tribute to this small discrepancy.

The marginally stable wavevetor ks defined as the
positive root of ωk = 0 can be deduced for both
numerical and theoretical results and is plotted as
a function of the normalized composition domain
half-width w in the isotropic and anisotropic case
in Fig. 5.c. This plot shows again that the elastic
anisotropy shifts the domain of instability to longer
wavelengths, thus inhibiting the morphological in-
stability. Even though we only presented nu-
merical results for one value of w, the depen-
dence of the results on w can be deduced
from the predictions of the linear stability
analysis. For isotropic elasticity, this anal-
ysis predicts that, in the physically relevant
limit w � d0 where the precipitate width is
much larger than the microscopic capillary
length scale d0, the marginally stable wavec-
tor ks ≈ 1

2w ln(w/d0) and the fastest growing
wavector k0 ≈ C/w where C = 0.797... is a nu-
merical constant19. The same scalings holds
for the anisotropic case but with the constant
C depending generally on the magnitude S of
the anisotropy. As can be seen in Fig. 5.b,
the fastest growing wavector is smaller in the
anisotropic case than the isotropic case, con-
sistent with the fact that anisotropy has a
stabilizing effect when the lamellar precipi-
tate is oriented along an elastically soft di-
rection. However, in both the isotropic and
anisotropic cases, the most unstable wave-

length 2π/k0 is proportional to w so that the
instability will generally develop on the scale
of the precipitate width.

IV. GRAIN BOUNDARY BREAK-UP

(a) (b)

FIG. 6. Snapshots of the concentration field during a
simulation performed with a GB misorientation angle
θ = 30.4◦ centered on a lamellar precipitate of eigen-
strain ε0 = 0.043. The system size is 7.8w × 10.8w
where 2w is the initial width of the precipitate (the ver-
tical length of each frame is smaller than the box di-
mension). The snapshots correspond to dimensionless
times (a) 1.2 × 106 and (b) 5.12 × 106. See online sup-
plementental material62 for the movie of this simulation
(file movie1.avi).

In polycrystalline materials, the density and prop-
erties of GBs influence significantly the properties
of the bulk material. They are preferred nucleation
sites for second phase precipitates42. and also fa-
cilitate impurities diffusion though a pipe diffusion
effect63. Moreover, GBs are natural obstacles to
dislocation motion, and fine grain structures often
present high yield stresses42. Therefore, controlling
the GB density and properties is of first importance
to obtain high material properties.

The instability described in this article affects sig-
nificantly the GB and can even lead to the break-up
of the GB as shown in Fig. 1. For this low angle
GB (θ = 7.2◦), β = 0.126 and the perturbation of
the GB expressed in Eq. (65) is significant as shown
in Fig. 1.b. In the equilibrium state represented in
Fig. 1.e., the dislocations that were forming the low-
angle GB decorate the precipitate interface, relaxing
the misfit stresses.

Increasing the GB angle does not modify the de-
velopment nor the growth rate of the instability.
However, for higher misorientation angles, the cou-
pling factor β is greater and therefore the amplitude
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(a) (b)

(c) (d)

FIG. 7. Snapshots of the concentration field during a
simulation performed with a GB misorientation angle
θ = 30.4◦ centered on a lamellar precipitate of eigen-
strain ε0 = 0.086. The system size is 7.8w × 10.8w
where 2w is the initial width of the precipitate (the ver-
tical length of each frame is smaller than the box dimen-
sion). The snapshots correspond to dimensionless times
(a) 4×103, (b) 7.6×104, (c) 2.84×105 and (d) 4.2×106.
See online supplementental material62 for the movie of
this simulation (file movie2.avi).

