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To investigate the barrier effect of grain boundaries on the propagation of avalanche-like plasticity at the

atomic-scale, we perform three-dimensional molecular dynamics simulations by using simplified polycrystal

models including symmetric-tilt grain boundaries. The cut-offs of stress-drop distributions following power-law

distributions decrease as the size of the crystal grains decreases. We show that some deformation avalanches are

confined by grain boundaries; on the other hand, unignorable avalanches penetrate all the grain boundaries in-

cluded in the models. The blocking probability that one grain boundary hinders this system-spanning avalanche

is evaluated by using an elemental probabilistic model.

A new insight into crystalline plasticity has been provided

from non-equilibrium physics at the beginning of the century.

Discontinuous, stick-slip plastic deformation, referred to as

intermittent plasticity, has been revealed as an intrinsic nature

of plasticity in crystalline solids1–8; the probability of a de-

formation event with a magnitude s follows a power-law dis-

tribution, P(s) ∝ s−β, where β is a constant. This power-law

distribution is a fingerprint of the presence of non-equilibrium

critical phenomena especially self-organized criticality9,10.

A combination of acoustic emission measurements and nu-

merical simulations using discrete-dislocation dynamics have

revealed that the power-law behavior of plasticity is caused by

avalanches of dislocation motions2,6. The acoustic emission

measurements in the creep of polycrystal ices have indicated

that grain boundaries (GBs), i.e., interfaces between crystal

grains, can act as obstacles to the avalanches11,12. Louchet

et al. have introduced a new concept regarding the plastic

deformation of polycrystals, which is one of the most funda-

mental subjects in material science; polycrystal yielding oc-

curs when the avalanche transmits across GBs and percolates

through the material13. Thus, the elucidation of the interaction

between GBs and avalanches of plasticity would advance our

understanding regarding the features of plastic deformation of

polycrystals, in particular, the grain size dependence of plastic

yielding14–16.

The interaction between single dislocations and GBs has

been extensively investigated17–19, but the quantification of

the interaction between avalanches of dislocations is still

quite preliminary. The consequence of the avalanche statis-

tics by GBs has been discussed through discrete-dislocation

dynamics20. However, the dislocation-GB interaction is truly

atomic-scale dynamics. Therefore, molecular dynamics (MD)

simulations for this issue are desperately needed to provide a

correct description and quantification of the interaction. Re-

cently, intermittent plasticity in single crystals has been suc-

cessfully reproduced by MD simulations21,22. However, inter-

mittent plasticity in polycrystals remains unaddressed.

In this study, by performing MD simulations with polycrys-

tal models consisting of some symmetric-tilt GBs, we prove

and evaluate the role of GBs as obstacles for intermittent plas-

ticity. In particular, we demonstrate the statistical distribu-

tion of the mechanical response of tensile deformation, its de-

pendence on the grain size, and the atomic-scale dynamics of

avalanche motion in the polycrystal models. Finally, we at-

tempt to quantify the blocking probability of avalanche prop-

agation by GBs.

We performed three-dimensional MD simulations of uniax-

ial tensile deformation of aluminum polycrystals under con-

stant temperature and strain rate condition with different grain

sizes, by applying the embedded atom potential presented by

Mishin et al. to the atomic interaction23. For the simula-

tions, we employed polycrystal models simplified as lamellar

stacking structures containing several 〈112〉Σ11 symmetric-

tilt GBs, which align normal to the tensile direction. Ow-

ing to this alignment, GB sliding and grain-growth are suffi-

ciently suppressed in this simulation because neither process

contributes to releasing the tensile stress. There are various

types of GBs, such as symmetric, asymmetric, and twisted24;

for simplicity, we employed symmetric-tilt GBs for initial the

trials.

Here we describe the procedure for preparing the polycrys-

tal models including 〈112〉Σ11 symmetric-tilt GBs. First, let

us consider two fcc lattices, whose [111̄], [112], and [11̄0]

axes are along the x, y, and z directions, respectively. Next, we

tilt the fcc lattices around the [112] axis by +θ/2 and −θ/2, re-

spectively. The GB misorientation angle θ/2 = tan−1
√

3/8 ≃
31.48◦ is chosen. GBs with this angle are called Σ11 GBs24,25.

