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We model a semiconductor wire with strong spin-orbit coupling which is proximity-coupled
to a superconductor with chemical potential disorder. When tunneling at the semiconductor-
superconductor interface is very weak, disorder in the superconductor does not affect the induced
superconductivity nor, therefore, the effective topological superconductivity that emerges above a
critical magnetic field. Here we demonstrate nonperturbatively how this result breaks down with
stronger proximity coupling by obtaining the low-energy (i.e., subgap) excitation spectrum through
direct numerical diagonalization of an appropriate BdG hamiltonian. We find that the combination
of strong proximity coupling and superconductor disorder suppresses the (non-topological) induced
gap at zero magnetic field by disordering the induced pair potential. In the topological supercon-
ducting phase at large magnetic field, strong proximity coupling also reduces the localization length
of Majorana bound states, such that the induced disorder eliminates the topological gap while bulk
zero modes proliferate, even for short wires.

One-dimensional topological superconductors (TS)
supporting isolated, edge-localized Majorana zero modes
(MZMs) can in principle be synthesized in strongly spin-
orbit coupled semiconductor (SM) wires via the proxim-
ity effect from a conventional superconductor (SC) [1, 2],
and several groups have recently reported measurements
consistent with this 1D TS state in proximitized InAs
and InSb nanowires [3–8]. However, lingering disagree-
ments between theory and experiments have motivated
the development of an increasingly sophisticated theoret-
ical picture.

A simplified model for the induced superconductivity
consists of adding a uniform s-wave pair potential to a
non-superconducting hamiltonian, assuming any further
effects of coupling to the SC may be ignored. This ap-
proximation turns out to be qualitatively, and even quan-
titatively, accurate for “weak” proximity coupling [9–11].
Explicitly, if the proximity coupling is characterized by
an energy scale γ and the parent superconductor gap is
∆sc, this model is viable when γ/∆sc � 1. Unfortu-
nately for applications, the induced gap in this regime is
also approximately γ, while a large induced gap (relative
to the energy resolution, temperature, etc., of the specific
experiment) is a necessary requirement for robust signa-
tures of in-gap modes. An additional requirement is that
the induced gap be hard, that is, free of sub-induced-gap
states that contribute to low-bias conductance. For 1D
TS, this requires wires that are relatively free of intrinsic
disorder, as well as a uniform SC-SM coupling along the
length of the wire [12].

However, in an effort to fabricate TS devices with large
and hard induced gaps, epitaxial SM-SC hybrids have
recently been produced and characterized in this strong
proximity coupling regime [13] (a similar platform relies
on metal-on-superconductor hybrids which are intrinsi-

cally in this regime [14, 15].) It is, therefore, necessary to
understand the signatures of deviations from this simpli-
fied model in the current context of intense experimental
activity [16, 17] for the laboratory realization of synthetic
TS.

One such implication, which motivates this Letter, is
the possibility of an induced disorder arising from strong
coupling to a disordered parent SC. To lowest order in
γ/∆sc, the induced superconductivity is known to be
“protected” against any nonmagnetic disorder in the par-
ent SC [18, 19]. At intermediate or strong proximity cou-
pling, though, this perturbative result must break down.
Here we demonstrate this explicitly, calculating the com-
bined nonperturbative effects of strong proximity cou-
pling and parent superconductor disorder.

We begin with the standard minimal model of a single-
channel, disorder-free nanowire with spin-orbit coupling
and Zeeman splitting with a large g factor [1, 2]. This
wire is coupled through a uniform interface hopping to
a conventional s-wave superconducting bulk (represented
by a ribbon, with width much greater than the SC co-
herence length) with on-site chemical potential disorder.
Our goal is to treat the composite wire and SC system
in a nonperturbative, approximation-free manner to the
extent that the wire is noninteracting and the parent
superconductor can be treated within the BdG mean-
field approximation. Because the model is fundamentally
quadratic, it seems that it should be amenable to an ex-
act numerical solution. However, there are length scale
and energy scale considerations that make a full diago-
nalization unreasonable in practice, and this has gener-
ally motivated the use of simpler effective models. For
SM-SC hybrids, the Fermi wavelength of electrons in the
SM wire is typically of the order of tens of nm, while the
Fermi wavelength of electrons in the SC is a fraction of
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a nm. A typical SC coherence length could be ∼ µm for
Aluminum or tens of nm for Niobium. Additionally, the
wire is expected to have a long mean-free path, while the
superconductor mean-free path is generally much shorter
than the coherence length.