of the GB perturbation is smaller. So, one can ex-
pect the influence of the instability on the GB to be
less important. Fig. 6 shows the late stages of the
development of the instability for a misorientation
angle θ = 30.4◦ GB, everything else being identical
to the simulation presented in Fig. 1. As expected,
the GB is less affected by the instability: its position
is only slightly modified and the precipitate shape
evolves until the DBs wet the GB. Fig. 6.b repre-
sents the equilibrium state of the system where the
GB remains continuous and the precipitate forms
lobes on both sides of the GB. We note here that
this destabilization can represent the first stage of
development of the Widmanstätten structure found
in steel and Ti-based alloys16,17. It has been shown
experimentally that Widmanstätten structures de-
velop in two steps: first, an thin elongated precipi-
tate nucleates on the GB and grow laterally; then,
the precipitate develops acicular arms growing per-
pendicularly to the GB, towards the center of the
grain. The instability presented in this paper and
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FIG. 8. GB behavior as a function of misorientation
angle θ and misfit strain ε0. Simulations where the GB
breaks up are represented with red dots while the ones
where the GB is morphologically unstable but remains
continuous are shown with blue squares. The dashed line
is a second order polynomial fit of the boundary between
break-up and non-break-up regions of the (θ, ε20) plane.

more precisely the morphology shown in Fig. 6.b
could trigger the growth of elongated precipitates
perpendicular to the GB.

However, increasing the misfit strain can destabi-
lize a high angle GB as well: Fig. 7 shows a simu-
lation performed with θ = 30.4◦ and a misfit eigen-
strain of ε0 = 0.086. During the development of
the instability, we notice the nucleation of low com-
position domains close to the GB (blue droplets in
Fig. 7.b) promoted by the high compressive stress
appearing in the vicinity of the deformed GB. Later
in the simulation, the high angle GB breaks up
(Fig. 7.c) and the system relaxes into a configura-
tion presenting two lower angle GBs (Fig. 7.d). The
equilibrium configuration also shows that disloca-
tions decorate the precipitate surface, relaxing the
high misfit stresses.

The appearance of GB break-up then depends on
a balance between the misfit stresses and the GB
misorientation. This is summarized in Fig. 8 where
the results of several simulations for various values
of the misorientation angle θ and eigenstrain ε0 are
presented: the GB break-up occurs for low angle
GBs and high values of ε20. The dashed line sepa-
rating both regions serves as a guide to the eye and
is linear for small values of the misorientation an-
gle. It also shows that for a large enough misfit, the
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instability break up all GBs.

V. INTERACTION BETWEEN CIRCULAR
PRECIPITATES AND GRAIN BOUNDARIES

(a) (b)

(c) (d)

(e) (f)

FIG. 9. Snapshots of the concentration field during a
simulation performed with a GB misorientation θ = 7.2◦

and a circular precipitate with a misfit eigenstrain ε0 =
0.043. The system size is 7.8R × 11.3R where R is the
radius of the circular precipitate. The snapshots corre-
spond to dimensionless times (a) 1×104, (b) 1.6×105, (c)
5.1×105, (d) 1.01×106, (e) 2.72×106 and (f) 6.18×106.
See online supplementental material62 for the movie of
this simulation (file movie3.avi).

In the previous sections, we considered configura-
tions consisting of a lamellar precipitate centered on
a GB. Even though this geometry is relevant for het-
erogeneous nucleation of precipitates on GBs, circu-
lar precipitates also commonly appear in the vicinity
of a GB as exemplified by Ni-Al superalloys14,15,64.
The γ′ precipitates in these alloys are known to in-
fluence the GB morphology by causing their serra-
tion and this mechanism has been shown to improve
the creep properties of the alloy by preventing GB
sliding14. The GB serration has been proposed to be
due to a balance between the elastic energy released
by the coherency loss of the precipitate interface in
contact with the GB and the GB surface tension14,64,
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FIG. 10. Snapshots of the concentration field during
a simulation performed with a GB misorientation θ =
20.8◦ and a circular precipitate with a misfit eigenstrain
ε0 = 0.043. The system size is 7.7R × 10.8R where R is
the radius of the circular precipitate. The snapshots cor-
respond to dimensionless times (a) 1×104, (b) 5.1×105,
(c) 1.01 × 106, (d) 1.61 × 106, (e) 2.75 × 106 and (f)
5.52× 106. The evolution of the total free energy is rep-
resented in panel (g) in which black dots locate the snap-
shots in (a-f). See online supplementental material62 for
the movie of this simulation (file movie4.avi).

two ingredients that are naturally taken into account
in the AE model.

