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Spin waves are collective excitations propagating in the magnetic medium with ordered magnetizations.
Magnonics, utilizing the spin wave (magnon) as information carrier, is a promising candidate for low-dissipation
computation and communication technologies. We discover that, due to the Dzyaloshinskii-Moriya interaction,
the scattering behavior of spin wave at a magnetic domain wall follows a generalized Snell’s law, where two
magnetic domains work as two different mediums. Similar to optical total reflection that occurs at the water-air
interfaces, spin waves may experience total reflection at magnetic domain walls when their incident angle larger
than a critical value. We design a spin wave fiber using a magnetic domain structure with two domain walls,
and demonstrate that such a spin wave fiber can transmit spin waves over long distance by total internal reflec-
tions, in analogy to an optical fiber. Our design of spin wave fiber opens up new possibilities in pure magnetic
information processing.

A trend in post-silicon information processing is to develop
systems that employ (quasi-) particles other than electrons as
the information carriers to avoid the Joule heating. One of the
most promising candidates is magnonics [1, 2], which trans-
fers information through collective excitations of magnetiza-
tion, or called spin waves (magnons). The crucial advantage
of spin waves is that they can propagate in both conducting
and insulating magnetic materials without physical motion of
electrons. This enables the development of insulator-based
systems that produce no Joule heating at all. In addition, spin
waves can be manipulated via magnetic structures in a sin-
gle material rather than the heterogenous structures consist-
ing of different materials. This makes it possible to realize
a rewritable spin wave logic architecture [3]. Due to these
desirable features, magnonics becomes a new realm of active
interdisciplinary research and has witnessed rapid and fruitful
developments in recent years. [3–8].

The World Wide Web, one of the most important infrastruc-
tures of the modern society, would not be possible without the
optical fiber, which can transmit information over long dis-
tance. An optical fiber is made of two dielectric materials with
different indices of refraction [9]. The defining feature of an
optical fiber is the total reflection at the interface between the
two dielectric materials. Here we report a design of the spin
wave fiber that can transmit spin waves in magnonic chips us-
ing the total reflection at magnetic domain walls, in an analog
of the optical fiber. The design is based on a magnetic domain
structure with two domain walls, at which spin waves are to-
tally reflected due to the Dzyaloshinskii-Moriya interaction
(DMI) [10, 11], an asymmetric magnetic interaction induced
by the spin-orbit interaction. Instead of two dielectric materi-
als used in an optical fiber, it is feasible and convenient to use
one single material but different magnetic domains in a spin
wave fiber. Typically, the spin wave dispersion relation does
not vary much across magnetic domains. However, the DMI
leads to domain-dependent dispersions, which gives rise to a
total reflection of spin waves at the domain walls.

Model. We consider a magnetic thin film with two magnetic
domains, whose magnetizations point in opposite directions

with a Bloch domain wall in between as shown in Fig. 1. The
film is in the x-y plane and the magnetization in the left/right
domain is along ∓ŷ direction, respectively. The domain wall
is also along ŷ direction. The magnetic dynamics is described
by the Landau-Lifshitz-Gilbert (LLG) equation,

∂m

∂t
=− γm×Heff + αGm×

∂m

∂t
, (1)

where m(r, t) is the unit vector representing the magnetiza-
tion direction, γ is the gyromagnetic ratio, αG is the Gilbert
damping parameter, and γHeff = Kmyŷ+A∇2m−D∇×m
is the effective magnetic field with K the magnetic uniax-
ial anisotropy (along ŷ direction), A the exchange coupling
constant, and D the parameter for the DMI. Let m0 be the
static magnetization direction, and δm(r, t) = mθêθ +mφêφ
be the dynamical excitation on top of the static m0(r), with
êθ,φ ⊥ m0 as the two transverse directions to m0. In the
small excitation approximation (mθ,φ � 1), the spin wave
dispersion relations in the left/right domain with m0 = ∓ŷ
are [12, 13]

ω(k) = K +A(k2
x + k2

y)∓Dky, (2)

where k = (kx, ky) is the spin wave wavevector. In the ab-
sence of DMI (D = 0), the spin waves with frequency ω form
a circle centered at the origin in the k-space. However, the
DMI, in the last term in Eq. (2), pushes the isofrequency cir-
cle by ∆ = D/2A in the direction of −m0 as depicted sep-
arately for the two domains in Fig. 1. The spin wave group
velocity is vg = ∂ω/∂k = 2A(k ∓ ŷ∆) ≡ 2Ak∓g , where∣∣k∓g ∣∣ = kg(ω) =

√
(ω −K)/A+ ∆2 is the radius of the

isofrequency circle. Other methods of modifying the disper-
sion include the magnonic crystals employing magnetic super-
lattices [1, 14], and the gradient-index magnonics employing
non-uniform effective magnetic field configurations [15, 16].