In the following, we do not attempt a detailed quan-
titative simulation of any existing experiment, instead
taking an approach that maintains this realistic hierarchy
of length scales without making any additional approxi-
mations that may obscure the effects of induced disorder.
We overcome the practical limitation of diagonalizing the
correspondingly large hamiltonian matrix by abandon-
ing full diagonalization outright. We are interested in
a small subset of states with energy eigenvalues below
(or on the order of) the parent SC gap, which is itself
a small energy scale compared to band structure scales
(i.e., chemical potential in the SC and hopping matrix
elements). With this understanding, we can leverage the
sparse matrix structure of the model and use the Lanc-
zos method, with the shift-and-invert scheme appropriate
to interior eigenvalue problems, to resolve only the part
of the spectrum corresponding to the induced supercon-
ductivity. Additional details on the model and method
of solution are relegated to the supplementary material.

Our goal is instead to elucidate the impact of nonmag-
netic disorder in the parent SC nonperturbatively, for any
strength of SM-SC coupling. We find that SC disorder
can introduce “pair-breaking” behavior in the induced
superconductivity of a perfectly clean SM wire with a
perfectly smooth SM-SC interface, providing an alter-
native origin for observed states below the induced gap
[12]. In the TS phase, the “topological gap” which pro-
tects MZMs becomes extremely fragile against SC disor-
der with increasing SM-SC coupling, corresponding to a
proliferation of near-zero energy but bulk-localized states
[20]. Observation of non-Abelian statistics would be es-
sentially impossible in this regime, even though other sig-
natures of MZMs (such as zero bias conductance peaks)
may still be present. We conclude by highlighting some
strategies to mitigate this induced disorder effect.

Spectral gap at zero field.—First we calculate the exci-
tation gap EG, the smallest eigenvalue of the full (wire
+ SC bulk) hamiltonian, as a function of the interface
coupling γ and a dimensionless measure of the disorder
strength in the parent superconductor, d =

√
ξ/(kFλ2),

with ξ, kF , λ the clean BCS coherence length, Fermi
wavevector, and mean free path respectively (more de-
tails available in the supplementary information). Our
exact numerical results for EG, shown in Fig. 1(a) for
zero field, agree qualitatively with a recent self-consistent
Born approximation (SCBA) calculation [21]. We also re-
cover the perturbative result [18] that SC disorder does
not affect EG for γ/∆sc � 1, however, at stronger cou-
pling disorder does substantially suppress the induced
gap (though it has no effect on the gap of the parent SC,
which remains ∆sc regardless of the disorder by virtue of
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FIG. 1. Proximity-induced gap without magnetic field. (a),
Induced gap (in units of parent superconductor gap) versus
interface coupling for several values of disorder. We see that
(i) disorder suppresses the induced gap substantially at inter-
mediate coupling, γ/∆sc ' 1, while (ii) for sufficiently small
γ, all of the curves recover the expected EG = γ limit (red
dashed line) as γ → 0. In this limit the wire is “protected”
from bulk SC disorder. (b), Disorder averaged and single re-
alization subgap densities of states at intermediate coupling
(γ/∆sc ' 1). Each disorder averaged curve is obtained from
the same set of 30 independent samples. Disorder in the par-
ent SC broadens the subgap “coherence peak” and produces
bound states below the clean-limit induced gap (thus sup-
pressing EG).

Anderson’s theorem [22]). Fluctuations around an aver-
aged EG arise from sampling over independent disorder
realizations. Vanishing sample-to-sample fluctuations for
γ/∆sc � 1 further confirm the disorder independence of
EG in that regime.

In Fig. 1(b), we fix γ = ∆sc and show characteristic
densities of states (averaged over 30 disorder realizations)
for the same values of d. In the disorder-free case, the
subgap spectrum exhibits a “coherence peak” of states
accumulating at EG. However, even for weak disorder,
this peak is broadened with the lowest-lying states shift-
ing to energies below the clean EG. Alternatively, we also
show the DOS evaluated for a single disorder realization.
Here, we see that the high-energy states (i.e., near the
parent gap) form a broad continuum, while the lowest
energy states (which determine EG) are energetically iso-
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lated and correspondingly spatially localized. Because of
this localization, these states will not contribute to the
wire edge LDOS, probed via the conductance of a normal
metal-superconductor junction, unless by accident they
are within a localization length of the wire edge.

