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We investigate field-induced transformations in the dynamical response of the XXZ model on the
triangular lattice that are associated with the anharmonic magnon coupling and decay phenomena.
A set of concrete theoretical predictions is made for a close physical realization of the spin- 1

2
XXZ

model, Ba3CoSb2O9. We demonstrate that dramatic modifications in magnon spectrum must occur
in low out-of-plane fields that are easily achievable for this material. The hallmark of the effect is a
coexistence of the clearly distinct well-defined magnon excitations with significantly broadened ones
in different regions of the k−ω space. The field-induced decays are generic for this class of models
and become more prominent at larger anisotropies and in higher fields.

PACS numbers: 75.10.Jm, 75.30.Ds, 75.50.Ee, 78.70.Nx

Triangular-lattice antiferromagnets (TLAFs) are cen-
tral to the field of frustrated magnetism as representa-
tives of one of the basic models epitomizing the effect
of spin frustration1–4. They have attracted significant
experimental and theoretical interest5–21 as a potential
source of spin-liquid and of a wide variety of intriguing
ordered ground states, see Ref.22. Their spectral prop-
erties have recently emerged as a subject of intense re-
search that has consistently uncovered broad, continuum-
like spectral features6,23,24, which are interpreted as an
evidence of fractionalized excitations6,20,25 or of the phe-
nomenon of magnon decay26–29.

In this work, we outline a theoretical proposal for a
dramatic transformation of the spin-excitation spectrum
of the XXZ triangular-lattice antiferromagnet in exter-
nal out-of-plane field. This consideration pertains in par-
ticular to Ba3CoSb2O9, one of the close physical realiza-
tions of the model that has recently been studied by a
variety of experimental techniques30–34. The key find-
ing of our work is that a modest out-of-plane field re-
sults in a strong damping of the high-energy magnons,
affecting a significant part of the k-space. This is dif-
ferent from a similar prediction of the field-induced de-
cays in the square- and honeycomb-lattice AFs where
strong spectrum transformations require large fields35–38.
In the present case, because the staggered chirality of
the field-induced umbrella spin structure breaks inver-
sion symmetry, the resultant k ↔ −k asymmetry of the
magnon spectrum opens up a channel for decays of the
high-energy magnons in a broad vicinity of the K′ corners
of the Brillouin zone into the two-magnon continuum of
the roton-like magnons at the K-points, see Fig. 1.

We note that the recent neutron-scattering work23 as-
serts the existence of an intrinsic broadening in parts
of the Ba3CoSb2O9 spectrum even in zero field. While
scatterings due to finite-temperature magnon population
or strong effects of disorder in the non-collinear spin
structures39 cannot be ruled out as sources of damping
observed in Ref.23, we would like to point out that the
phenomena discussed in this work are substantially more
dramatic and should be free from such uncertainties.

Model and spectrum.—Owing to frustration and de-
generacies of the model, triangular-lattice antiferromag-
nets in external field have a very rich phase diagram40–45,
featuring the hallmark plateau, coplanar, and umbrella
states, see Ref.22 for a recent review. We will focus on the
XXZ Hamiltonian with an easy-plane anisotropy whose
zero-field ground state is a 120◦ structure

Ĥ = J
∑
〈ij〉

(
Sxi S

x
j + Syi S

y
j + ∆Szi S

z
j

)
−H

∑
i

Szi , (1)

where 〈ij〉 are nearest-neighbor sites of the triangular
lattice, J > 0, and 0 ≤∆ < 1. In an out-of-plane mag-
netic field, the so-called umbrella structure is formed,
see Fig. 1. In the isotropic limit, ∆ = 1, the coplanar
states are favored instead, but ∆ < 1 always stabilizes
the semiclassical umbrella state for a range of fields, with
the H−∆ region of its stability for S = 1/2 sketched in
Fig. 2(c) from Ref.43. In Ba3CoSb2O9, estimates of the
anisotropy yield ∆≈0.923,33 with an additional stabiliza-
tion of the umbrella-like state provided by the interplane
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FIG. 1: Linear spin wave energy εk of model (1) for ∆ = 0.9,
S = 1/2 and the fields H = 0 and H = 0.2Hs. Arrows show
schematics of the decay. Insets: umbrella structure in a field,
3D plot of εk for H = 0.2Hs, and decay self-energy diagram.
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coupling34,47. The linear spin-wave (LSW) treatment
of the model (1) within the 1/S-expansion is standard,
see48. The harmonic magnon energies, εk, are depicted
in Fig. 1 for S=1/2, ∆=0.9, and H=0 and H=0.2Hs,
where Hs=6JS(∆+1/2) is the saturation field. The cho-
sen representative field of 0.2Hs is within the umbrella
region of Fig. 2(c) and for Ba3CoSb2O9 it corresponds to
a modest field of about 6 T33.