Magnonic Snell’s law. An important consequence of the
opposite shifts of the isofrequency circles in the left and right
domains is spin wave refraction across the domain wall. When
the spin wave strikes from left domain with an incident angle
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Figure 1. Schematic of the magnonic Snell’s law. A domain
wall structure with magnetization pointing in m0(r) = ∓ŷ in the
left/right domain and m0 continuously rotates from −ŷ to +ŷ over a
domain wall width w as depicted in the upper right inset. The isofre-
quency circles in the wavevector space are shifted for two magnetic
domains with opposite magnetizations when DMI is present. The
spin wave modes on both circles have the same frequency ω. The
modes on the thick green segment can be refracted into the other do-
main because there exist propagating modes with the same ky on the
isofrequency circle across the domain wall. However, the modes on
the thick magenta segment cannot pass and must be totally reflected
due to the lack of the propagating modes with the same ky across the
domain wall.

α (angle of the group velocity with respect to the domain wall
normal +x̂ direction), it is refracted to a mode with an out-
going angle β in the right domain. To guarantee continuity
of the wavevector (ky) along the domain wall, the refraction
angle obeys the generalized Snell’s law,

kg sinα+ ∆ = kg sinβ −∆. (3)

This is an analogy of the generalized Snell’s law in photon-
ics [17–21] and phononics [22, 23] across meta-surfaces, in
which a phase gradient is introduced at the interface between
two mediums by sub-wavelength engineering. In comparison
to the complicated meta-surfaces in its optical and acoustic
counterparts, it is much easier and more straightforward to re-
alize the non-trivial Snell’s law in magnonics, i.e., simply by
introducing DMI in the whole film with no sub-wavelength
structures. The Snell’s law in Eq. (3) is derived for an inter-
face (domain wall) formed by two opposite magnetic domains
in a single magnetic material, thus it is completely different
from the Snell’s laws that were derived for an interface be-
tween two regions with different magnetic properties [24, 25].
In addition, Eq. (3) also share some similarity with the Snell’s
law studied in graphene [26], in which the refraction and re-
flection occur at an interface between two regions subjecting
to different strains. The generalized magnonic Snell’s law can
lead to the anomalous negative refraction [24, 27, 28]. Note
that in Fig. 1 the static magnetization in the left/right domain

m0 = ∓ŷ is parallel to the domain wall. In a general situation
where m0 in the left/right domain forms an angle±ξ with the
domain wall (along ŷ), the offset of the isofrequency circle
along ŷ is reduced to ∆ cos ξ, thus Eq. (3) is modified with a
substitution ∆ → ∆ cos ξ. When demagnetization field is in-
cluded, the magnonic Snell’s law in Eq. (3) remains basically
the same (See Supplementary Materials).

According to the magnonic Snell’s law in Eq. (3), total
reflection occurs when the incident angle α satisfies θc < α <
π/2 (the thick magenta segment in Fig. 1) with the critical
angle (provided kg(ω) > ∆)

θc = arcsin

[
1− 2∆

kg(ω)

]
. (4)

As a result, the modes with incident angle −π/2 < α < θc
(the thick green segment in Fig. 1) are refracted into the right
domain. Depending on value of ∆/kg(ω) (thus on D and ω),
the critical angle θc can take any value between −π/2 and
π/2. For instance, when there is no DMI (D = 0), θc = π/2
and all incident modes are transmitted and no total reflection
occurs. When D is strong (or ω is small) such that the offset
between the two isofrequency circles ∆ > kg(ω), θc = −π/2
and all incident modes are totally reflected.

Semiclassical picture. The magnetic texture of
a domain wall can be described by m0(x) =
(sin θ0 cosφ0, sin θ0 sinφ0, cos θ0), where θ0(x), φ0(x)
are the polar and azimuthal angle of m0 with respect to
ẑ. For a Bloch type domain wall, in the presence of DMI
(D 6= 0), a Walker configuration with φ0(x) = π/2,
θ0(x) = −π/2 − 2sign(D) arctan[exp(x/w)] is stable,
where w =

√
A/K is the domain wall width. By rewriting

the dynamical excitation δm as ψ = mθ − imφ, Eq. (1) can
be recast to a Schrödinger-like equation [3, 29, 30]:

i~
∂ψ

∂t
=

[
1

2m∗

(
p̂− e

c
A
)2

+ V

]
ψ, (5)

where e is the electric charge, m∗ = ~/2A is the effective
mass, p̂ = −i~∇ is the momentum operator, V (x) = K[1−
2sech2(x/w)] is the texture-induced effective scalar potential,
and A(x) = −(Dm∗e/c) tanh(x/w)ŷ is the DMI-induced
effective vector potential, which gives rise to an effective mag-
netic field B(x) = ∇×A = −(Dm∗e/cw)sech2(x/w)ẑ. As
x/w → ±∞, the vector potential A(x) → ±D/2A, which
corresponds to the shift of ky mentioned above in the left/right
domain as in Eq. (2). With Eq. (5), the scattering behavior for
spin waves by a domain wall is the same as that for an electron
by a scalar potential V and a vector potential A.

