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Recent experiments have revealed nonlinear features of the magnetoresistance in metallic bilayers
consisting of a heavy-metal (HM) and a ferromagnetic metal (FM). A small change in the lon-
gitudinal resistance of the bilayer has been observed when reversing the direction of either the
applied in-plane current or the magnetization. We attribute such nonlinear transport behavior to
the spin-polarization dependence of the electron mobility in the FM layer acting in concert with
the spin accumulation induced in that layer by the spin Hall current originating in the bulk of the
HM layer. An explicit expression for the nonlinear magnetoresistance is derived based on a simple
drift-diffusion model, which shows that the nonlinear magnetoresistance appears at the first order
of spin Hall angle (SHA), and changes sign when the current is reversed, in agreement with the
experimental observations. We discuss additional mechanisms that could enhance the magnitude of
effect.

Recently, nonlinear magnetoresistance has been
observed experimentally in several heavy metal
(HM)/ferromagnetic metal (FM) bilayers1–3. In
these experiments, both the current and the magne-
tization of the FM layer lie in the plane of the layers
and are mutually perpendicular, as shown in Fig. 1.
For a given magnitude of the current density (in the
range of 107 ∼ 108 A/cm2), it has been found that
the longitudinal resistance changes when the current
direction is reversed. Furthermore, by injecting an
a.c. current, it has been observed that the 2nd harmonic
component of the longitudinal resistance changes sign
as the magnetization direction is reversed1: this shows
that, different from the familiar linear transport, the
magnetoresistance has a linear dependence on the
current density.

A definitive interpretation of these experimental ob-
servations has not yet emerged. Avci et al. associated
the nonlinear magnetoresistance with the modulation of
interface scattering potential induced by the spin Hall ef-
fect and the ensuing interfacial resistance change, similar
to the interfacial contribution of giant magnetoresistance
(GMR)4–7. Another interpretation of the effect invokes
magnon excitation in the FM layer due to electron spin-
flip scattering at the interface2,3. While this process has
recently been shown to play a key role in the spin-charge
conversion in HM/ferromagnetic-insulator (FI) layered
structures8–13, it is usually neglected in metallic systems,
for which it is a good approximation to assume that the
spin current is continuous at the interface4.

In this paper, we present a simple analytical theory of
the nonlinear magnetoresistance in HM/FM bilayers. We
propose that the effect arises from the combined action
of the spin accumulation induced by the spin Hall effect
in the HM layer and the spin-polarization dependence of
the electron mobility in the FM layer. As schematically
shown in Fig. 1, when an in-plane current is driven in a
HM/FM bilayer, a spin Hall current flowing perpendicu-

lar to the layers is generated in the bulk of the HM layer
and subsequently creates spin accumulation on both sides
of the interface. Spin accumulation is known as a local
quantity that characterizes an excess density of electrons
with one specific spin orientation and a corresponding de-
pletion of electrons with the opposite spin orientation, so
that no charge accumulation is created. Although such
local spin dependent density variation in HM layer would
not alter the conductivity of the layer in which the mo-
bility of electrons is spin-independent, the conductivity
of the FM layer is indeed modified by the spin accumu-
lation inside the layer. This may be best understood by
thinking of the spin accumulation near the interface as an
artificial ferromagnetic layer. Based on our understand-
ing of the current-in-plane (CIP) GMR14–17, we would
anticipate a change in longitudinal resistance when the
“magnetization” of the artificial FM layer (i.e., the di-
rection of the spin accumulation) switches from parallel
to antiparallel (or vice versa) to that of the “natural”
FM layer. The only difference from CIP-GMR lies in the
fact that “magnetization” of the artificial FM layer is
generated by the electric current itself via the spin trans-
port perpendicular to the layers. This simple analogy
immediately demonstrates the nonlinear character of the
corresponding magnetoresistance effect.