In Fig. 1, one can see the gaps ∝
√

1−∆ at K and K′

points in zero field. In a finite field, the staggered scalar
chirality of the umbrella structure, Si ·(Sj×Sk), induces
inversion symmetry breaking. Because of that, magnon
energy acquires an asymmetric contribution49, εk 6= ε−k,
with the energies at K (K′) points lowered (raised) pro-
portionally to the field. Note that the K and K′ points
trade their places in the domain with a shifted pattern
of the 120◦ order that also corresponds to the flipped
staggered chiralities. It is clear, that the distorted band
structure brings down the energy of a minimum of the
two-magnon continuum associated with the low-energy,
roton-like magnons at K-points. Given the remaining
commensurability of the umbrella state, which retains
the 3K = 0 property of the 120◦ structure, magnon de-
cays may occur in a proximity of the K′ points via a
process εK′ ⇒ εK + εK(±Gi), where Gi’s are the recip-
rocal lattice vectors. While the exact kinematics of such
decays is somewhat more complicated, one can simply
check where and at what field the on-shell decay condi-
tions, εk = εq + εk−q, are first met for a given ∆.

This direct verification yields the lower border of the
shaded regions in Fig. 2(c), which is a union of three
curves. At large anisotropies, ∆ → 0, the decay con-
ditions that are fulfilled at the lowest field are the ones
associated with the change of the curvature of the Gold-
stone mode near the Γ point, the kinematics famil-
iar from the field-induced decays in the square-lattice35

and honeycomb-lattice AFs38, as well as 4He50. At
larger ∆, the threshold field for decays is precisely deter-
mined by the “asymmetry-induced” condition εK′ = 2εK
discussed above, which is given analytically by H∗ =√

(1−∆)/(13−∆) and is shown by the dashed line in
Fig. 2(c). Closer to the isotropic limit, ∆ & 0.7, the de-
cay conditions are first met away from the high-symmetry
points, see some discussion of them for the zero-field case
and ∆ > 0.92 in Ref.28.

On(off)-shell decay rate.—To get a sense of the quanti-
tative measure of the field-induced broadening effect and
of the extent of the affected k-space, we first present the
results for the decay rate in the Born approximation

Γk = Γ0

∑
q

|Φq,k−q;k|2 δ (ωk − ωq − ωk−q) , (2)

where Γ0 = 3πJ/4 and εk = 3JSωk. The three-magnon
decay vertex Φq,k−q;k is derived from the anharmonic
coupling terms of the 1/S-expansion of the model (1),
see48. It combines the effects of noncollinearity due to
in-plane 120◦ structure and of the field-induced tilting
of spins26,28,35. We show Γk for a representative H =
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FIG. 2: (a) The intensity plot of the spectral function along
MK′Γ path with Γk from the self-consistent iDE for ∆ =
0.9 and H = 0.2Hs. Dashed and solid lines are Γk in the
Born approximation (2) and the iDE solution. (b) The 2D
intensity plot of Γk from (2). (c) The H−∆ diagram of the
decay thresholds in the umbrella state. Shaded are the regions
where various forms of decay are allowed, see text. The non-
umbrella region for S = 1/2 is sketched from Ref.43, see46.
The dot marks the values of ∆ and H used in (a) and (b).

0.2Hs and for the same ∆ = 0.9 and S = 1/2 as above:
in Fig. 2(a) along the MK′Γ path (dashed line) and in
Fig. 2(b) as a 2D intensity plot.

