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We investigate the zero-temperature superfluid to insulator transitions in a diluted two-
dimensional quantum rotor model with particle-hole symmetry. We map the Hamiltonian onto a
classical (2 +1)-dimensional XY model with columnar disorder which we analyze by means of large-
scale Monte Carlo simulations. For dilutions below the lattice percolation threshold, the system
undergoes a generic superfluid-Mott glass transition. In contrast to other quantum phase transi-
tions in disordered systems, its critical behavior is of conventional power-law type with universal
(dilution-independent) critical exponents z = 1.52(3), ν = 1.16(5), β/ν = 0.48(2), γ/ν = 2.52(4),
and η = −0.52(4). These values agree with and improve upon earlier Monte-Carlo results [Phys.
Rev. Lett. 92, 015703 (2004)] while (partially) excluding other findings in the literature. As a
further test of universality, we also consider a soft-spin version of the classical Hamiltonian. In ad-
dition, we study the percolation quantum phase transition across the lattice percolation threshold;
its critical behavior is governed by the lattice percolation exponents in agreement with recent theo-
retical predictions. We relate our results to a general classification of phase transitions in disordered
systems, and we briefly discuss experiments.

PACS numbers: 05.30.Jp, 64.60.Cn, 74.81.-g, 67.85.Hj

I. INTRODUCTION

Zero-temperature phase transitions between superfluid
and insulating ground states in systems of disordered in-
teracting bosons are prototypical quantum phase transi-
tions with experimental applications ranging from helium
absorbed in vycor1,2 to Josephson junction arrays3,4, su-
perconducting films5,6, doped quantum magnets in high
fields7–9, and to ultracold atoms in disordered optical
lattices10–12.

For generic disorder, the two bulk phases, viz. su-
perfluid and Mott insulator, are separated by another
phase, the Bose glass which is a compressible gapless
insulator13–15. It can be understood as the Griffiths
phase16–18 of the superfluid-insulator transition in which
rare large regions of local superfluid order coexist with
the insulating bulk. The quantum phase transition be-
tween superfluid and Bose glass has been studied in great
detail using various analytical and computational tech-
niques. It has recently reattracted considerable atten-
tion because new analytical19 and numerical20–23 findings
have challenged the scaling relation13,14 z = d between
the dynamical exponent z and the space dimensionality d
(Refs. 19–23 also contain long lists of references to earlier
work.)

In the presence of particle-hole symmetry, the glassy
Griffiths phase between superfluid and Mott insulator
has a different character: it is the incompressible gap-
less Mott glass (also called the random-rod glass)24,25.
The quantum phase transition between superfluid and
Mott glass has attracted less attention than the Bose
glass transition. Moreover, the available quantitative re-
sults for two space dimensions do not agree with each
other. Monte Carlo simulations of a link-current model26

yielded a dynamical critical exponent z = 1.5(2) and
a correlation function exponent η = −0.3(1).27 A nu-
merical strong-disorder renormalization group study of
a particle-hole symmetric quantum rotor model gave
z = 1.31(7), a correlation length exponent ν = 1.09(4),
and γ/ν = 1.1(2) where γ is the order parameter suscep-
tibility exponent28. The Fisher relation 2−η = γ/ν then
implies η = 0.9(2). Furthermore, a recent Monte Carlo
study of a quantum rotor model29 reported good scal-
ing by setting z to its clean value z = 1 which resulted
in ν = 0.96(6). All these models are expected to be in
the same universality class. The critical behavior of the
superfluid-Mott glass quantum phase transition in two
dimensions must thus be considered an open question.

To address this question, we consider a site-diluted
two-dimensional quantum rotor model with particle-hole
symmetry. After mapping this Hamiltonian onto a classi-
cal (2+1)-dimensional XY model with columnar defects,
we perform large-scale Monte Carlo simulations for lat-
tices with up to 11 million sites, averaging over 10 000 to
50 000 disorder configurations. The data are analyzed by
a finite-size scaling technique30–32 that does not require
prior knowledge of the dynamical exponent z. We also
include the leading corrections to scaling. Our results
can be summarized as follows: The system features two
distinct quantum phase transitions. For dilutions p be-
low the percolation threshold pc of the lattice, we find
a superfluid-Mott glass transition characterized by uni-
versal (dilution-independent) critical behavior with ex-
ponent values z = 1.52(3), ν = 1.16(5), β/ν = 0.48(2),
γ/ν = 2.52(4), and η = −0.52(4). The transition across
the lattice percolation threshold pc falls into a different
universality class. Its simulation data can be fitted well
with the theory developed in Ref. 33 which yields critical
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exponents that can be expressed in terms of the classi-
cal percolation exponents and take the rational values
z = 91/48, β/ν = 5/48, γ/ν = 59/16, and η = −27/16.

