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Abstract

We show that time-reversal can be achieved with a spatially-uniform temporal modulation of the

gauge potential. The method can be applied to the quantum wavefunction of electrons where there

are natural gauge potentials, and to classical waves such as the acoustic and optical waves where

effective gauge potentials have been demonstrated recently. This time-reversal process can provide

a compensation of higher-order dispersion effects. Moreover, our approach can be used to time-

reverse the propagation of a wavepacket in three dimensions, as well as a topologically-protected

one-way edge state where the underlying Hamiltonian does not have time-reversal symmetry. Our

work shows that modulation of gauge potentials provides a versatile approach for dynamically

controlling wave propagation.
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The capability to achieve a time-reversal operation for classical acoustic and electromag-

netic waves1–12 is of fundamental importance for controlling wave dynamics, and has found

practical applications in communication, sensing and imaging1,13,14. For acoustic waves,

time-reversal has been achieved by a process of recording and playing back using an array of

transducers3,5,6. For optical waves, time-reversal can be achieved by using either four-wave

mixing, or electro-optic modulations2,7–10.

In this Letter we introduce an alternative mechanism for achieving a time reversal op-

eration. We show that time reversal of a wavefunction in general can be achieved by a

spatially-uniform temporal modulation of the gauge potential that couples to the wave.

This capability is potentially important in two different contexts:

First of all, inspired by the importance of achieving time-reversal for classical waves, it

is certainly of interest to achieve a time-reversal operation for the quantum wavefunction of

electrons. Mathematically speaking, the time-reversal operator for quantum wavefunctions

of electrons is similar to that for the classical waves. However, none of the available physical

mechanisms for time-reversal of classical waves can be straightforwardly applied for electrons.

The mechanism we describe here naturally applies to an electronic wave function since an

electron, being a charged particle, naturally couples to an associated gauge potential.

Secondly, the particles that represent excitations of a quantized classical field, such as

photons and phonons, are neutral particles, and have no natural gauge potentials associated

with them. On the other hand, there have been significant recent developments in synthe-

sizing an effective gauge potential for photons and phonons15–26. These developments have

been largely motivated by seeking to achieve non-reciprocity and to realize topologically

non-trivial photon and phonon states27–34. Here we show that these developments can be

also important for time-reversal of light and sound waves. In addition, the use of gauge

potential also leads to unusual capability for time reversal. For example, we show that

this scheme can be used to reverses all orders of dispersion, and to achieve time-reversal

of a wavefunction in full three dimensions. Finally, we show that the time-reversal opera-

tion can be carried out in systems without time-reversal symmetry, by demonstrating the

time-reversal of topologically protected one-way edge states.

We first provide a mathematical definition for a time reversal operation. We consider an
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arbitrary wave function Ψ1(~r, t), which evolves following the equation

H1Ψ1(~r, t) = i
∂

∂t
Ψ1(~r, t), (1)

at t < 0. Here Ψ1 can be either scalars, spinors or vectors. We note that the Schrödinger

equation for an electron and the Maxwell’s equation for electromagnetic waves can both

be written in the form of Eq. (1)35,36. For notation simplicity, we refer to Eq. (1) as the

Schrödinger equation for a particle, and H1 as the Hamiltonian, with no further distinction

made between electrons or photons for the rest of the paper. For electrons we set e = ~ = 1

throughout the paper. Hence the gauge potential has the same unit as the wavevector.

Our purpose is to apply a transformation of the Hamiltonian from H1 to H2 around the

time t = 0, such that at t > 0, the wavefunction Ψ2 whose evolution is governed by the

Hamiltonian H2, satisfies:

|Ψ2(~r, t)|2 = |Ψ1(~r,−t)|2. (2)

Eq. (2) reverses the propagation of the probability density. For applications of time reversals

for either photons or phonons, as discussed in Refs.1–12, reversing the probability density

propagation is sufficient. The two cases considered below as implementation of Eq. (2) both

involves time-reversal for the underlying wave amplitude:

Case (1):

Ψ2(~r, t) = Ψ1(~r,−t). (3)