At zero field, this suppression of the induced gap and
“pair-breaking” appearance of the DOS is an initially
surprising result in light of Anderson’s theorem, which
suggests that conventional s-wave superconductors are
immune to disorder that preserves time-reversal symme-
try (TRS) [22]. However, this apparent pair-breaking
effect is limited to the induced superconductivity in the
wire.

It is not universally appreciated that Anderson’s the-
orem relies both on TRS and an approximately spatially
uniform pair potential ∆(r) ' ∆ [23]. An inhomoge-
neous pair potential also can produce bound states, even
in the presence of TRS. In conventional superconductors
with a small gap and a correspondingly large correlation
length, a self-consistent pair potential disorder is ener-
getically costly, so this physics is not relevant even for
very dirty samples of, say, Aluminum. There is no such
penalty for a strongly inhomogeneous induced pair poten-
tial in a hybrid device with no intrinsic attractive interac-
tion in the semiconductor, as is clear from our numerical
calculation despite a spatially uniform wire-SC coupling
and uniform pair potential in the SC. This inhomoge-
neous proximity-induced pair potential leads to a “viola-
tion” of Anderson’s theorem in the clean wire, even with-
out any spin-orbit coupling or spin splitting (i.e. even in
the non-topological s-wave SC regime). This is quali-
tatively similar to an effective model for pair-potential
disorder studied previously in this context [12], although
the mechanism here is quite different. Here, the pairing
inhomogeneity appears even though the SC-wire inter-
face is perfectly smooth. This establishes the possibility
that the experimentally observed soft superconducting
gap arises (at least partially) from parent SC disorder.

Spectral gap in the topological regime.—We consider
now the effect of SC disorder on the subgap spectrum
with a very large, fixed spin splitting in the wire, V Znw =
4∆sc. Coarsely, topological superconductivity is achieved
(in the clean limit) when V Znw > γ [24]. The gap here
cannot be a monotonically increasing function of γ, since
increasing γ in turn reduces the effective spin splitting,
so crossing γ > V Znw drives a gap-closing transition back
to the trivial state. In our numerical results, this actu-
ally occurs at a slightly larger value of γ, attributable to
including the small, typically neglected, Zeeman energy
in the SC.

In Fig. 2(a), we show the disorder-averaged excitation
gap EG. The dashed lines are to highlight the minimum
value of EG over several disorder realizations. (We have
used periodic boundary conditions to avoid the contri-
bution from edge MZMs.) We emphasize that these are
both length-dependent quantities. In the limit of an infi-
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FIG. 2. Proximity-induced topological gap. (a), Induced
topological gap versus interface coupling energy for several val-
ues of disorder, with a bare wire Zeeman energy V Z

nw = 4∆sc,
such that the wire is topological over the entire coupling win-
dow in the clean limit. Compared to Fig. 1, the gap suppres-
sion is much more substantial. The topological gap however
also exhibits “protection” from bulk SC disorder at small γ.
The data points correspond to disorder averaging, while the
dashed lines designate the minimum EG over all sampled dis-
order realizations. (b), Disorder averaged subgap densities of
states for several representative values of disorder at inter-
mediate coupling (γ/∆sc ' 1), as in Fig. 1. For sufficiently
strong disorder, the DOS acquires a long tail such that the
disorder averaged DOS closes, even though most individual
realizations have a noticeable gap.

nite length of wire both of these measures must coincide
and tend to zero. A finite wire length and fixed number
of disorder samples is, however, reflective of the distri-
bution of gap measurements from a finite set of devices
in an experiment. That the average EG is substantially
larger than the minimum EG suggests that the finite sys-
tem disorder-averaged DOS is characterized by a long tail
of low-energy but unlikely states, verified in Fig. 2(b).

The general fragility of the underlying 1D effective p-
wave superconductivity against disorder is well under-
stood [20, 25–29], however, the specific dependence on
the proximity coupling is interesting and has not been
studied before. For any value of disorder, at sufficiently
strong coupling the average EG in Fig. 2(a) vanishes.
That is, EG ∼ 0 regardless of the particular disorder con-
figuration. However, this closing is not sharp. For each
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FIG. 3. Strong SM-SC coupling effect on the topological
gap. (a), Disorder averaged low-energy DOS for d ' 0.92
with increasing γ = 1.5−3.5∆sc from bottom to top, demon-
strating the closure of the gap and eventual emergence of a
singularity at zero-energy. (b), Distribution of the negative
logarithm of low-energy eigenvalues for several values of cou-
pling. Exponentially small eigenvalues are exponentially rare,
however the relative probability of obtaining an exponentially
small eigenvalue increases substantially with γ.

d, the average EG shows a “foot” well after the mini-
mum EG has gone essentially to zero. This is the rare-
region-induced Griffiths effect - in this crossover window,
any individual disorder realization will most likely have
a comparably large EG, but in some rare disorder con-
figurations (or, equivalently, for a sufficiently long wire)
the smallest EG is exponentially small.