The rest of the paper is organized as follows. Section
II introduces the quantum rotor Hamiltonian, the map-
ping to the classical XY model, and the finite-size scaling
technique. Monte Carlo simulations for both the generic
(p < pc) transition and the percolation transition are
discussed in Sec. III. We conclude in Sec. IV.

II. THEORY

A. Diluted rotor model

The starting point is a site-diluted quantum rotor
model on a square lattice given by the Hamiltonian

H =
U

2

∑
i

εi(n̂i − n̄i)2 − J
∑
〈ij〉

εiεj cos(φ̂i − φ̂j) . (1)

Here, n̂i is the number operator at site i, φ̂i is the phase
operator, and U and J represent the charging energy
and the Josephson coupling, respectively. n̄i is the offset
charge at site i. In the Josephson term, 〈ij〉 refers to
pairs of nearest neighbors. The quenched random vari-
ables εi implement the site dilution. They are indepen-
dent of each other and take the values 0 (vacancy) with
probability p and 1 (occupied site) with probability 1−p.

As we are interested in the superfluid-Mott glass tran-
sition, we set all offset charges n̄i to zero and consider
commensurate (integer) filling 〈n̂〉. In this case, the dis-
order is purely off-diagonal, and the model is particle-hole
symmetric. The qualitative features of its phase diagram
are well understood14,25. If the charging energy domi-
nates, U � J , the ground state is a Mott insulator. In
the opposite limit, J � U , the ground state is a super-
fluid as long as the dilution p is below the lattice per-
colation threshold pc. For p > pc, the lattice consists of
disconnected clusters and a long-range ordered superfluid
state is impossible.

In the case of particle-hole symmetry, the quantum
rotor model (1) can be mapped34 onto a classical (2 +
1)-dimensional XY model on a cubic lattice having the
Hamiltonian

Hcl = −Js
∑
〈i,j〉,t

εiεjSi,t · Sj,t − Jτ
∑
i,t

εiSi,t · Si,t+1 (2)

where Si,t is an O(2) unit vector at the lattice site with
spatial coordinate i and “imaginary time” coordinate t.
The coupling constants Js/T and Jτ/T are determined
by the original quantum rotor Hamiltonian (1) with T be-
ing an effective “classical” temperature, not equal to the
real physical temperature. (The physical temperature of
the quantum system (1) maps onto the inverse system
size in imaginary time direction of the classical model.)
Due to universality, the exact values of Js and Jτ are

FIG. 1. Sketch of the classical XY model (2). The arrows
represent the classical unit vectors S, and the tubes show the
locations of the vacancy columns.

not important for the critical behavior. We therefore set
Js = Jτ = 1 and drive the XY model (2) through the
transition by varying the classical temperature T . Be-
cause the vacancy positions do not depend on the imagi-
nary time coordinate t, the defects in the classical model
(2) are columnar, i.e., the disorder is perfectly correlated
in the imaginary time direction (see Fig. 1).

In the clean undiluted limit p = 0, the Hamilto-
nian (2) simplifies to the usual three-dimensional XY
model. The correlation length critical exponent of the
three-dimensional XY universality class takes the value
ν ≈ 0.6717 (see, e.g., Ref. 35). This value violates the
Harris criterion36 dν > 2 where d = 2 is the number of
dimensions in which there is randomness. Consequently,
the three-dimensional clean XY critical point is unsta-
ble against columnar defects, and we expect the diluted
system to feature a different critical behavior.