We consider a configuration consisting of a cir-
cular precipitate of radius R = 32a and of misfit
ε0 = 0.043 located at a distance 2R of a symmet-
rical GB. Snapshots of simulations performed with
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two different misorientation angles θ = 7.2◦ and
θ = 20.8◦ are presented in Figs. 9 and 10, respec-
tively. Even though the circular and lamellar pre-
cipitate geometries differ significantly, the simula-
tions reveal that the mechanism of the GB instabil-
ity is similar in both cases. The GB deforms slightly
by shear-coupled motion to relax shear stresses pro-
duced by the misfitting particle. In turn, the de-
formed GB produces an heterogeneous stress field,
inducing the migration of the precipitate towards the
GB (see Fig. 9.a-c and Fig. 10.a-b). This migration
is mediated by the elongation of the precipitate. The
additional surface energy caused by this elongation
is compensated by the relaxation of shear stresses
by the GB coupling mechanism. Therefore, the in-
terplay between the elastic energy and the surface
energy lead to the destabilization of the configura-
tion through a mechanism similar to the morpho-
logical instability of lamellar precipitates described
previously. Eventually, the misfitting particle en-
ters in contact with the GB. For the low angle GB,
the misfit stress is large enough to break-up the GB
(see Fig. 9.d), allowing the GB dislocations to relax
part of the misfit stress. For the higher angle GB,
the precipitate interface wets the GB without lead-
ing to its break-up (see Fig. 10.d). In both cases,
the equilibrium configuration show a slightly ellip-
tic precipitate centered on the somewhat perturbed
GB. This configuration relaxes the total energy as
shown in Fig. 10.g.

Despite a large value of the misfit compared to γ′
precipitates in Ni-Al superalloys, these simulations
show that elastic interactions between the misfit-
ting particle and the GB induce a driving force for
the migration of the particle, thereby providing a
mechanism for how γ′ precipitates nucleated in the
GB vicinity migrate towards the GB. In the case
of an isolated misfitting particle, the shear
stress induced along the GB by the particle
decays as (R/`)d where R and ` are the par-
ticle radius and its initial perpendicular dis-
tance to the GB, respectively, and d is the
dimension of space. Hence, in both two and
three dimensions, the GB will be deformed
on a scale comparable to `. This deformation
will in turn perturb the stress field on a scale
` , thereby causing the precipitate to migrate
at a rate that becomes vanishingly small in
the limit ` � R. In the case where several
particles are present, the interaction between
particles and GB is more complex. However,
significant migration is generally expected to
only occur when a particle is located at a dis-
tance from the GB comparable to its size.

VI. CONCLUSIONS AND OUTLOOK

In summary, we used the AE framework to inves-
tigate computationally the interaction between GBs
and second phase precipitates in two-phase coherent
solids in the presence of misfit strain. We focused on
two generic geometries where a GB is centered inside
a lamellar precipitate formed by heterogeneous nu-
cleation on the GB, and where the GB is adjacent to
a circular precipitate that nucleates inside a grain.
We find that, in both geometries, the GB becomes
deformed away from its initial planar configuration
by a coordinated motion of the GB and the adjacent
compositional DB(s) that relaxes the elastic strain
energy created by the misfit precipitate. The motion
of the GB is driven by shear stresses along the GB
(shear-coupled motion) while the motion of the DBs
is driven by concentration gradients and controlled
by atomic diffusion.

For the lamellar precipitate geometry, the co-
ordinated motion of the GB and DBs is man-
ifested as a pattern-forming instability with a
fastest growing wavelength. This instability bears
similarities with the Asaro-Tiller-Grinfeld (ATG)
instability65,66 where destabilization is mediated by
the relaxation of the normal stresses at a free sur-
face or a solid-liquid interface. However, the present
instability is more complex in that it involves the
interaction of two fundamentally different types of
interfaces (GB and DBs). Furthermore, it is me-
diated by the relaxation of a shear stress at the
GB. We have characterized analytically this instabil-
ity by extending our previous linear stability anal-
ysis for isotropic elasticity19 to the more complex
case of anisotropic elasticity. The analysis predicts
that, if the lamellar precipitate is oriented along an
elastically soft direction, elastic anisotropy hinders
the instability by reducing the growth rate of the
instability and the range of unstable wavelengths.
However, anisotropy does not suppress the instabil-
ity even though the lamellar precipitate would be
stable in this configuration in the absence of misfit.
Analytical predictions for the growth rate of pertur-
bations and the range of unstable wavelengths are
in good overall quantitative agreement with the re-
sults of AE simulations for three-dimensional BCC
crystal structures.