When an in-plane current is applied to a HM/FM bi-
layer, a spin current propagating perpendicular to the
layers is generated by the spin Hall effect18–21 in the HM.
This transverse spin current affects the linear in-plane re-
sistivity via the inverse spin Hall effect – a phenomenon
that has been intensively studied22–28 and goes under the
name of “spin-Hall magnetoresistance”29,30. In addition,
the modulation of the electron spin density in the fer-
romagnet generates a nonlinear resistivity as discussed
in the introduction and shown in detail below. Here we
treat both linear and nonlinear contributions on equal
footing through a set of equations that couple the spin
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FIG. 1. Schematic diagrams showing the mechanism of non-
linear longitudinal resistivity in HM/FM bilayers due to spin
accumulation in the FM layer induced by spin Hall effect in
the HM layer. The external electric field Eext is applied in the
positive x-direction in (a) and in the negative x-direction in
(b). The dotted arrows in the HM layer denotes the directions
of the spin Hall currents. The solid arrows in the grey dashed
boxes describe the magnitude and direction of the spin accu-
mulation µs which may be regarded as an artificial FM layer.
The difference in longitudinal resistivity of the bilayer in an-
tiparallel (a) and parallel (b) configurations arises from the
spin-dependence of the mobility in the FM layer in analogy
with CIP-GMR.

and charge transport in directions parallel and perpen-
dicular to the plane of the layers.

To be specific, let us assume the external electric field
is applied in the x-direction, i.e., Eext = Exx̂ (Ex could
be either positive or negative), and fix the magnetization
vector of the FM layer in the positive ŷ direction which
is also taken as the quantization axis of the electron spin.
The HM/FM interface is located at z = 0. The general
drift-diffusion equation for electrons with spin orientation
α (α = ± or ↑ (↓) denoting the spin orientation parallel
or antiparallel to the magnetization) can be written as
follows

jαx (z) = σα (z)Ex − αθjαz (z) (1)

and

jαz (z) = σα (z)
d

dz
µα (z) + αθjαx (z) , (2)

where jαi is the current density carried by spin-α electrons
with i = x or z denoting the spatial direction of flow, θ is
the bulk SHA and µα (z) is the spin-dependent chemical
potential, which is related to the nonequilibrium part of
the electron density nα (z) as follows

µα (z) = [Nα (εF )]
−1
nα (z)− φ (z) , (3)

with Nα (εF ) being the density of states of spin-α elec-
trons at Fermi level, and φ (z) being the spin-independent
part of the chemical potential. Notice that in Eqs. (1) and
(2) we have assumed a spatially dependent local conduc-
tivity controlled by the electron spin density as follows:

σα (z) = να [nα0 + nα (z)] , (4)

where nα0 and να are the equilibrium density and the
mobility of spin-α electrons, respectively. The charge and

y-spin current densities are defined as ji (z) ≡ j↑i (z) +

j↓i (z) and Qyi (z) ≡ j↑i (z)− j↓i (z).
We also assume that charge neutrality is locally main-

tained, i.e.,

n↑ (z) + n↓ (z) = 0 . (5)

In metals, this is justified by the observation that the
integrated space charge vanishes beyond a very short
screening length – of the order of Angstroms. This sup-
plemental condition links the transport in the two spin
channels. In what follows, we shall discuss the transport
in each layer separately.

In the HM layer, the equilibrium conduction electron
density is spin-independent and therefore transport co-
efficients such as the mobility and the diffusion constant
can be taken to be spin-independent up to first-order in
the current-induced spin polarization. Equations (1) and
(2) reduce to

jαx (z) = σαH (z)Ex − αθHjαz (z) (6)

and

jαz (z) =
1

2
αθHσ0,HEx + σ0,H

d

dz
µα (z) , (7)

where σ0,H = νHn0,H is the bulk Drude conductivity of
the HM. Notice that in the second of these equations we
are keeping only terms up to first order in θH .

