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       We demonstrate robust interface strain-induced perpendicular magnetic anisotropy in 

atomically flat ferrimagnetic insulator Tm3Fe5O12 films grown with pulsed laser deposition 

on substituted-Gd3Ga5O12 substrate which maximizes the tensile strain at the interface. In 

bilayers consisting of Pt and TIG, we observe large squared Hall hysteresis loops over a 

wide range of thicknesses of Pt at room temperature. When a thin Cu layer is inserted 

between Pt and TIG, the Hall hysteresis magnitude decays but stays finite as the thickness 

of Cu increases up to 5 nm. However, if the Cu layer is placed atop Pt instead, the Hall 

hysteresis magnitude is consistently larger than when the Cu layer with the same thickness 

is inserted in between for all Cu thicknesses. These results suggest that both the proximity-

induced ferromagnetism and spin current contribute to the anomalous Hall effect.  
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The ferrimagnetic insulator yttrium iron garnet (YIG) has continually attracted a great deal of 

attention in condensed matter physics, especially in the spintronics community. For example, the 

discovery of the spin Seebeck effect has led to a rapid development of insulator-based spin-

caloritronics1, 2. In bilayer structures containing a normal metal (NM) layer having strong spin-

orbit coupling and a YIG layer, magnetoresistance in Pt emerges and evolves with temperature3-

13. Associated with many interesting phenomena in YIG/NM bilayers, a hotly debated issue is 

whether the magnetic proximity effect or the pure spin current effect plays a more important role. 

Both mechanisms can produce magnetoresistance, namely the anisotropic magnetoresistance 

(AMR), the spin Hall magnetoresistance (SMR), and the anomalous Hall-like effects. A 

proximity-induced ferromagnetic layer in Pt can generate the anomalous Hall effect (AHE) just 

as normal ferromagnetic conductors do. However, pure spin current, through the non-zero 

imaginary part of the spin-mixing conductance, can also give rise to an AHE-like response at the 

YIG/NM interface14, but the relative importance of each mechanism has not been systematically 

addressed. 

Experimentally, anomalous Hall-like response has been observed in YIG/NM bilayers such as 

YIG/Pt and YIG/Pd4, 6, 10, 15. In ferromagnetic conductors, the Hall response contains two parts: 

the ordinary Hall effect (OHE) which is linear in field, and the AHE which is proportional to the 

out-of-plane magnetization. Since YIG grown on gadolinium gallium garnet (GGG) has easy-

plane anisotropy, the AHE signal is non-hysteretic but saturates at high fields. This has been 

treated as the basis of separating out the AHE contribution. However, such separation can be 

problematic. First, the observed Hall saturation field is an order larger than that of the YIG 

magnetization (~2000 Oe) 4, 6, 10. Second, even the sign and magnitude of the OHE background 

of YIG/NM is far from being understood15, 16. If a ferrimagnetic insulator has perpendicular 

magnetic anisotropy (PMA), the squared Hall hysteresis loop in bilayers would eliminate the 

aforementioned problem and identify the Hall signal associated with the magnetization, i.e. the 

AHE. In this letter, we first demonstrate the synthesis of both Tm3Fe5O12 (thulium iron garnet or 

TIG) thin films with strong PMA by controlling interface tensile strain and then bilayers of 

TIG/Pt. We show squared Hall hysteresis loops in TIG/Pt bilayers with a range of Pt thicknesses. 

Since Cu is known to have a very long spin diffusion length (~350 nm at room temperature17), 

we insert a thin Cu layer between TIG and Pt to suppress the proximity coupling while allowing 
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spin current to propagate. We further investigate the effect of the Cu layer thickness on the Hall 

hysteresis.  