B. Anisotropic finite-size scaling

Finite-size scaling37,38 is a powerful tool for analyzing
Monte Carlo data. Particularly useful are quantities of
scale dimension zero such as the (average) Binder cumu-
lant

gav =

[
1− 〈|m|4〉

3〈|m|2〉2

]
dis

, (3)

where m = (1/N)
∑
i,τ Si,τ is the order parameter (N

denotes the number of lattice sites). [. . .]dis refers to
the disorder average and 〈. . .〉 denotes the Monte Carlo
average for each sample. In an isotropic system with
a single relevant length scale, it takes the scaling form
gav(r, L) = X(rL1/ν). Here L is the linear system size,
r = (T −Tc)/Tc is the distance from criticality, and X is
a scaling function. This scaling form implies that gav vs.
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r curves for systems of different sizes L all cross at crit-
icality, r = 0, having the value gav(0, L) = X(0). This
can be used to find the critical point with high accuracy.
Moreover, the slopes of the gav vs. r curves at r = 0 vary
as L1/ν which can be used to measure ν.

As the quenched disorder in our Hamiltonian (2)
breaks the symmetry between the space and imaginary
time directions, we need to distinguish the linear system
size L in the two space directions from the size Lτ in the
imaginary time direction. (Lτ corresponds to the inverse
physical temperature of the original quantum model (1).)
If the putative disordered critical point fulfills conven-
tional power-law dynamical scaling, the finite-size scaling
form of the average Binder cumulant then reads

gav(r, L, Lτ ) = Xgav(rL1/ν , Lτ/L
z) (4)

where z is the dynamical critical exponent, and Xgav is
the dimensionless scaling function which now depends on
two arguments. Note that some quantum phase transi-
tions in disordered systems feature exotic activated dy-
namical scaling instead of power-law scaling, for example
the ferromagnetic transition in the random transverse-
field Ising model39, the pairbreaking superconductor-
metal quantum phase transition40–42, and magnetic tran-
sitions in itinerant systems43,44. For activated dynamical
scaling, the scaling combination Lτ/L

z in Eq. (4) needs
to be replaced by ln(Lτ )/Lψ where ψ is the tunneling
exponent. Based on the classification of disordered quan-
tum phase transitions developed in Refs. 18 and 45, we do
not expect the superfluid-Mott glass transition to show
activated scaling. We will return to this point in the
concluding section.

How can one perform a finite-size scaling analysis of
Monte Carlo data based on the scaling form (4) of the
average Binder cumulant? If the value of z is known,
the analysis is as simple as in the isotropic case: One
chooses system sizes L and Lτ such that Lτ = cLz

were c is a constant. Then the gav vs. r curves for sys-
tems of different sizes cross at criticality [with the value
gav(0, L, c Lz) = Xgav(0, c)] which can be used to locate
the critical point. However, in the absence of a value for
z, this approach breaks down because the correct shapes
(aspect ratios) of the samples are not known.

A method for finding the correct sample shape within
the simulations30–32 can be based on the following prop-
erty of the Binder cumulant: For fixed L, gav as a
function of Lτ has a peak at position Lmax

τ and value
gmax
av . The peak position marks the optimal sample shape,

where the ratio Lτ/L behaves like the corresponding ra-
tio of the correlation lengths in time and space directions,
ξτ/ξs. (If the aspect ratio deviates from the optimal one,
the system can be decomposed into independent units ei-
ther in space or in time direction, and thus gav decreases.)
At criticality, Lmax

τ must be proportional to Lz, fixing
the second argument of the scaling function Xgav . This
implies that the peak value gmax

av at criticality is indepen-
dent of L and that the gav vs. r curves of samples of the
optimal shape (Lτ = Lmax

τ ) cross at r = 0.

In our simulations, we use an iterative approach. We
start from a guess for z and the corresponding sample
shapes. The approximate crossing of the gav vs. r curves
for these samples gives an estimate for Tc. At this tem-
perature, we next analyze gav as a function of Lτ for fixed
L. The values of Lmax

τ give improved estimates for the
optimal sample shapes and thus for z. After iterating
this procedure three or four times, the values of Tc and
z will have converged with reasonable accuracy.