For a circular precipitate adjacent to a planar GB,
the coordinated motion of the GB and DB is mani-
fested by an elongation of the precipitate shape and
concomitant migration of the precipitate towards
the deformed GB. The increase of interfacial energy
associated with this elongation is compensated by
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the relaxation of shear stresses by the GB coupling
mechanism. Hence, the interplay between elastic
and interfacial energy leads to the destabilization of
the initial GB-precipitate configuration by a physical
mechanism similar to the morphological instability
of the GB inside a lamellar precipitate.

Simulations also reveal that, in the lamellar ge-
ometry, instability can lead to the break-up of low-
angle GBs when the misfit strain exceeds a threshold
that depends on the grain boundary misorientation.
Stationary equilibrium configurations after break-up
can be quite complex and consist of dislocations that
reside inside or outside the precipitate and decorate
its surface to relax the misfit stress. For the circular
precipitate, GB break-up also occurs for low angle
GBs even though the final equilibrium configuration
is typically an oval shape precipitate centered on an
approximately flat GB, at least for the few cases in-
vestigated here. For both the lamellar and circular
precipitates, dislocation climb is seen to provide an
important mechanism to relax the total free-energy
in addition to glide.

The present findings should be relevant for inter-
preting a host of experiments where GBs interact

strongly with precipitates, including the aforemen-
tioned examples of Ni-Al superalloys where γ′ pre-
cipitates lead to GB serration14,15 and Widmanstät-
ten precipitates in steel and Ti-based alloys, which
are observed to grow out in a direction normal to the
GB plane16,17. In the more general setting of spin-
odal decomposition occurring in a polycrystalline
material, our results suggest that a large difference
of lattice spacing between compositional domains
could influence significantly the grain structure by
the break-up of GBs or the nucleation of new grains
(e.g. Fig. 7), thereby affecting the resulting prop-
erties of the bulk material. In situ experimental
observations that characterize the interactions be-
tween GBs and precipitates in both controlled bi-
crystal geometries and complex networks of GBs re-
main needed to validate more directly the instability
mechanisms highlighted in the present study.
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Appendix A: Amplitude equations for BCC

For BCC ordering, the evolution equation for concentration is the same as Eq. (12) but with six amplitude
variables A1, A2, A3, A4, A5, A6. We just list here the six amplitude equations.

For A1:
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For A4:
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Appendix B: Solution of the linear system of equations

We list below the solution of the linear system of 13 equations that determines the coefficients Ai, Bi, Ci,
Di and H0.

A1 =− {ih0α(1 + ζ)[(−1 + ζ)(−M2(−(1 + e2ikp1w)p1 + p2 − e2ikp1wp2
+M2(−1 + p1p2ζ + e2ikp1w(1 + p1p2ζ))) +M1(−2eik(p1+p2)wp2 +M2

2 ((−1 + e2ikp1w)p1

+ (1 + e2ikp1w − 2eik(p1+p2)w)p2)ζ −M2(1− p1p2ζ + e2ikp1w(1 + p1p2ζ)− 2eik(p1+p2)w(1 + p22ζ))))C12

− (M2 − p2)(p1 + e2ikp1wp1 − 2eik(p1+p2)wp1 − p2 + e2ikp1wp2 −M2(−1 + p1p2ζ − 2eik(p1+p2)wp1p2ζ

+ e2ikp1w(1 + p1p2ζ)) +M1(−1 + p1p2ζ +M2(−p1 + p2)ζ + eik(p1+p2)w(2− 2M2p2ζ)

+ e2ikp1w(−1− p1p2ζ +M2(p1 + p2)ζ)))C44]}
/{2(M2p1 −M1p2)ζ(−p1 + p2 +M1(1 +M2(p1 − p2)ζ − p1p2ζ) +M2(−1 + p1p2ζ))C44} (B1)