In steady state, the spin dependent current density
satisfies the generalized continuity equation

d

dz
jαz (z) = σ0,H

d2

dz2
µα (z) =

nα (z)− n−α (z)

τsf,H
, (8)

where τsf,H is the spin-flip relaxation time. With Eq. (3),
we may express the right hand side of this equation in
terms of the chemical potentials which are found to sat-
isfy the following differential equations

d2

dz2
µc (z) = 0 (9)

and

d2

dz2
µs (z)− µs (z)

L2
H

= 0 , (10)

where we have defined the sum and difference of the
chemical potentials as µc (z) ≡

[
µ↑ (z) + µ↓ (z)

]
/2 and

µs (z) ≡
[
µ↑ (z)− µ↓ (z)

]
/2 respectively, and LH ≡√

σ0,Hτsf,H/2NH (εF ) as the spin diffusion length.
For the transport in the FM layer, we neglect the

anomalous Hall effect since the SHA is usually an order
of magnitude smaller than that in the HM layer. This as-
sumption allows us to simplify the equations for current
densities in FM layer as

jαx (z) = ναF
[
nα0,F + nα (z)

]
Ex (11)
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and

jαz (z) = σα0,F
d

dz
µα (z) , (12)

with σα0,F being the bulk conductivity of the spin−α
channel in the FM layer. In steady state, the continu-
ity equation reads

d

dz
jαz (z) = σα0,F

d2

dz2
µα (z) =

nα (z)− n−α (z)

τsf,F
. (13)

Making use of Eqs. (3) and (5) to express nα − n−α in
terms of µα−µ−α we find that the equation for µc takes
the form

d2

dz2
µc (z) + pσ

d2

dz2
µs (z) = 0 , (14)

where pσ ≡
(
σ↑0,F − σ

↓
0,F

)
/
(
σ↑0,F + σ↓0,F

)
is the con-

ductivity spin asymmetry. On the other hand, the
equation for µs remains of the same form as in
the HM layer (Eq. (10) except for replacing LH
by the ferromagnetic spin diffusion length LF =

√
σ0,F (1− p2σ) τsf,F /2NF (εF ) (1− p2N ), where pN ≡(
N↑F −N

↓
F

)
/
(
N↑F +N↓F

)
is the spin asymmetry in the

density of states at Fermi level.
For the boundary conditions at the interface (z = 0),

neglecting interfacial spin-flip scattering and the small
interfacial resistance4,31, we assume that both the spin
current density flowing in z-direction and the chemical
potentials are continuous, i.e., Qyz (0−) = Qyz (0+) and
µα (0−) = µα (0+). At the same time, since there is
no charge flow in the z-direction, we set jz (z) = 0 ev-
erywhere. Also, we take Qyz to vanish at the two outer
surfaces, i.e., at z = −dH for the HM layer and z = dF
for the FM layer with dH and dF being the thicknesses
of the HM and FM layers respectively.

By inserting the general solutions of the chemical po-
tentials and the spin current densities into the boundary
conditions for each interface, we can now determine all
transport quantities of interests.

For example, up to first order in θH , the in-plane
charge current density in the FM layer is given by

jx (z) = σ0,FEx +
1

2

(
ν↑F − ν

↓
F

) [
n↑ (z)− n↓ (z)

]
Ex ,

(15)

where σ0,F = n↑0,F ν
↑
F + n↓0,F ν

↓
F is the total bulk conduc-

tivity of the FM and the spin accumulation is given by

n↑ (z)− n↓ (z) = −
2 (θHLH)NF (εF )

(
1− p2N

)
tanh

(
dH
2LH

)
cosh

(
dF−z
LF

)
cosh

(
dF
LF

)
+ (1− p2σ)

(
σ0,FLH

σ0,HLF

)
sinh

(
dF
LF

)
coth

(
dH
LH

)Ex . (16)

Note that the negative sign in front of the expression on
the r.h.s. of Eq. (16) implies that minority electrons are
accumulated near the interface when both θH and Ex are
positive.

Equations (15) and (16) are quite remarkable. Firstly,
we observe that the correction to the in-plane charge
current density (i.e., the second term on the r.h.s. of
Eq. (15)) is proportional to E2

x, since n↑ (z)−n↓ (z) is the
linear response of the spin density to the external elec-
tric field. Secondly, the nonlinear contribution appears
at the first order in the SHA, in contrast to the linear
spin Hall magnetoresistance which is known to be of sec-
ond order in the SHA30. The above features qualitatively
agree with recent experimental observations1,32.