Here for simplicity we ignore a global phase factor. More generally to satisfy Eq. (2) one

can have Ψ2(~r, t) = eθ(~r,t)Ψ1(~r,−t), where θ(~r, t) is an arbitrary real function. From Eq. (1),

we therefore require

H2(t)Ψ2(~r, t) = i
∂

∂t
Ψ2(~r, t) = i

∂

∂t
Ψ1(~r,−t) = −H1(−t)Ψ1(~r,−t). (4)

Hence, to achieve time reversal operation we can choose

H2(t) = −H1(−t). (5)

Case (2):

Ψ2(~r, t) = Ψ∗
1(~r,−t). (6)

With a similar derivation as above, we can show that this results in the choice of

H2(t) = H∗
1 (−t). (7)
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In this letter, we focus on the operation in Eq. (5) and provide a brief discussion of Eq.

(7) at the end of the paper. The objective of our work is to develop a physical mechanism

for reversing the propagation of an arbitrary wave packet. Such a reversing process has

been commonly referred to as ”time-reversal” in the literature1–12. We emphasize that this

mathematical description in Eq. (2) is in fact different from the time-reversal operator in

standard quantum mechanics. The standard time-reversal operator in quantum mechanics

was developed in order to elucidate the time-reversal symmetry property of a Hamiltonian,

and as a result must be an anti-unitary operator37,38. On the other hand, our objective here

rather is to develop a physical mechanism, to be implemented in an experiment, in order

to reverse the propagation of a wave packet, which is described by a unitary time-evolution

operator. Also, in the case of spinors, our time-reversal operation only reverses the wave

propagation direction without affecting the spin degree of freedom, again different from the

standard time-reversal operator in quantum mechanics.

Consider a wave packet with a center frequency ωc, i.e.: Ψ1(~r, t) = Ψ̃1(~r, t)e
−iωct, the

envelope Ψ̃1(~r, t) satisfies a modified Schrödinger equation

(H1 − ωc)Ψ̃1(~r, t) = i
∂

∂t
Ψ̃1(~r, t). (8)

The time-reversal in Eq. (5) then corresponds to a sudden change of Hamiltonian

(H1 − ωc) → −(H1 − ωc). (9)

The operation of Eq. (9) has been implemented for electromagnetic waves in7,10,39. Here

we show that such an operation can be straightforwardly achieved by modulating a gauge

potential. Consider a wave with a dispersion relation ω(k), where ω and k are the frequency

and the wavevector, respectively. The dispersion relation can be linearized around the

frequency ωc as:

ω − ωc = vg(k − kc), (10)

where kc is the center wavevector of the wavepacket. On the other hand, suppose the system

has time-reversal symmetry, and hence ω(k) = ω(−k), then in the vicinity of the frequency

ωc the dispersion relation should also has a second branch centered around the wavevector

−kc, as represented by:

ω − ωc = −vg(k + kc), (11)
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For a system described by the dispersion relation ω(k), applying a uniform gauge potential

A results in a new system as described by a dispersion relation ω(k−A)17,40. For the system

above, by applying a change of the gauge potential:

A = 0 → A = 2kc. (12)

The second branch of the dispersion relation as described above is then translated in the

wavevector space to become:

ω − ωc = −vg(k − A+ kc) = −vg(k − kc). (13)

Suppose we apply such a gauge potential modulation to the system, while the wavepacket

is in the system. Since a constant gauge potential preserves the translational symmetry, the

wavevectors of the wavepacket do not change, and yet the dispersion relation of the system

around the wavevector kc is now described by Eq. (13). Therefore we have indeed achieved

the time-reversal operation as prescribed in Eq. (9).

We emphasize that Eq. (12) is not a gauge transformation, where one describes the same

physical system with two different gauge potential choices. Rather, Eq. (12) describes a

scenario where at t = 0 we physically change the gauge potential applied to the system

from A = 0 to A = 2kc. Experimentally, this corresponds to applying an electric field

pulse at t = 0. Immediately before and after the application of such an electric field pulse,

the wavefunction does not change, i.e. Ψ(x, t = 0−) = Ψ(x, t = 0+). It is precisely the

application of such an electric field pulse that performs a time-reversal operation.