In addition, we also present the results of the self-
consistent solution of the off-shell Dyson’s equation (DE)
for Γk, in which corrections to the magnon energy are
ignored but the imaginary part of the the magnon self-
energy Σk(ω) due to three-magnon coupling is retained,
referred to as the iDE approach: Γk =−Im Σk (εk + iΓk).
This method accounts for a damping of the decaying
initial-state magnon and regularizes the van Hove singu-
larities associated with the two-magnon continuum that
can be seen in the Born results of (2) in Fig. 2(a). The
same Figure shows the iDE results for Γk (solid line)
and the corresponding magnon spectral function in a
lorentzian form (intensity plot). We note that the self-
consistency schemes that rely on the broadening of the
decay products, such as iSCBA discussed in Refs.36,51,
are not applicable here because our final-state magnons
are well-defined. Altogether, our consideration suggests
that a significant T =0 field-induced broadening of quasi-
particle peaks due to magnon decays should appear in a
wide vicinity of the K′ points in low fields, reaching val-
ues of Γk∝0.3J (cf. .0.1J in Ba3CoSb2O9

23).

Dynamical structure factor.—Next, we evaluate the
dynamical spin-spin structure factor S(q, ω), the quan-
tity directly observed in the inelastic neutron scattering
experiments. Following Ref.29, we approximate S(q, ω)
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FIG. 3: (a) Intensity plot of S(q, ω) along the MK′ΓKMΓ path. Dotted and dashed lines are constant-energy cut in (b) and
ω-cuts in (c). Inset: S(q, ω) vs ω at K′. Bars are artificial width 2δ=0.01J of the calculation55. S=1/2, ∆=0.9, H=0.2Hs.

as a sum of the diagonal terms48 of

Sα0β0(q, ω) =
i

π
Im

∫ ∞
−∞

dteiωt〈TSα0
q (t)Sβ0

−q(0)〉. (3)

Transforming to the local (rotating) reference frame of
the ordered moments and keeping terms that contribute
to the leading 1/S order29 yields

Sx0x0(q, ω) =
1

4

[
Syyq+ + Syyq− + 2i sin θ

(
Sxyq+ − S

xy
q−
)

+ sin2 θ
(
Sxxq+ + Sxxq−

)
+ cos2 θ

(
Szzq+ + Szzq−

) ]
, (4)

Sz0z0(q, ω) = cos2 θ Sxxq + sin2 θ Szzq ,

and Sy0y0(q, ω) = Sx0x0(q, ω). Here we used the anti-
symmetric nature of the xy contribution Sxyq =−Syxq and

introduced shorthand notations for Sαβq ≡Sαβ(q, ω) and
“shifted” momenta q± ≡ q ±K, with θ being the out-
of-plane canting angle of spins. In the local reference
frame, Szzq components of the dynamical structure factor
are “longitudinal”, i.e., are due to the two-magnon con-
tinuum, having no sharp quasiparticle features29. The
rest of Eq. (4) is “transverse”, i.e., is related to the

single-magnon spectral function, Sx(y)x(y)q ∝ A(q, ω),
with different kinematic q-dependent formfactors, where
A(q, ω) = −(1/π)ImG(q, ω) and the diagonal magnon
Green’s function is G(q, ω) = [ω − εq − Σq(ω) + iδ]−1.
Thus, the dynamical structure factor of the XXZ TLAF
in a field should feature three overlapping single-magnon
spectral functions, A(q, ω) and A(q±K, ω), with differ-
ent weights according to (4) and48, see also52.

In our consideration, we include all contributions to
the one-loop magnon self-energy Σq(ω) of the 1/S-order
of the non-linear spin-wave theory26. Namely, there are

two more terms in addition to decay diagram: the source
diagram and the Hartree-Fock correction, the latter com-
prised of the contributions from the four-magnon interac-
tions (quartic terms) and from the quantum corrections
to the out-of-plane canting angle of spins, see48 for tech-
nical details,

Σq(ω) = ΣHF
q + Σdq(ω) + Σsq(ω). (5)

Having included all one-loop contributions also allows us
to consistently take into account the ω-dependence of the
magnon spectral function. Below we demonstrate that
anharmonic interactions lead to broadening of magnon
quasiparticle peaks, redistribution of spectral weight, and
other dramatic changes in the spectrum.