Although previous studies18, 19, 20, 21 on YIG films indicated the existence of finite PMA due to 

stain, a systematic study is still lacking. Here we leverage the lattice-mismatch induced strain in 

epitaxially grown films to generate a perpendicular surface anisotropy field ୄܪ . When the 

surface anisotropy is sufficiently strong to overcome the shape anisotropy, a squared hysteresis 

loop is resulted22. Along the <111> orientation of cubic crystals23, ୄܪ ൌ ିସ௄భିଽఒభభభఙ||ଷெೞ , where K1, 

λ111, σ||, and Ms  stand for the 1st-order cubic anisotropy, magnetostriction constant, in-plane 

stress, and saturation magnetization of the film, respectively. TIG, as a member of the rare earth 

iron garnet family, has a large negative magnetostriction constant (λ111= -5.2) 24, about twice as 

much as that of YIG (λ111= -2.7) 24. A large tensile strain is needed to produce a large positive ୄܪ. 

The most commonly used GGG substrate has a lattice constant of 12.383 Å while the 

substituted-gadolinium gallium garnet (SGGG) substrate has a lattice constant of 12.585 Å, 

larger than TIG (a=12.324 Å) or YIG (a=12.376 Å). Thereby we choose SGGG/TIG to maximize 

the tensile strain at the interface.  

Pulsed laser deposition (PLD) is well known for growing coherently strained pseudomorphic 

films15. We first prepare our TIG PLD targets. Highly homogeneous and dense targets are 

fabricated through combination of a chemical precursor approach and the current activated and 

pressure assisted densification method25, 26. The detailed information about TIG target 

preparation will be published elsewhere25. We have successfully grown atomically flat, epitaxial 

TIG thin films on (111)-oriented SGGG substrates. After going through standard cleaning, the 

substrates are annealed at ~ 200 ºC for over five hours prior to TIG deposition. Under the optimal 

growth condition, the as-grown TIG films exhibit strong PMA and ultra-flat surfaces, as shown 

in Fig 1. Fig. 1(a) displays both in-plane and out-of-plane magnetic hysteresis loops of a typical 

10 nm thick TIG film measured by a vibration sample magnetometer (VSM). The out-of-plane 

hysteresis loop is squared while the in-plane hysteresis loop shows a hard-axis behavior. The in-

plane saturation field Hsat is ~2000 Oe. From the spontaneous magnetic moment per unit cell 

(~2.8 µB at room temperature27) and the volume of the unit cell, 4πMs is found to be ~1393 G. 

From H⊥= Hsat + 4πMs, H⊥ is calculated to be 3393 Oe. On the other hand, H⊥ can be estimated 

from material parameters by ୄܪ ൌ ିସ௄భିଽఒభభభఙ||ଷெೞ  . Since the 1st-order anisotropy is known to be 
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smaller, H⊥ can be approximated by െ3λଵଵଵσ||/Ms. Based on the elastic stiffness of TIG bulk 

crystals and lattice-mismatch induced in-plane strain, the in-plane tensile stress28 ߪ||is estimated 

to be 1.4 × 104 erg/cm3. Using the magnetostriction constant λ111 = -5.2 for TIG bulk crystals, we 

obtain 1969 ~ ୄܪ Oe, somewhat lower but on the same order as the experimental value. The 

discrepancy may originate from the underestimation of the in-plane tensile stress based on the 

bulk crystal magnetostriction constant and the interfacial strain estimated from the lattice 

constants of the two bulk crystals. As a comparison, we also grow a 10 nm YIG film on GGG 

(111) under the same growth condition. The inset of Fig. 1(a) displays magnetic hysteresis loops 

of YIG on GGG, which clearly show in-plane anisotropy due to dominant shape anisotropy. Fig. 

1(b) is the atomic force microscopy (AFM) image of a representative TIG film. The root-mean-

square (rms) roughness over a 10 µm × 10 µm scanned area is ~ 1.4 Å. All samples with the 

same film thickness (10 nm) show similar rms roughness.  