This scalar potential V (x) is special because of its reflec-
tionless [29], thus the spin wave scattering behavior is mostly
dominated by the vector potential and the associated mag-
netic field. The field B(x)‖ẑ is perpendicular to the film, and
only exists in the domain wall region, as denoted by the sym-
bol � in Fig. 2(a). According to Eq. (3), the incident and
the refracted angles satisfy −π/2 ≤ α < β ≤ π/2 (for
D > 0), thus the spin wave trajectory should always bend
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Figure 2. Schematic diagram (a) and the magnetic simulations (b-f) for spin wave reflection and refraction at a magnetic domain wall. The
black/white arrow denotes the magnetization direction in the left/right domain colored by yellow/orange (white/gray) in the schematic diagram
(simulations). (a) Schematic diagram of reflection/refraction behavior for spin wave incident from left domain with various incident angles.
Magenta: α > θc, total reflection; black: α = θc, critical case ; green: α < θc, refraction. All trajectories are bent counter-clockwise by the
effective magnetic field perpendicular to plane (denoted by the symbol �). (b-f) Magnetic simulations with the incident angle α = 68◦ (b),
α = θc (c), α = 30◦ (d), α = −6◦ (e), α = −68◦ (f). In all panels: the domain wall width w ∼ 30nm; the green bar denotes the exciting
location of the spin wave; the exciting fields frequency is f = 100Ghz, and the critical angle is estimated to be θc = 52.4◦.

counter-clockwise. Fig. 2(a) shows the schematic diagram of
the spin wave trajectories for various incident angles: when
α > θc, the spin wave is totally reflected (magenta trajec-
tory); when α < θc, the spin wave is refracted (green trajecto-
ries); the black trajectory corresponds to the critical situation
with α = θc. Such scattering behaviors can all be under-
stood by considering the effective Lorentz force due to the
effective magnetic field. Evidently, spin waves striking into
such an effective magnetic field region will be bent counter-
clockwise due to the effective Lorentz force. Consequently,
the spin wave that passes through the magnetic field region
(the domain wall region), is refracted in counter-clockwise di-
rection as seen in Fig. 2(a). Moreover, if the incident angle is
too shallow (α > θc), the Lorentz force is able to bend the tra-
jectory so much that the spin wave is completely turned back,
and a total reflection occurs.

Total reflection for micromagnetic simulations. The scat-
tering behaviors discussed above are confirmed by micro-
magnetic simulations. Fig. 2(b-f) show the micromagnetic
simulation for the five different incident angles: α =
60◦, 52.4◦, 30◦,−6◦,−60◦, corresponding to the total reflec-
tion (b), critical incidence (c), and refraction (d,e,f). Because
of the reflectionlessness of the scalar potential V (x) for a
Bloch domain wall, the spin wave refractions as in Fig. 2(d-
f) is not accompanied by any reflection, which is different
from its optical analog. More interestingly, Fig. 2(e) shows
the anomalous negative refraction, i.e., both incident and re-
fracted trajectories lie in the same side of normal direction of
the scattering plane (the domain wall). All spin wave beams
in Fig. 2(b-f) are bent counter clockwise, as predicted by the
magnonic Snell’s law Eq. (3) and understood from the semi-
classical picture above.

Spin wave fiber. Utilizing the total reflection at the mag-
netic domain wall, we propose a spin wave fiber design as
illustrated in Fig. 3(a). The fiber is consisted of one core

magnetic domain sandwiched by two cladding domains with
the opposite magnetization direction. Because the effective
magnetic fields (directions indicated by the ⊗ and � symbols
in Fig. 3(a)) in the upper and lower domain wall are opposite,
the spin wave experiences opposite effective Lorentz forces
at the upper and lower domain walls. Consequently, spin
waves can be transported in the core domain from left to right
by total reflections at both domain walls as indicated by the
(magenta) right-going trajectory. In contrast, the spin wave
propagating from right to left is refracted (leaked) into the
cladding layers. Therefore, this spin wave fiber is unidirec-
tional. However, if the spin wave frequency is small enough
such that ∆ > kg(ω), the critical angle reaches θc = −π/2,
then total reflections occurs for all spin wave modes in all di-
rections, and the spin wave fiber becomes bidirectional. A
simple estimate of the spin wave coherence length [4, 8] is
lφ ∼ 1/αGk > 100 µm, much larger than the typical length
of our spin wave fiber structure (w =