Once z and Tc are determined, the finite-size scaling
analysis proceeds as usual, based on the scaling forms

m = L−β/νXm(rL1/ν , Lτ/L
z) , (5)

χ = Lγ/νXχ(rL1/ν , Lτ/L
z) (6)

for the order parameter m and its susceptibility χ. Here,
Xm and Xχ are dimensionless scaling functions, and β
and γ are the order parameter and susceptibility critical
exponents, respectively.

In addition to these thermodynamic quantities, we also
calculate the correlation lengths ξs and ξτ is the space
and imaginary time directions, respectively. They are
obtained, as usual, from the second moment of the spin-
spin correlation function46–48 and can be expressed in
terms of the Fourier transform G̃(qs, qτ ) of the correlation
function,

ξs =

( G̃(0, 0)− G̃(qs0, 0)

q2s0 G̃(qs0, 0)

)1/2

dis

, (7)

ξτ =

( G̃(0, 0)− G̃(0, qτ0)

q2τ0 G̃(0, qτ0)

)1/2

dis

. (8)

Here, qs0 = 2π/L and qτ0 = 2π/Lτ are the minimum
values of the wave numbers qs and qτ that fit into a sys-
tem of linear size L and Lτ in space and imaginary time
direction, respectively. The reduced correlation lengths
ξs/L and ξτ/Lτ have scale dimension zero, their scaling
forms therefore read

ξs/L = Xξs(rL
1/ν , Lτ/L

z) , (9)

ξτ/Lτ = Xξτ (rL1/ν , Lτ/L
z) . (10)

III. MONTE CARLO SIMULATIONS

A. Overview

Our Monte Carlo simulations of the classical XY model
(2) combine the Wolff cluster algorithm49 with conven-
tional Metropolis updates50. Specifically, a full Monte
Carlo sweep consists of a Metropolis sweep over the lat-
tice followed by a Wolff sweep. (A Wolff sweep is defined
as a number of cluster flips such that the total num-
ber of flipped spins equals the number of lattice sites.)
The Wolff algorithm greatly reduces the critical slow-
ing down, and the Metropolis updates equilibrate small
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FIG. 2. (Color online) Phase diagram of the classical XY
model (2) as a function of classical temperature and dilution.
MCP is the multicritical point that separates the generic and
percolation transitions. The big dots mark the numerically
determined transition points. The lines are guides for the eye
only.

disconnected clusters of sites that are missed in the con-
struction of the Wolff clusters (this becomes important
at higher dilutions p).

We simulate systems with linear sizes up to L = 150
in space direction and up to Lτ = 1792 in the imaginary
time direction at dilutions p = 0, 1/8, 1/5, 2/7, 1/3, 9/25
and the percolation threshold pc = 0.407253.

The simulation of disordered systems requires a high
numerical effort because many samples with different dis-
order configurations need to be studied to compute av-
erages, variances, and distributions of observables. For
good performance, one must thus carefully optimize the
number ns of samples (i.e., disorder configurations) and
the number nm of measurements during the simulation
of each sample. Based on the consideration in Refs.
32, 51–53, we have chosen rather short runs of nm = 500
full sweeps per sample (with a measurement after each
sweep) but large numbers of disorder configurations rang-
ing from ns = 10 000 to 50 000 depending on the sys-
tem size. The equilibration period is taken to be 100
full sweeps, significantly longer than the actual equili-
bration times that reach 30 to 40 sweeps at maximum.
Short Monte Carlo runs can lead to biases in some of the
observables. To eliminate these, we have implemented
improved estimators along the lines discussed in the ap-
pendix of Ref. 53.

The phase diagram resulting from these simulations is
shown in Fig. 2. The critical temperature Tc(p) decreases
with increasing dilution from its clean value Tc(0), as ex-
pected. For dilutions above the percolation threshold
pc = 0.407253, the lattice consists of disconnected finite-
size clusters. Therefore, long-range superfluid order is
impossible. Right at pc, there is an infinite cluster of di-
mension 1 + df where df = 91/48 is the dimensionality
of the critical percolation cluster in two dimensions, and

the extra 1 stems from the imaginary time direction. As
1+df is larger than the lower critical dimension d−c = 2 of
the XY model, the XY model on the critical percolation
cluster orders below a multicritical temperature T ∗. This
implies that the phase boundary coincides with the clas-
sical percolation threshold for T < T ∗ (see also Ref. 54).
We thus identify two different phase transitions, (i) the
generic superfluid-Mott glass transition for p < pc and
(ii) a percolation transition across the lattice percolation
threshold.