To further characterize the magnetic anisotropy, a ferromagnetic resonance (FMR) study is 

carried out using a Bruker 9.3 GHz X-band EMX EPR spectrometer. A static magnetic field H is 

applied at an angle θH with respect to the film normal. Fig. 2(a) displays the FMR spectra of a 

TIG film with H applied both parallel (θH=90°) and perpendicular to the film plane (θH=0°). The 

resonance field Hres is 1900 Oe and 5200 Oe, and the peak-to-peak linewidth ∆H is 224 Oe and 

167 Oe for field out-of-plane and in-plane, respectively. ∆H of the TIG thin film is much greater 

than that of YIG films or YIG crystals, but is comparable with that of TIG bulk single crystals 

(∆H=135 Oe29), which may be attributed to the intrinsic properties of the materials. Note that the 

out-of-plane Hres is smaller than the in-plane Hres, which is a qualitative indicator of PMA. The 

detailed polar angle dependence of Hres is summarized in Fig. 2(b) for GGG/YIG, SGGG/YIG, 

GGG/TIG, and SGGG/TIG with different levels of tensile strain. The effective demagnetization 

field 4πୣܯ୤୤ ൌ 4πܯୱ െ ୄܪ  is extracted by fitting the resonance equation to the angular 

dependence of Hres 30, 31and then ୄܪ is calculated to be -232 Oe, 1078 Oe, 1460 Oe, and 3645 Oe 

for GGG/YIG, SGGG/YIG, GGG/TIG, and SGGG/TIG, respectively. The ୄܪ value (3645 Oe) is 

the highest for SGGG/TIG which agrees well with what is obtained from magnetometry. In 

GGG/YIG, negative ୄܪ indicates in-plane anisotropy. The increasing trend of ୄܪ is correlated 

well with the increasing interface tensile strain, manifesting strain tunable PMA in rare earth iron 

garnet films.    
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   To maintain high-quality interfaces in bilayers, TIG is immediately transferred to a high-

vacuum sputtering system for Pt or Cu deposition without being exposed to any resist or organic 

substance. Before the metal layer deposition, TIG films are lightly cleaned using Ar plasma for 3 

minutes. Standard photolithography and Ar inductively coupled plasma etching are performed to 

pattern the metal layers into Hall-bars with the length of L=300 µm and the width of W=100 µm. 

Magneto-transport measurements are performed at room temperature either with an 

electromagnet or with a superconducting magnet in a Physical Property Measurement System. 

Fig. 3(a) shows the Hall hysteresis loops for two representative samples: TIG (10 nm)/Pt (1.5 nm) 

and TIG (10 nm)/Pt (5 nm) along with the Hall signals in two reference samples: SGGG/Pt (2 

nm) and TIG/SiO2 (2 nm)/Pt (2 nm). Three messages are revealed in the figure: 1. the Hall 

hysteresis in Pt resembles the out-of-plane magnetic hysteresis of the underlying TIG film; 2. a 

thin SiO2 layer quenches the Hall hysteresis completely; 3. the thinner the Pt layer is, the larger is 

the Hall hysteresis magnitude. In the reference samples, only linear OHE is present. Similar 

OHE linear background is also present in TIG/Pt samples, but unlike in YIG-based bilayers, 

there is no ambiguity in separating AHE from the total Hall signal. In samples with different Pt 

thicknesses but sharing the same underlying TIG film, the AHE magnitude steadily decreases as 

the Pt layer thickness as shown in Fig. 3(b), suggesting its interfacial nature.  

Two possible mechanisms can give rise to the AHE hysteresis in paramagnetic Pt. First, if the 

Pt interface layer is magnetized by TIG via proximity coupling, then it behaves effectively as a 

thin ferromagnetic metal, and consequently the hysteresis can arise from the conventional AHE 

mechanism32. As the Pt thickness increases, the AHE signal from the interface layer is diluted by 

the increasing paramagnetic portion. The other possible mechanism is the spin Hall-AHE (SH-

AHE), a spin current effect14, 15, which originates from spin precession around the exchange field 

due to the presence of the magnetic layer. Both SH-AHE and SMR share the same origin, and are 

theoretically connected to the imaginary and real parts of the same spin-mixing conductance 

respectively. We have carried out room temperature magnetoresistance measurements with a 

rotating field 1 T in the same set of samples as used for the Fig. 3(b) inset. The SMR data show a 

similar decreasing trend which is included in the supplementary materials33. Therefore, both 

mechanisms seem to be plausible to explain the Pt thickness dependence of the Hall magnitude. 