As an illustration of the concept above, we consider a tight-binding Hamiltonian in one

dimension (as shown in Fig. 1(a))

H1 = g
∑

m

(

c†mcm+1e
−iφm(t) + c†m+1cme

iφm(t)
)

, (14)

where g is the coupling strength, cm (c†m) is the annihilation (creation) operator at the m-th

lattice site, and φm is the phase of the coupling between sites m and m + 1. With such a

tight binding model Ψ in Eq. (2) then becomes a scalar field. Such a tight-binding model,

however, can be used to treat vector Maxwell’s field in three dimensions by expanding the

3D Maxwell field on a basis of vector wavefunctions. The dynamics of the coefficients of

such expansion, which are scalars, are then described by the tight-binding model41. The
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vector potential is introduced in the system through φm(t) via the Peierls substitution as:42

φm(t) =

∫ m+1

m

~A(~r, t) · d~l, (15)

where l̂ is the unit vector along the direction from the site m to the site m+ 1.

FIG. 1: (a) Schematic showing the time-reversal of a pulse (orange) in a tight-binding lattice by

applying an electric field. (b) The band structure ω(k) for the tight-binding lattice with φ = 0

(blue curve) and φ = π (red curve). (c) Propagation of a wave packet in the one-dimensional

lattice. An electric field pulse is applied around the time t = 0. Colors show the intensity density

of the wave packet.

We consider the case where φm = φ is uniform throughout the system, hence a spatially

uniform A. Eq. (14) is then described by a bandstructure:

ω(k) = 2g cos (k − φ) . (16)

The bandstructures corresponding to φ = 0 and φ = π are plotted in Fig. 1(b). With

a shift of the gauge potential that changes from φ = 0 to φ = π, we have a time-reversal

operation as defined by Eq. (5). Note that unlike the case discussed in Eq. (12) for a general

dispersion relation, here the shift is sufficient to time-reverse any pulse in this system. Such

a shift of gauge potential corresponds to the application of an electric field E(t) ≡ −dA/dt

that satisfies an area law:
∫

E(t)dt = (2n+ 1)π/a, (17)

where n is an arbitrary integer and a is the lattice constant. Any electric field profile

satisfying Eq. (17) is capable for achieving time-reversal for arbitrary wavepacket in the

system.
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As a numerical demonstration, we perform the simulation for the dynamics of a wave

packet

|Ψ(t)〉 =
∑

wm(t)c
†
m|0〉, (18)

in the system as described by Hamiltonian of Eq. (14). Here wm is the probability amplitude

at the m-th site. The lattice includes 61 sites. The simulation is performed from t = −τ to

t = τ (τ = 20 g−1). The initial wave packet has the shape of

wm(t = −τ) = e−x2
m/∆x2−ik0xm, (19)

where xm = ma, ∆x = 3.75a and k0 = 1/a. To modulate the gauge potential, we apply an

electric field pulse centered at t = 0 with the form

E(t) =

√
π

a∆t
e−t2/∆t2 , (20)

with ∆t = 0.06 g−1. The pulse satisfies Eq. (17) with n = 0. The distribution of |wm(t)|2

is plotted in Fig. 1(c). The wavepacket initially moves to the right and expands in space

as time progresses from t = −τ . Upon the application of the gauge potential modulation,

however, the pulse reverses its propagation direction and compresses, returning to its original

shape at t = τ .

For a general dispersion relation of ω(k), the time-reversal operation as prescribed in Eqs.

(10)-(13) in fact reverses all odd-order dispersions, as can be seen by including higher-order

terms in the Taylor expansion of Eqs. (10) and (11). This already represents an improvement

over most of conventional time-reversal schemes7–11, which only reverse the group velocity.

Moreover, for the tight-binding model, the time-reversal scheme considered here results in an

exact implementation of Eq. (5) and hence reverses dispersion of all orders. This is partially

evident in Fig. 1(c), since the spread and compression of the wavepacket are controlled by

the second-order Tayler expansion of the dispersion relation.

Most previous works on time-reversal in classical waves operates either on a one-

dimensional wavepacket7–12 or a two-dimensional wavefront3–6. On the other hand, the

proposed scheme here enables time-reversal of a wavepacket in full three dimensions. As an

illustration, considering a tight-binding Hamiltonian on a cubic lattice:

H = g
∑

m,n,l

(

c†m,n,lcm+1,n,le
−iφx + c†m,n,lcm,n+1,le

−iφy + c†m,n,lcm,n,l+1e
−iφz + h.c.