If one joins those lattices at an xy-plane interface, the inter-

face is the 〈112〉Σ11 symmetric-tilt GB. Both tilted lattices

with the lattice constant of aluminum a0 have a unit cell with

minimum periodic lengths along x, y, and z; ∆Lx =
√

33/2a0,

∆Ly =
√

3/2a0, and ∆Lz =
√

11a0. Thus, one can apply the

periodic boundary conditions to the lattices without destruc-

ting the translational symmetry, in so far as the lengths of a

simulation cell along the three directions are equal to the in-

tegral multiple of the corresponding minimum periodic length

of the tilted lattices. For the present simulations, we chose

the dimensions of the simulation cell: Lx = 8∆Lx ≃ 13.2 nm,

Ly = 24∆Ly ≃ 11.9 nm, and Lz = 12∆Lz ≃ 16.2 nm, where

the cell is filled with 152064 atoms. Periodic boundary con-

ditions were applied to the simulation cell. In this dimension,

if the three unit cells with +θ/2 are alternately stacked with

three unit cells with −θ/2 along the z-axis in layers, a lamel-

lar stacked polycrystal model is obtained with four GBs as
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FIG. 1. (a) Typical stress-time curves, where the tensile stress σz(t) of NGB =

0, 2, 4, and 6 models are depicted as dashed black, solid red, black, and blue

lines, respectively. The schematic figure of the polycrystal models used in this

study is imposed. (b) The probability distributions of stress drop, ∆σz, in each

model, where the empirical distributions in Eq. (2) fitted to each distribution

are shown as thin black curves.

depicted in Fig. 1(a). Following, we prepared four models

with 0, 2, 4, and 6 GBs by employing the layer thickness cor-

responding to the grain sizes 12∆Lz, 6∆Lz, 3∆Lz, and 2∆Lz,

respectively. We distinguish these models by the number of

GBs, NGB.

Using the polycrystal models as initial configurations and

random numbers as initial velocities for all atoms, we per-

formed MD simulations for uniaxial tensile deformation along

the z-axis until 50 % deformation is attained. During the simu-

lations, the pressures along the x- and y-axes were maintained

zero using the Parrinello-Rahman method without shear26. To

save computing time for the simulations, we applied a strain

rate 1010 s−1 at the early stage of the deformation to 10 %

when the deformation is purely elastic. After that, the strain

rate was changed to 5×108 s−1. For each model, we performed

the MD simulations 20 times with different initial velocities

for all atoms.

For the simulations, we used Langevin’s dynamics repre-

sented by the equation of atom motion27;

mi q̈i(t) = Fi − miγq̇i(t) +
√

2miγkBT ηi(t), (1)

where mi is the mass of the i-th atom, qi and Fi are the position

and the force vector of the i-th atom, respectively. kB, T , γ,

and ηi(t) are Boltzmann’s constant, temperature, the friction

coefficient, and the random force vector as a white noise, re-

spectively. In the present study, we chose γ = 1 ps−1. The se-

lected temperature was 10 K, to reduce thermal fluctuations22.

This equation of motion is also employed to the dynamics

of the simulation cell. The second-order accurate algorithm

developed by Vanden-Eijinden and Ciccotti was used for the

numerical integration of the dynamics27,28. To generate the

random forces, Mersenne Twister generator was employed29.

The noise-induced dynamics not only keeps the tempera-

ture constant but also depresses stress fluctuations irrelevant

to plastic deformation; the fluctuations are caused by phonon

propagation or periodic dislocation motion such as string vi-

bration after large-scale plastic deformation events.

The tensile stress of all the models, σz(t), obtained from

TABLE I. The values of the power-law exponent β, the cut-offs ∆σc, and the

frequency of occurrence of system-spanning deformation events nS S and all

deformation events nde f .

NGB β ∆σc nS S nde f

(GPa)

0 1.11 0.788 142 644

2 1.08 0.480 123 694

4 1.19 0.288 126 870

6 1.24 0.121 126 1080

the simulation results shows intermittent plastic manners as

depicted in Fig. 1(a); σz(t) gradually increases by elastic de-

formation and abruptly drops by repeated plastic deformation,

where the time-series are averaged over a 0.2 ps interval to

remove thermal fluctuations. This serrated behavior is the

same as the intermittent plasticity observed in previous nu-

merical studies21,22, but the amplitude of the stress fluctuation

decreases as NGB increases.

The stress-drop distribution extracted from the average

time-series are shown in Fig. 1(b). The value of stress drop,

∆σz, is defined as the reduction amount of σz during a plastic

deformation event from tstart to tend; ∆σz = σz(tstart)−σz(tend).

Plastic deformation events can be determined as periods dur-

ing which σz(t) monotonically decreases as explained in the

previous study22. In the figure, all the distributions indicate

algebraic decay in the range of ∆σz < 0.1 GPa. This feature

corresponds to a power-law behavior, which is consistent with

the results obtained in previous numerical studies employing

MD21,22 and discrete-dislocation dynamics simulations2,6,7,

but there is a notable difference. That is, the distributions have

different cut-offs, which are rapid decreases of probability at

a large-scale regime. We evaluated the cut-offs of the distri-

butions by fitting the following empirical relationship to each

distribution:

P(∆σz) ≈ ∆σz
−β exp(−∆σz/∆σc), (2)

where β and ∆σc are the power-law exponent and the charac-

teristic scale of stress drops, respectively. The values of β and

∆σc obtained by the fitting are listed in Table I. As can be

seen from the table and Fig. 1(b), ∆σc decreases as the num-

ber of GBs in each model increases, whereas the exponents

of the models are almost the same (β ≃ 1.2). This trend of

the cut-offs supports that our MD simulations reproduce the

role of GBs as obstacles to the avalanches consistent with the

previous experimental study11.