Equation (15) makes clear that, in our interpretation,
the spin dependence of the electron mobility, i.e., the

nonzero value of
(
ν↑F − ν

↓
F

)
, is essential to the appear-

ance of a nonlinear magnetoresistance. Indeed, if the mo-
bilities were not spin-dependent, the total in-plane con-
ductivity σ↑ + σ↓ would remain unchanged by virtue of
the charge neutrality condition (5). This is exactly what

happens in the HM layer, where the in-plane charge cur-
rent remains unchanged up to O (θH). The underlying
physics is rather transparent: If majority electrons in
the FM layer exhibit higher mobility than minority elec-

trons (i.e., ν↑F > ν↓F ), then accumulation of majority elec-
trons will lead to an increase in the conductivity, and vice
versa. The crucial role of spin asymmetry in the electron
mobility of the FM is also consistent with the absence
of nonlinear magnetoresistance effect in HM/FI bilayers
(such as Pt/YIG) measured in recent experiments32.

The total longitudinal resistivity of the bilayer can be
calculated as ρxx = (dH + dF )Ex/

∫
dzjx (z) where the

current density is integrated over the thickness of the
bilayer. Similar to GMR, the amplitude of the unidirec-
tional spin Hall magnetoresistance (USMR) is character-
ized by the ratio

USMR =
ρxx (Ex)− ρxx (−Ex)

ρxx (Ex)
. (17)
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Up to first order in θH , we obtain

USMR ' 6

(
σ0,FLF

σ0,HdH + σ0,F dF

) (pσ − pN ) (θHExLH/εF ) tanh
(
dH
2LH

)
tanh

(
dF
LF

)
1 + (1− p2σ)

(
σ0,FLH

σ0,HLF

)
tanh

(
dF
LF

)
coth

(
dH
LH

) , (18)

where we have used the relations ναF = σα0,F /n
α
0,F and

Nα
F = 3nα0,F /2εF for free electron model with εF be-

ing the Fermi energy of the FM. Note that ν↑F − ν
↓
F is

proportional to the difference of the spin polarization of
conductivity pσ and of density of states at Fermi energy
pN .

In Fig. 2, we plot the USMR as a function of the thick-
ness of one layer while the thickness of the other is fixed.
As we have pointed out previously, although the leading
order nonlinear correction to the in-plane current density
only occurs in the FM layer, the HM layer also plays an
essential role by inducing the spin accumulation in the
FM layer via the spin Hall effect. Therefore, when the
thickness of either layer becomes much smaller than the
corresponding spin diffusion length, the USMR dimin-
ishes. On the other hand, when the thickness of either
layer is much larger than the spin diffusion length, more
current is shunted into the bulk of the layers and hence
the interfacial effect of USMR gets diluted as indicated
by the prefactor on the r.h.s. of Eq. (18). Not surpris-
ingly, the USMR peaks around the respective spin diffu-
sion length of each layer. The dependence of the USMR
on the thickness of the HM layer agrees qualitatively with
experiments, whereas the dependence on the thickness of
the FM layer has not yet been measured.

With Eq. (18), we can also make quantitative compar-
isons of the calculated magnitude of USMR with exper-
imentally observed values. For a Pt (6 nm)/Co (3 nm)
bilayer with Ex = 10−4 V/nm and the following mate-

rial parameters: θH = 0.11,33,34, σH = 0.02 (µΩ cm)
−1

,

LH = 5 nm, σF = 0.05 (µΩ cm)
−1

, LF = 40 nm31,
εF = 5 eV , pσ − pN = 0.5, we find USMR ' 0.9× 10−5,
which is only a factor of 2 smaller than the experimental
value1,32. We have checked that the USMR is negligibly
reduced in the presence of an interfacial resistance rI ∼ 1
fΩ m35.