In order to further distinguish the two mechanisms of the Hall hysteresis in TIG/Pt, we insert 

a thin layer of Cu between TIG and Pt. Since Cu has a long spin diffusion length (~350 nm), a 
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few nm thick Cu layer should not suppress the spin current; therefore, no obvious effect is 

expected on AHE except for current shunting, if the spin current is responsible for the Hall 

hysteresis. On the other hand, a thin Cu layer should significantly affect the proximity coupling 

and therefore the AHE magnitude if the induced magnetic interface layer is responsible. To 

exclude the shunting effect, we prepare two sets of samples: TIG/Pt/Cu/SiO2 (1) and 

TIG/Cu/Pt/SiO2 (2) on the same TIG film, with exactly the same constituent layer thicknesses 

but the opposite stacking order for the Pt and Cu layers. The SiO2 capping layer is important to 

prevent oxidation of the top layer, especially in Set 1 when Cu is at the top. As shown in Fig. 4(a), 

upon insertion of a Cu spacer layer immediately above TIG, the absolute magnitude of the Hall 

hysteresis is quickly suppressed. What is more important, by placing a Cu layer of the same 

thickness on TIG/Pt instead, the AHE hysteresis is decreased by a lesser amount. Furthermore, a 

5 nm Cu layer greatly reduces the Hall hysteresis in Set 2, but the AHE signal clearly remains 

finite. From AFM imaging, the rms roughness associated with the 2 nm Cu grown on TIG is ~ 

0.15 nm (see Supplementary34); therefore, we rule out the possibility of pinholes in Cu films. The 

finite Hall hysteresis loop in Set 2 strongly suggests that spin current plays a more important role 

rather than the proximity coupling when the inserted Cu is thick, since the latter is expected to be 

short-ranged.  

We vary the Cu layer thickness from tCu 1.5 to 5 nm in both TIG/Pt(2 nm)/Cu/SiO2 and 

TIG/Cu/Pt(2 nm)/SiO2 sets. We note that even with the same Cu thickness the resistance of the 

two samples with the opposite Cu and Pt stacking orders is different. The resistance difference is 

more pronounced in thin Cu samples. It may be caused by different Cu textures when it is grown 

on different materials, i.e. TIG or Pt. To better correlate the shunting effect as the Cu layer 

thickness is varied, we measure the total resistance of the samples. In Fig. 4(b), we plot the AHE 

magnitude as a function of the total measured resistance instead of the Cu thickness. As the Cu 

thickness increases, the resistance of the both sets decrease and at the same time the AHE 

magnitude decreases due to the shunting effect. However, the TIG/Pt (2 nm)/Cu/SiO2 AHE curve 

stays consistently above that of TIG/Cu/Pt (2 nm)/SiO2. The gap between these two AHE curves 

reveals the importance of the magnetic proximity coupling. As the Cu thickness approaches zero 

in Set 2, i.e. extrapolating the curve for Set 2 to the same resistance value as that of TIG/Pt (2 

nm)/SiO2, the difference between the two curves, ∆ܴ஺ுଵ , should represent the contribution from 

the proximity effect, as shown in Fig. 4(b). After separating out the proximity-induced AHE 
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contribution, the remaining AHE signal, ∆ܴ஺ுଶ , is clearly from the spin current effect, i.e. SH-