In addition to the role of GBs revealed from the macro-

scopic responses, MD simulations can allow us to confirm

this behavior directly by observing microscopic-scale dynam-

ics during the deformation process. Here we analyze statisti-

cally the linear size of a slip area, during a plastic deformation

event, by identifying slip areas in the following way.

Let us consider the set of 12 nearest neighbor atoms around

the i-th atom at time t. We denote these atoms by n(i)(t) =

{n1, n2, ..., n12}, where n
(i)

1
, n

(i)

2
, ..., n

(i)

12
are integers which iden-

tify the neighbor atoms around the i-th atom. If the set of the

atoms at tstart is different from that at tend, i.e., n(i)(tstart) ,
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FIG. 2. Snapshots of all atoms (top) and participant atoms representing slip

areas during a plastic deformation event (bottom) in (a) the model with NGB =

2, (b) NGB = 4, (c, d) NGB = 6. The approximate positions of GBs are

indicated by horizontal dashed lines. (d) The slip area percolates all the GBs

in the model.

n(i)(tend), the i-th atom is regarded as a participant atom to the

deformation event starting at tstart. Applying this procedure

to all the atoms at a deformation event one can identify the

participant atoms that represent the slip area caused by the de-

formation event. By following this procedure, we extract all

the participant atoms from the numerical results that are aver-

aged with 1 ps intervals.

Typical configurations of participant atoms identified by the

above procedure are depicted in the bottom panels of Fig. 2,

where smaller clusters consisting of less than 12 participant

atoms are removed for the visibility. The participant atoms

formed into sheets as shown in the panels follow the trail of

dislocations. From the bottom panels of Figs. 2(a), (b), and

(c), it can be directly confirmed that GBs confine the propaga-

tion of an avalanche. However, not all avalanches are blocked

by GBs. For instance, Fig.2(d) shows a system-spanning de-

formation event in which a slip area penetrates all the GBs

in the system, even the system contains six GBs. Thus, the

statistics of the spatial extension of the avalanches should be

investigated quantitatively.

Note that we confirm neither fracture nor crack nucleation

in the simulations owing to the high ductility of aluminum.

For instance, the upper panels of Fig. 2 show snapshots of all

the atoms at the same moments as in the bottom panels, where

atoms with a defect-type lattice structure are colored blue, and

fcc structure atoms are colored red and gray in accordance

with their orientation angles. The snapshots clearly indicate

neither cracks nor fracture.

Here we evaluate the linear size of one avalanche along the

z-axis by the following. The cluster analysis is performed

to participant atoms during a deformation event; participant

atoms whose distance between each other is < 1.2a0/
√

2 are

regarded as a member of one common cluster consisting of an

isolated slip area. The length along the z-axis of the largest

one of all the clusters during the event is denoted by ℓz. We

represent the relative propagation length of an avalanche as

S z ≡ ℓz/Lz. For instance, S z will be 1/NGB in the model con-
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FIG. 3. The distributions of the relative linear size of an avalanche S z.

The inset shows the probability of system-spanning events plotted against

the number of GBs, NGB. Open circles and the red dotted line indicate the

probability estimated from the simulation results in Table I and the theoreti-

cal relationship depicted in Eq.(3), respectively.

taining NGB GBs when an avalanche emerging from a crystal

grain is completely blocked by the neighboring GBs. On the

other hand, if an avalanche percolates through the system, one

can obtain S z = 1.

The statistical distributions P(S z) calculated from all the

configurations of participant atoms are shown in Fig. 3. One

can find typical peaks (indicated by arrows) at S z = 0.67, 0.33,

and 0.25 for NGB = 2, 4, and 6, respectively, even though the

peak at S z = 0.67 is vague. These are only slightly larger than

the corresponding characteristic lengths of a crystal grain in

each model, 1/NGB. This agreement clearly indicates an ef-

fect of GBs to block the propagation of avalanches of plas-

ticity. The fact that there are no typical peaks in the model

with NGB = 0 also supports the presence of the effect indi-

rectly. In contrast to the typical peaks providing evidence of

the barrier effect, all the distributions have significant peaks at

S z = 1, which corresponds to system-spanning deformation

events as depicted in Fig. 2(d), for instance. These significant

peaks mean that not a few avalanches pass through all GBs.