)

, (21)
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where (m,n, l) labels a lattice site along the x, y, z axes. Its band structure has the form:

ω(kx, ky, kz) = 2g cos (kx − φx) + 2g cos (ky − φy) + 2g cos (kz − φz) . (22)

By modulating the gauge potential such that the coupling phases along each axis vary

according to φx(y,z) = 0 → π, we can achieve the time-reversal as indicated in Eq. (5). Such

a simultaneous change of the coupling phases φx(y,z) along all three dimensions corresponds

to an application of an electric field along the [111] direction for the cubic lattice. The

component of the electric field in each direction satisfies the area law in Eq. (17).

FIG. 2: (a) Three-dimensional lattice with an electric field pulse pointing at the [111] direction.

(b) The initial wave packet distribution at t = −τ . (c)-(h) Normalized projections of the calculated

intensity distribution on the xy plane (Pz(x, y, t) =
∑

l |wm,n,l(t)|2) in (c),(e),(g) and on the yz

plane (Px(y, z, t) =
∑

m |wm,n,l(t)|2) in (d),(f),(h), at times −τ , 0, and τ , respectively.

As a numerical demonstration, we simulate the Schrödinger equation on a 41a×41a×41a

lattice. We apply an electric field pulse. Each of its components has the form in Eq. (20),

with ∆t = 0.06 g−1. At t = −τ = −10 g−1, we initialize the wave packet with the amplitudes

at the lattice site (m,n, l) having the form:

wm,n,l(t = −τ) = e−[x
2
m+y2n+(zl−4a)2]/∆ + 0.7e−[x

2
m+y2n+(zl+4a)2]/∆, (23)
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with xm = ma, yn = na, zn = la, ∆ = 3.75a, as shown in Fig. 2(b). At different times

(−τ , 0, and τ), we calculate the resulting wavepacket distribution, and plot its normalized

projection of wave packet distribution on the xy plane (Figs. 2(c),(e),(g)) and on the yz plane

(Figs. 2(d),(f),(h)), respectively. The normalized projections are defined as Pz(x, y, t) =
∑

l |wm,n,l(t)|2 and Px(y, z, t) =
∑

m |wm,n,l(t)|2. With the application of the electric field

pulse around t = 0, the three-dimensional wavepacket indeed returns to its original shape

at t = τ , providing a direct illustration of a three-dimensional time-reversal operation.

Up to this point, we have demonstrated time-reversal operation in a lattice that has time-

reversal symmetry and full translational symmetry for all lattice vectors. Both symmetry

constraints can in fact be relaxed. As long as the dispersion relation of the system has a

symmetry of ω(kx, ky, kz) = −ω(kx + π/a, ky + π/a, kz + π/a) + const., the use of gauge

potential as described above will lead to a perfect time reversal. As a final illustration, we

consider a two-dimensional lattice system subject to a constant magnetic field. We show

that the same electric field pulse as prescribed above can be used to achieve a time-reversal

for one-way edge states of the system.

We consider the Hamiltonian

H = g
∑

m,n

(

c†m,ncm+1,ne
−iφx + c†m,ncm,n+1e

−imπ/2−iφy + h.c.
)

, (24)

as schematically depicted in Fig. 3(a). In the second term of Eq. (24), the m-dependent

phases correspond to a Landau gauge for a constant magnetic field of a strength B = π/2a2.

In the absence of the electric field pulse, (i.e. φx = φy = 0), the band structure of the system,

for a stripe having a finite width of 80a in the y-direction, and infinite in the x-direction,

is shown Fig. 3(b). The band structure consists of four groups of bands corresponding to

the four magnetic sub-bands in the infinite bulk system28. The two center groups of bands

touch at ω = 0, and are separated from the two other groups of bands above and below in

frequency by two topologically non-trivial band gaps. Within each gap there are a pair of

topologically protected one-way edge states localized at either the top or the bottom edges

of the stripe, as represented by the red and blue lines in Fig. 3(b). On the bottom edge,

there is a right-going one-way edge state in the upper band gap in the wavevector range

of kx > 0, and a left-going state in the lower band gap with kx < 0. Fig. 3(c) shows the

same band structure, shifted along the kx axis by π/a. In the shifted band structure, in

the wavevector range of kx > 0, there is now a left-going one-way edge. Therefore, for a
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FIG. 3: (a) Two-dimensional lattice under a constant magnetic field, which is described by the