In Fig. 3, we present our results for the dynami-
cal structure factor S(q, ω) in (4) of the model (1) for
S = 1/2, ∆ = 0.9, and H = 0.2Hs. First, there is a
strong downward bandwidth renormalization by about
30% compared to the LSW results in Fig. 1, which is
characteristic to the TLAFs18,27,28. The most important
result is a significant broadening of magnon spectra for
an extensive range of momenta, accompanied by well-
pronounced termination points with distinctive bending
of spectral lines54 and other non-Lorentzian features that
are associated with crossings of the two-magnon contin-
uum. The broadening can be seen in a wide proximity
of the K′ points of the Brillouin zone as well as in the
equivalent regions of the “±K-shifted” components of
the structure factor. Despite the strong renormalization
of the spectrum, the extent of the affected q-region is
about the same as in the on-shell consideration in Fig. 2.

The inset of Fig. 3(a) shows S(q, ω) vs ω at a rep-
resentative K′ point that exhibits a modest broadening
compared with the artificial width (2δ) of the calculation.
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FIG. 4: Intensity plots of the spectral function with the iDE
Γk (dashed lines) for S=1/2, H=0.4Hs, and ∆=0 in (a) and
∆=0.5 in (b). Dotted lines are the LSW spectra for H=0.

The ω-cuts at the X1 and L points near the boundaries of
the decay region in Fig. 3(c) show much heavier damping
in one of the component of S(q, ω), which coexists with
the well-defined spectral peak from the “shifted” com-
ponent. The enhancement of magnon decays near the
edge of decay region also correlates well with the on-shell
results in Fig. 2 and points to the van Hove singulari-
ties of the two-magnon continuum as a culprit. The 2D
intensity map of the constant-energy cut of S(q, ω) at
ω= 1.05J is shown in Fig. 3(b), where one can see mul-
tiple signatures of the broadening, spectral weight redis-
tribution around K′, and termination points.

Larger anisotropy.—We complement our consideration
of the model (1) by demonstrating the effects of magnetic
field on the magnon spectrum for the TLAFs with large
easy-plane anisotropy. In the strongly-anisotropic limit,
∆ = 0, the non-linear anharmonic coupling of magnons
is known to result in a very strong spectrum renormal-
ization (about 50%), but with no decays kinematically

allowed28. For S=1/2 and small enough ∆, Born approx-
imation and the 1/S, one-loop, ω-dependent self-energy
approach are somewhat inconsistent in that the first pro-
duces unphysically large Γk for H&0.3Hs and the second
shows strong spectrum renormalization that avoids de-
cays for H.0.5Hs. Since the reason for this discrepancy
is the lack of self-consistency, we resort to the (partially)
self-consistent iDE approach described above. In Fig. 4,
we show its results for the magnon spectral function with
the Lorentzian broadening Γk for ∆=0 and ∆=0.5 and
for H = 0.4Hs. What is remarkable is not only a per-
sistent pattern of a wide k-region of the strongly over-
damped high-energy magnons [cf., Fig. 2(a)], but also
the magnitudes of their broadening, which reach the val-
ues of almost a half of the magnon bandwidth even after
a self-consistent regularization.

Conclusions.—We have provided a detailed analysis of
the field-induced dynamical response of the XXZ model
on the triangular lattice within the umbrella phase. We
have demonstrated a ubiquitous presence of significant
damping of the high-energy magnons already in moder-
ate fields, H & 0.2Hs. Other characteristic features, such
as significant spectral weight redistribution and termi-
nation points that separate well-defined excitations from
the ones that are overdamped, are also expected to occur.
The key physical ingredients of this dramatic spectral
transformation are a strong spin noncollinearity, which
is retained by the umbrella state and is essential for the
anharmonic magnon coupling and decays, and the tilted,
k ↔ −k asymmetric magnon band structure, owing its
origin to the staggered chirality of the umbrella state
that breaks the inversion symmetry. Our consideration
pertains in particular to Ba3CoSb2O9, which is currently
a prime candidate for observing aforementioned proper-
ties in reasonably small fields reachable in experimental
setup. Our work should be of a qualitative and quantita-
tive guidance for observations of the dynamical structure
factor in the inelastic neutron-scattering experiments in
this and other related systems.
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