We notice that the magnitude of the USMR may be un-
derestimated due to several simplifying assumptions we
adopted in our model calculation. First, in the deriva-
tion of Eq. (18), we assumed spherical Fermi surfaces and
constant density of states at Fermi energy. Strong energy
dependence of the density of states near the Fermi surface
(e.g., in Ni36) may enhance the effect just as it enhances
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T h i c k n e s s / S D L
FIG. 2. USMR as a function of the thickness of the HM layer
(scaled with the spin diffusion length (SDL) LH) for fixed
thickness of the FM layer of dF = LF = 10 nm (solid line)
and as a function of the thickness of the FM layer (scaled with
LF ) for fixed thickness of the HM layer of dH = LH = 5 nm
(dotted line). Other parameters assumed in the numerical
calculation are θH = 0.1, |Ex| = 10−4 V /nm, pσ − pN =
0.5, εF = 5 eV and σ0,H = σ0,F = 0.033 (µΩ cm)−1. The
calculations are done to first order in SHA.

the spin accumulation-induced nonlinear GMR effect ob-
served in dual spin valves36. Second, we neglected the
indirect influence of the spin accumulation on transport
parameters such as the bulk and interfacial resistances
due to electron-electron correlation or shift of scattering
potential.

In the presence of interfacial spin-flip scattering, there
would be a partial loss of spin current across the inter-
face (known as spin memory loss31,37–40). This effect can
be easily incorporated in our treatment through a simple
change in the boundary conditions for the spin current.41

Spin memory loss, treated in this way, results in a reduc-
tion of the USMR given in Eq. (18) by a factor of order
unity. However, the absorbed spin current may in turn
lead to additional contribution to the USMR via interfa-
cial spin-dependent scattering42.

An interesting observation based on Eq. (18) is that
the USMR depends linearly on the difference of pσ− pN ,
which suggests that the sign of the USMR also depends
on the overall sign of pσ − pN . In Ref.43 Fert and Camp-
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bell showed that the signs of pσ for various binary alloys
of transition metals may change depending on the rela-
tive position of the d-bands of the host and the impurity.
For example, they showed that pσ of NiFe is positive
whereas that of FeCr is negative43. By making use of
this property, a “reversed” CIP-GMR, that is to say, a
CIP-GMR in which the antiparallel alignment of magne-
tizations has lower resistance than the parallel arrange-
ment, could be explained in a Fe/Cu super-lattice with
half of the Fe layers being intercalated with thin Cr lay-
ers44. Similar experiments can be carried out to test
our theory of USMR. For example, we predict that the
USMR in Pt/FeCr should have opposite sign than that
in Pt/NiCr bilayer.

Our model calculation also suggests several ways to en-
hance the USMR. For metallic systems, the effect would
be amplified in an asymmetric trilayer structure of the
form HM1/FM/HM2 with HM1 and HM2 having oppo-
site signs of θH (for example, HM1=Pt and HM2=Ta).
In such a structure, the orientations of the spin accumu-
lations on opposite sides of the FM layer will be identi-
cal, hence the contributions of the two interfaces to the
USMR will add constructively. Our theory also suggests
that an enhanced USMR may be found in paramagnetic
and ferromagnetic semiconductor bilayers, which have
much lower carrier densities than their metallic counter-

parts. As shown by Eq. (18), the USMR is inversely pro-
portional to the Fermi energy which scales with the equi-

librium free electron density as εF ∝ n2/3e . Very recently,
Olejńık et al. found that the USMR in ferromagnetic-
(Ga,As)Mn/paramagnetic-(Ga,As)Mn bilayers is larger
than that in metallic bilayers by several orders of magni-
tudes45, and they attributed the big enhancement to the
low carrier densities in their semiconducting systems.

In summary, we have developed a drift-diffusion the-
ory for HM/FM bilayers with an in-plane electric current.
The theory is self-consistent in the sense that it takes into
account the effect of the current-induced spin accumula-
tion on the longitudinal resistance. The unidirectional
magnetoresistance is an effect of first order in the spin
Hall angle of the HM layer, in contrast to the linear spin
Hall magnetoresistance which is an effect of second order
in the spin Hall angle. We have suggested ways to con-
trol the sign of the nonlinear magnetoresistance and to
amplify the magnitude of the effect by judicious choice of
materials and/or nanostructure engineering. It appears
that conducting bilayers consisting of a ferromagnet and
a paramagnetic metal with large spin Hall angle have
considerable potential to work as reversible diodes that
may be controlled by the magnetic direction of the ferro-
magnetic layer.
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