Laudau gauge phase distribution. An electric field pulse pointing at the [11] direction is in addition

applied. (b) and (c) The band structure at t < 0 and t > 0, respectively, for a stripe of tight-binding

lattice shown in (a). The stripe is infinite in the x-direction and finite along the y-direction. Red

(blue) curve shows the edge state on top (bottom) edge and grey curves show the bulk bands. A

gold dot represents a wavepacket. (d)-(f) Normalized wave packet intensity distribution at times

−τ , 0, and τ , respectively.

right-going wavepacket consisting of one-way edge states at the bottom edge, as represented

by the gold dot in Fig. 3(b), applying a spatially-uniform temporal modulation of the gauge

potential in the form of a pulse of electric field in the x-direction as discussed in this paper

will convert it to a left-going wavepacket as represented by the gold dot in Fig. 3(c), and

hence achieving a time-reversal operation of one-way edge state.

As a numerical demonstration, we simulate the Hamiltonian of Eq. (24) on a 21a× 21a

lattice. The simulated system has edges along both the x− and y−directions. Therefore we

apply an electric field along the [11] direction, with both the x− and y− components of the

field in the form of Eq. (20) with ∆t = 0.06 g−1. The lattice is excited by a source pulse
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located at the position (0,−10), which has the expression

s(t) = e−(t−tc)2/η2−iωst, (25)

where tc = −25 g−1, η = 1.7 g−1, and ωs = 2g. All frequency components of this pulse

are located in the band gap28. The simulation is performed from t = −1.5τ to t = τ (with

τ = 20 g−1). We plot the normalized wave packet distributions at times −τ , 0, and τ in

Figs. 3(d)-(f). The initial wavepacket propagates counter-clockwise. Upon the application

of the electric field pulse, it reverse its propagation direction. The wavepacket has the same

shape at τ and −τ , providing the evidence of the time-reversal operation.

We note that our approach here is reminiscent, but different, from the Thouless quantum

pump, where an adiabatic variation of the magnetic field transfers between the one-way edge

modes with the same energy on the two edges43,44. In this case, we achieve a transfer between

one-way edge modes at the same edge with opposite chirality through the use of an additional

electric field. These modes have different energies and are located in different energy gaps.

The ideal form of variation is sudden rather than adiabatic. The observation of this effect

can be achieved in photonic/acoustic topological-insulator systems straightforwardly. For

electronic systems, the final state as discussed above after the application of the electric field

pulse needs to be initially un-occupied in order for the time reversal to occur.

Up to now we have described a time-reversal operation based on Eq. (5). There are other

possibilities of using gauge potential modulation to achieve time reversal. Assuming that

at t < 0, a wave packet Ψ1(r, t) evolves in time as governed by a Hamiltonian with a gauge

potential ~A = ~A1, such that at t = 0, the wavefunction has the form Ψ1(~r, t = 0) = ρ(~r)eiθ(~r).

We apply a sudden change of gauge potential at t = 0: ~A = ~A1 → − ~A1 + 2∇θ. We

can then obtain a time-reversal operation: at t > 0, the wavefunction evolves according

to Ψ2(r, t) = Ψ∗
1(r,−t)e2iθ(~r). This time evolution is equivalent to Eq. (7) after a gauge

transformation. In this case, the required gauge potential is in general dependent upon the

details of the wavepacket. In contrast, in the main results of the paper, which achieve a

time-reversal operation based on Eq. (5), the same gauge potential change can be used to

time-reverse an arbitrary wavepacket.

In summary, we propose a mechanism for achieving time reversal by applying a spatially-

uniform temporal modulation of the gauge potential. Our proposal is applicable for both

quantum wavefunctions of electrons, and for the classical electromagnetic or acoustic waves.
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This time reversal operation has experimental feasibility for both electrons, by applying

an electric field, and for photons and phonons, where the effective gauge fields have been

proposed and realized in experiments in recent years15–34. Our works point to the important

opportunities for dynamic control of wave propagation with the use of gauge potential.
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