Because the linear size of such a system-spanning avalanche

event cannot be defined, evaluating the mean free-path of the

avalanches is impossible. Thus, it is also impossible to quan-

tify the barrier effect of GBs by assessing the mean free-path.

To overcome this difficulty, we focus on the system-

spanning events rather than on all the deformation events.

We now evaluate the blocking probability; the probability

that one GB hinders a system-spanning avalanche. In other

words, the probability that a deformation event evolves to a

system-spanning event is considered. This probability can be

estimated by the relative frequency of the system-spanning

events; PS S (NGB) = nS S /nde f , where nS S and nde f are the

frequency of the system-spanning avalanche events and that

of all deformation events, respectively. In Table I, we enu-

merate nS S and nde f obtained from the present simulations.

The inset in Fig. 3 shows the system-spanning probability es-

timated from the data plotted by open circles as a function of

NGB, where the error bars are approximately calculated from a
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standard deviation of the binomial distribution with the num-

ber of trials nde f and the probability in each trial nS S /nde f .

The estimated probability in Fig. 3 monotonically decreases

with the increase of NGB. In other words, the propagation of

an avalanche of plasticity is quickly damped as the grain size

(grain thickness) is small. Thus, the present result is direct

evidence of the barrier effect of GBs upon the avalanche prop-

agation.

If one GB decreases PS S independently by the factor α (≤
1), the probability in the model including NGB GBs can be

described by the simple relationship:

PS S (NGB) = PS S (0) αNGB , (3)

where 1−α corresponds to the blocking probability of system-

spanning avalanches by one GB. This theoretical relationship

can fit well with the estimated probability by the least squares

method with the parameters PS S (0) = 0.22 and α = 0.90 as

shown in Fig. 3(c).

The theoretical relationship of Eq. (3) is made on the ba-

sis of two assumptions; (i) the emergence of the avalanches

is independent of the presence of GBs, and (ii) a GB blocks

a system-spanning avalanche independently with the block-

ing probability 1 − α. While these assumptions might be dis-

putable, there is collateral evidence of the former assumption.

That is, the power-law exponent of the stress-drop distribution

β does not depend on NGB as shown in Fig. 1(b) and Table I.

This trend implies that avalanches occur in the same fashion

inside grains. The excellent agreement between the theoret-

ical curve and the estimated probability (the inset in Fig. 3)

supports the assumption (ii). Hence, we can conclude that

this fitting can provide us with an estimated value of the bar-

rier capability of the GB against the avalanche of crystalline

plasticity.

An unchanged of β is inconsistent with the previous ex-

perimental observations11, whereas the change of ∆σc is con-

sistent with them. This inconsistency might be because of

the simplification of the present polycrystal models. That is,

the present result intimates that modulation of β observed in

the previous experiment11 results from complicated domain

structures, variation in the size of grains, or both as is com-

mon in real polycrystals. This complexity might produce

some slow relaxation processes such as GB sliding or grain-

growth, which can affect the avalanche properties31,32. The

presence of surface might also be important for the avalanche

dynamics33,34. MD simulations employing such realistic poly-

crystal models are required to prove the cause of the modula-

tion.

To evaluate the barrier effect of a particular kind of GBs,

simplified polycrystal models similar to those used in this

study is appropriate rather than realistic polycrystal models.

It is expected that the factor α depends on the misorientation

angle of the tilt-and-twist GBs. Investigation of the barrier

effect of these GBs is an issue for future studies.

The quantification of the barrier effect in this study will

contribute to the construction of theoretical models or semi-

macroscopic numerical models, such as models for the

discrete-dislocation dynamics or the phase field method for

polycrystalline solids, which worked well for the investiga-

tion of the avalanche behaviors in single crystals2,6,30. These

models will shed light on the mechanical properties of poly-

crystalline materials from the viewpoint of intermittent plas-

ticity.

In this study, to investigate the interaction between the

avalanche-like propagation of plasticity and the grain bound-

aries (GBs) in polycrystalline solids at the atomic-scale, we

performed molecular dynamics simulations for uniaxial ten-

sile deformation in aluminum polycrystal models simplified

as lamellar stacking structure including symmetric-tilt GBs.

The results show that the stress drops caused by an avalanche

of plastic deformation follow power-law distributions even in

polycrystals, but the cut-off of the distribution decreases with

decreasing grain size. By observing atomic-scale dynamics of

the simulation results, we noted that some avalanches are con-

fined by GBs, but others transmit across the GBs or penetrate

through the system entirely (system-spanning avalanches).

We propose the theoretical description of the system-spanning

probability in the models. The excellent agreement between

the theoretical probability and the estimated probability from

the simulations provides us with the blocking probability of

the avalanches by single-grain boundary.
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