AHE. Below we adopt a simple model to explain the overall Cu layer thickness dependence in 

both sets. We assume the AHE voltage from the Pt layer to be the voltage source and the 

presence of the Cu layer merely shunts the current flowing in Pt; therefore the measured AHE 

voltage is reduced. The AHE source may contain more than one mechanism. With this simple 

circuit model, the measured AHE resistance scales with the total sample resistance squared, i.e. ܴ஺ு ൌ ቀ ோோು೟ቁଶ ܴ஺ு଴ , here ܴ஺ு଴  being the AHE resistance from the Pt layer only regardless of its 

physical origin, R being the total resistance of the samples, and RPt being the resistance of the Pt 

layer. Fig. 4(c) is the ܴ஺ு଴ vs. tCu plot. As the Cu thickness varies, ܴ஺ு଴  is nearly constant for both 

sample sets. It means that the decreased AHE magnitude in thicker Cu samples can indeed be 

described by the current shunting effect. When the Pt layer is directly on top of TIG, the constant 

value is clearly larger than when the Cu layer separates the Pt layer from TIG. The former 

contains both proximity induced AHE and SH-AHE; therefore, we attribute the difference 

between the two values to the proximity induced mechanism which apparently dominates the 

other. However, we cannot completely rule out a possibility that the attenuation of the spin 

current by YIG/Cu and Cu/Pt interfaces gives rise to the dramatic reduction in the AHE 

magnitude.  

In summary, by controlling interfacial strain, we have obtained robust PMA in TIG thin films. 

Squared AHE hysteresis loops are observed in TIG/Pt bilayers and analyzed in the context of 

both proximity coupling and spin current effects. Our experimental results indicate that the 

former effect likely plays a dominant role in the anomalous Hall effect.    

We would like to thank B. Madon, Z. L. Jiang, and J. X. Li for many helpful discussions, and 

N. Amos, J. Butler and D. Yan for their technical assistance. The work was supported as part of 

the SHINES, an Energy Frontier Research Center funded by the U.S. Department of Energy, 

Office of Science, Basic Energy Sciences under Award # SC0012670. 
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Figure Caption: 

Fig. 1 (a) Magnetic hysteresis loops of 10 nm TIG film grown on SGGG (111) substrate for both 

field in-plane (ip) and out-of-plane (op) orientations showing perpendicular magnetic anisotropy. 

Linear paramagnetic background is removed. Inset: Magnetic hysteresis loops of 10 nm YIG 

film grown on GGG (111) substrate. (b) AFM surface morphology of TIG film with rms 

roughness of 0.14 nm.   

Fig. 2. (a) FMR spectra of SGGG/TIG (10 nm) with field in-plane and out-of-plane orientations. 

θH is the angle of magnetic field with respect to the film normal. (b) Polar angle θH dependence 

of the resonance field Hres for GGG/YIG, SGGG/YIG, GGG/TIG, and SGGG/TIG bilayers. The 

fitting curves (solid) and the extracted perpendicular anisotropy fields are shown.  

Fig. 3. (a) Total Hall resistivity ρxy for TIG/Pt(1.5 nm), TIG/Pt (5 nm), SGGG/Pt(2 nm), and 

TIG/SiO2(2 nm)/Pt (2 nm). (b) The anomalous Hall resistivity for different TIG (10 nm)/Pt 

samples with different Pt layer thicknesses: 1.5, 2, 4, 6, and 8 nm. Inset: Thickness dependence 

of the anomalous Hall resistivity. 

Fig. 4. (a) The anomalous Hall resistance RAH for three representative TIG/Pt(2 

nm)/Cu(tCu)/SiO2(5 nm) and TIG/Cu(tCu)/Pt(2 nm)/SiO2(5 nm) samples with tCu=3, 4 and 5 nm 

on a same 10 nm thick TIG film. (b) The anomalous Hall resistance RAH as a function of the 

longitudinal resistance R for the two sets with all Cu thicknesses, i.e. tCu=1.5, 2, 3, 4 and 5nm. 

Solid curves are the fitting based on the shunting model of AHE: RAH ~ R2. (c) Calculated 

unshunted anomalous Hall resistance ܴ஺ு଴  as a function of the Cu thickness for the two sample 

sets.  
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