B1 =− {ih0α(1 + ζ)[(−1 + ζ)(−2eik(p1+p2)wM2p1 +M2
1 (1− 2eik(p1+p2)wM2p1ζ

+M2(p1 − p2)ζ − p1p2ζ + e2ikp2w(−1− p1p2ζ +M2(p1 + p2)ζ)) +M1((−1 + e2ikp2w)p1

+ (1 + e2ikp2w)p2 −M2(1− p1p2ζ − 2eik(p1+p2)w(1 + p21ζ) + e2ikp2w(1 + p1p2ζ))))C12

− (M1 − p1)(−p1 + e2ikp2wp1 + p2 + e2ikp2wp2 − 2eik(p1+p2)wp2 −M2(1− 2eik(p1+p2)w − p1p2ζ
+ e2ikp2w(1 + p1p2ζ)) +M1(1 +M2(p1 − p2)ζ − p1p2ζ + 2eik(p1+p2)wp1(−M2 + p2)ζ

+ e2ikp2w(−1− p1p2ζ +M2(p1 + p2)ζ)))C44]}
/{2(M2p1 −M1p2)ζ(−p1 + p2 +M1(1 +M2(p1 − p2)ζ − p1p2ζ) +M2(−1 + p1p2ζ))C44} (B2)

A2 ={ih0α(1 + ζ)(M2(−1 + ζ)C12 + (−M2 + p2)C44)}/{2(M2p1 −M1p2)ζC44} (B3)
B2 =− {ih0α(1 + ζ)(M1(−1 + ζ)C12 + (−M1 + p1)C44)}/{2(M2p1 −M1p2)ζC44} (B4)
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C2 =− {ih0α(1 + ζ)[(−1 + ζ)(2eikp2wM1(−M2 + p2)(−1 +M2p2ζ) + eikp1wM2(p1 + p2 −M2(1 + p1p2ζ)

+M1(−1− p1p2ζ +M2(p1 + p2)ζ)))C12 + (M2 − p2)(2eikp2w(M1 − p1)(−1 +M2p2ζ)

+ eikp1w(M2 − p1 − p2 +M2p1p2ζ +M1(1 + p1p2ζ −M2(p1 + p2)ζ)))C44]}
/{2(M2p1 −M1p2)ζ(−p1 + p2 +M1(1 +M2(p1 − p2)ζ − p1p2ζ) +M2(−1 + p1p2ζ))C44)} (B5)

D2 ={ih0α(1 + ζ)[(−1 + ζ)(−2eikp1wM2(−M1 + p1)(−1 +M1p1ζ)− eikp2wM1(p1 + p2 −M2(1 + p1p2ζ)

+M1(−1− p1p2ζ +M2(p1 + p2)ζ)))C12 − (M1 − p1)(2eikp1w(M2 − p2)(−1 +M1p1ζ)

+ eikp2w(M2 − p1 − p2 +M2p1p2ζ +M1(1 + p1p2ζ −M2(p1 + p2)ζ)))C44]}
/{2(M2p1 −M1p2)ζ(−p1 + p2 +M1(1 +M2(p1 − p2)ζ − p1p2ζ) +M2(−1 + p1p2ζ))C44} (B6)

A3 =− {ih0α(1 + ζ)(M2(−1 + ζ)C12 + (−M2 + p2)C44)}/{2(M2p1 −M1p2)ζC44} (B7)
B3 ={ih0α(1 + ζ)(M1(−1 + ζ)C12 + (−M1 + p1)C44)}/{2(M2p1 −M1p2)ζC44} (B8)

C3 ={ih0α(1 + ζ)[(−1 + ζ)(2eikp2wM1(−M2 + p2)(−1 +M2p2ζ) + eikp1wM2(p1 + p2 −M2(1 + p1p2ζ)

+M1(−1− p1p2ζ +M2(p1 + p2)ζ)))C12 + (M2 − p2)(2eikp2w(M1 − p1)(−1 +M2p2ζ)