To explore this further, in Fig. 3(a), we track the dis-
order averaged density of states for d ' 0.92 along this
foot, from γ/∆sc = 1.5 − 3.5. We see that the gap in
the DOS closes and is replaced by a Griffiths singular-
ity at zero energy, as every disorder realization provides
near-zero energy states.

This Griffiths effect provides useful insight into
Fig. 2(a). The probability of the disorder effectively pro-
ducing a segment of wire (topological embedded in non-
topological or vice versa) with two MZMs separated by a
length L is P (L) ∝ e−cL for some model-dependent con-
stant c. If such a segment exists, it contributes an excita-
tion of energy E ∝ e−L/ξ, with ξ the localization length
of the MZMs. It has only recently been realized that
the localization length of MZMs is strongly renormalized
by the proximity coupling [30, 31]. Since ξ ∝ γ−1, the
required L to produce a state of some fixed (low) en-
ergy decreases as γ increases. The relative probability of
generating this segment likewise increases, to the point
where one (or more) of these states will reliably occur
in the finite system for any particular disorder potential.

That is, as γ is increased, the destruction of the topo-
logical gap and onset of a zero-energy DOS singularity,
even for a short wire, is driven by the exponentially in-
creasing probability of making a domain that contributes
a near-zero eigenvalue to the spectrum. In Fig. 3(b), we
show the distribution of low-energy eigenvalues in a his-
togram over several disorder realizations, demonstrating
this exponential dependence and its scaling with γ.

Of course, this has unfortunate consequences for the
application of wire edge MZMs in quantum information.
Although a zero bias conductance peak may still arise
from MZMs localized near the wire edges, the system is
by no means protected since there are many other MZMs
localized at random spatial locations along the wire (in
fact, the conductance signature may be similar to a ran-
dom Majorana chain with non-generic zero-bias peaks
depending on various microscopic details [32]). These
bulk low-energy modes can then participate in braiding
in an uncontrollable way. One upside, however, is that
this situation cannot persist down to arbitrarily small γ
(again, in a finite wire), since we eventually return to the
protected regime, where the TS gap is small (∝ γ) but
unaffected by SC disorder.

Discussion.—Strong proximity coupling is experimen-
tally desirable for maximizing the induced pair correla-
tions and spectral gap in the nanowire, however, this
also necessarily eliminates the protection, predicted for
weak coupling, of the induced superconductivity in the
nanowire against SC disorder. Realistically, the parent
SC materials in present experiments are quite disordered
and the resulting induced disorder in the nanowire can
easily be sufficient to close the spectral gap and, in par-
ticular, produce an accumulation of low-energy MZMs in
the wire bulk, consistent with previously studied effective
models of disordered semiconductor nanowires. One new
element of this work is a technique addressing this issue
directly, beyond effective models or Born approximation,
which also characterizes the entire wire spectrum, rather
than just the edge LDOS. We observe that the disorder-
averaged induced DOS gap as a function of tunneling
strength, EG(γ, d), has a particular shape in both topo-
logical and nontopological regimes, and it would be inter-
esting in future work to identify if there is some universal
scaling that relates the different curves.

The expected benefits of strong proximity coupling
vanish in the presence of SC disorder, even if the wire
itself has zero disorder. Aside from eliminating disorder
in the parent SC, alternative solutions for experiments
are to aim for the protected limit of γ � ∆sc, possibly
through the introduction of a tunnel barrier between the
SM and SC, or to make use of larger gap (but still BCS-
like) parent superconductors, both to increase the overall
energy scale and to decrease disorder effects through the
shorter coherence length. While our results are obtained
for a quasi-one-dimensional model, the general principle
extends just as well to synthetic TS in two dimensional
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SM-SC hybrids [33–35] and to Fu-Kane TI-SC hybrids
[36].
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