√
A/K ≈ 30nm),

ensuring that the functionality of the spin wave fiber is safe
from the damping effect. Apparently, one won’t expect to use
spin wave fibers to transmit information over long distances
as optical fibers. Instead, the spin wave fibers can be used to
connect different units within a magnonic chip. Note that the
spin wave fiber, making use of the total internal reflection at
domain walls, is different from all previous waveguides based
on geometric constrictions or material confinements [7, 31].

The transporting feature of the spin wave fiber is confirmed
by magnetic simulations. Fig. 3(b) shows the propagation of
a spin wave beam excited at the core domain with an incident
angle α > θc. As expected, the right-going spin wave is to-
tally reflected back to the central core domain without leaking
to the cladding domains. In contrast, the left-going spin wave
passes the domain wall directly and is leaked into the upper
cladding domain as expected. Fig. 3(c) shows the spin wave
pattern in a spin wave fiber from the point source located at
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Figure 3. The schematic and the magnetic simulations of a spin wave fiber. The black/white arrow denotes the magnetization direction in
the each domain colored by yellow/orange (white/gray) for schematic diagram (simulation). (a) The schematic of the spin wave fiber. The
magnetization direction in the central core domain is opposite to that in the upper/lower cladding domain. The solid/dashed trajectory is
expected for right/left moving spin waves excited at the green bar. The effective magnetic fields in the upper/lower domain walls point in
the opposite directions. Consequently, the right moving spin waves are confined in the central core domain, while the left moving modes
are refracted into the cladding domains. (b) The simulated propagation of the spin wave beams excited at green bar with exciting frequency
f = 100 GHz (critical angle θc = 52.4◦) and incident angle α = 62.5◦, confirming the expected paths in (a). (c) The simulated propagation
of the spin wave excited by a point source with exciting frequency f = 10 GHz. Left/right inset: The Fast Fourier Transformation (FFT) of
the spin wave pattern in the region enclosed by the green/magenta box in the far left/right zone. The solid (dashed) circle is for the isofreqency
circle of the central (upper/lower) domain, from Eq. (2).

the core domain. The interference pattern of the spin wave
on the right side indicates intense reflection of spin wave by
the domain walls when propagating rightward, while the sim-
ple pattern on the left side indicates the absence of reflection
when propagating leftward. By Fourier transforming the spin
wave pattern in the highlighted magenta box into k-space, we
see that the spin wave modes in the far right falls onto the
magenta arc of the isofrequency circle, which corresponds to
the total reflection arc in Fig. 1. In contrast, the Fourier trans-
formation of the spin wave in the green box in the far left
shows only the direct left moving modes, and all other modes
are leaked into the cladding layers by refractions. The ex-
act agreement with the analytical model identifies the critical
role of the total reflection in the unidirectionality of the spin
wave fiber. In addition, we studied the propagation behav-
iors of typical eigenmodes in the spin wave fiber, which again
highlight the unidirectional transportation features of the spin
wave fiber (see Supplementary Materials).

Conclusion. In conclusion, we discovered the general-
ized magnonic Snell’s law that governs the spin wave scat-
tering behavior at a magnetic domain wall in the presence of
the Dzyaloshinskii-Moriya interaction. Similar to the optical
case, spin waves experience total reflection when the incident
angle is larger than a critical angle at a domain wall. Using
this property, we designed a spin wave fiber, whose function-
ality is confirmed by micromagnetic simulations. The pro-
posed spin wave fiber may be used to interconnect different
magnonic computation units.

Methods. The simulations are performed in COMSOL
Multiphysics using the mathematical module where the LLG
equation is transformed into weak form and solved by the
generalized-alpha method (amplification of high frequency is
0.6). The sample is a YIG thin film with the following pa-

rameters: the easy-axis anisotropy K/γ = 3.88 × 104 A/m,
the exchange constant A/γ = 3.28 × 10−11 A ·m, the satu-
ration magnetization Ms = 1.94 × 105 A/m, the gyromag-
netic ratio γ = 2.21× 105 rad ·Hz/(A/m)[29], and the DMI
constant D/γ = 2 × 10−3 A [32, 33]. The dipolar interac-
tion is neglected for this operating frequency of exchange spin
waves. The Gaussian spin wave beam is prepared by applying
an oscillating magnetic field in a narrow rectangle excitation
region, where the amplitude of the oscillating field has a Gaus-
sian profile in the transverse direction [34].
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