+ eikp1w(M2 − p1 − p2 +M2p1p2ζ +M1(1 + p1p2ζ −M2(p1 + p2)ζ)))C44]}
/{2(M2p1 −M1p2)ζ(−p1 + p2 +M1(1 +M2(p1 − p2)ζ − p1p2ζ) +M2(−1 + p1p2ζ))C44} (B9)

D3 ={ih0α(1 + ζ)[−(−1 + ζ)(−2eikp1wM2(−M1 + p1)(−1 +M1p1ζ)− eikp2wM1(p1 + p2 −M2(1 + p1p2ζ)

+M1(−1− p1p2ζ +M2(p1 + p2)ζ)))C12 + (M1 − p1)(2eikp1w(M2 − p2)(−1 +M1p1ζ)

+ eikp2w(M2 − p1 − p2 +M2p1p2ζ +M1(1 + p1p2ζ −M2(p1 + p2)ζ)))C44]}
/{2(M2p1 −M1p2)ζ(−p1 + p2 +M1(1 +M2(p1 − p2)ζ − p1p2ζ) +M2(−1 + p1p2ζ))C44} (B10)

A4 ={ih0α(1 + ζ)[(−1 + ζ)(−M2(−(1 + e2ikp1w)p1 + p2 − e2ikp1wp2 +M2(−1 + p1p2ζ + e2ikp1w(1 + p1p2ζ)))

+M1(−2eik(p1+p2)wp2 +M2
2 ((−1 + e2ikp1w)p1 + (1 + e2ikp1w − 2eik(p1+p2)w)p2)ζ

−M2(1− p1p2ζ + e2ikp1w(1 + p1p2ζ)− 2eik(p1+p2)w(1 + p22ζ))))C12 − (M2 − p2)(p1 + e2ikp1wp1

− 2eik(p1+p2)wp1 − p2 + e2ikp1wp2 −M2(−1 + p1p2ζ − 2eik(p1+p2)wp1p2ζ + e2ikp1w(1 + p1p2ζ))

+M1(−1 + p1p2ζ +M2(−p1 + p2)ζ + eik(p1+p2)w(2− 2M2p2ζ) + e2ikp1w(−1− p1p2ζ +M2(p1 + p2)ζ)))C44]}
/{2(M2p1 −M1p2)ζ(−p1 + p2 +M1(1 +M2(p1 − p2)ζ − p1p2ζ) +M2(−1 + p1p2ζ))C44} (B11)

B4 ={ih0α(1 + ζ)[(−1 + ζ)(−2eik(p1+p2)wM2p1 +M2
1 (1− 2eik(p1+p2)wM2p1ζ +M2(p1 − p2)ζ − p1p2ζ

+ e2ikp2w(−1− p1p2ζ +M2(p1 + p2)ζ)) +M1((−1 + e2ikp2w)p1 + (1 + e2ikp2w)p2

−M2(1− p1p2ζ − 2eik(p1+p2)w(1 + p21ζ) + e2ikp2w(1 + p1p2ζ))))C12 − (M1 − p1)(−p1 + e2ikp2wp1 + p2

+ e2ikp2wp2 − 2eik(p1+p2)wp2 −M2(1− 2eik(p1+p2)w − p1p2ζ + e2ikp2w(1 + p1p2ζ))

+M1(1 +M2(p1 − p2)ζ − p1p2ζ + 2eik(p1+p2)wp1(−M2 + p2)ζ + e2ikp2w(−1− p1p2ζ +M2(p1 + p2)ζ)))C44]}
/{2(M2p1 −M1p2)ζ(−p1 + p2 +M1(1 +M2(p1 − p2)ζ − p1p2ζ) +M2(−1 + p1p2ζ))C44} (B12)

H0 ={2ih0(M1p1 −M2p2)α(1 + ζ)[(eikp1wM2(−M1 + p1)− eikp2wM1(−M2 + p2))(−1 + ζ)C12

+ (eikp1w − eikp2w)(−M1 + p1)(−M2 + p2)C44]}
/{(M2p1 −M1p2)β(−p1 + p2 +M1(1 +M2(p1 − p2)ζ − p1p2ζ) +M2(−1 + p1p2ζ))C44} (B13)
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