In the following sections, we discuss the critical behav-
iors of these transitions in detail. To test our codes, we
have also studied the clean limit p = 0 using system sizes
up to 2243 sites. By analyzing the crossings of the Binder
cumulant and the reduced correlation length, we find
a critical temperature Tc(0) = 2.201844(4). Finite-size
scaling then gives the critical exponents β/ν = 0.518(3),
γ/ν = 1.961(3), and ν = 0.673(2). Within their errors,
they agree well with high-precision results for the three-
dimensional XY universality class35.

As a further test for the universality of the (generic)
critical behavior, we also perform exploratory simulations
of a soft-spin version of the classical Hamiltonian. They
are discussed in Sec. III D.

B. Generic superfluid-Mott glass transition

To analyze the critical behavior of the generic transi-
tion occurring for 0 < p < pc, we consider five different
dilutions, p = 1/8, 1/5, 2/7, 1/3, and 9/25. As described
in Sec. II B, we use an iterative procedure that consists
of two types of simulation runs. The first are runs right
at Tc for systems with several different Lτ for each L.
Finite-size scaling of the Binder cumulant at Tc as a func-
tion of L and Lτ gives the optimal sample shapes and the
dynamical exponent z. In the second set of simulations,
we vary the temperature over a range in the vicinity of
Tc, but we consider only the optimal shapes found in the
first part. Finite-size scaling of the order parameter, sus-
ceptibility, Binder cumulant, and correlation length as
functions of L and T then yields the critical exponents
β/ν, γ/ν, and ν.

The inset of Fig. 3 shows the Binder cumulant gav as a
function of Lτ for several L = 10 to 100 at the estimated
critical temperature Tc = 1.577 for dilution p = 1/3.
As expected at the critical point, the maximum Binder
cumulant gmax

av for each of the curves does not depend on
L. (The remaining weak variation visible in the figure
can be attributed to corrections to scaling, see below.)
To generate a scaling plot that tests the scaling form
(4), we now fit each gav vs. Lτ curve with an inverted
parabola in lnLτ . The vertex of this parabola yields
the position Lmax

τ of the maximum and its value gmax
av .

When plotting gav/g
max
av vs. Lτ/L

max
τ the data scale very

well, as can be seen in the resulting scaling plot in the
main panel of Fig. 3. This demonstrates that the Binder
cumulant fulfills Eq. (4) with high accuracy. We have
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FIG. 3. (Color online) Binder cumulant gav as a function
of Lτ for several L at the critical temperature Tc = 1.577
for dilution p = 1/3. The relative statistical error of gav is
between 0.05% and 0.1%. Inset: Raw data gav vs. Lτ . Main
panel: Scaling plot gav/g

max
av vs. Lτ/L
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FIG. 4. (Color online) Double logarithmic plot of Lmax
τ /L vs.

L for several dilutions p below the percolation threshold. Solid
lines at fits to Lmax

τ = aLz(1+ bL−ω) giving z = 1.526(5) and
ω = 0.76(2). The statistical errors of the data are well below
a symbol size (The statistical error of Lmax

τ is determined
by repeating the scaling analysis for 1000 synthetic data sets
that add to the original data set a Gaussian random noise
that corresponds to the uncertainties of the data.)

created the corresponding scaling plots for all the other
dilutions, p = 1/8, 1/5, 2/7, and 9/25, with analogous
results.55

To determine the dynamical critical exponent z, we
now analyze the dependence of the positions Lmax

τ of
the maximum on L. According to Eq. (4), we expect
the power-law dependence Lmax

τ ∼ Lz. In Fig. 4, we
plot Lmax

τ vs. L for all dilutions p < pc. The curves
show significant deviations from pure power-law behav-
ior, in particular for the smaller dilutions, indicating
that the crossover from clean to disordered critical be-
havior is slow. The resulting corrections to scaling are
strong and cannot be neglected. Pure power-law fits
of the data would therefore only yield effective, scale-

dependent exponents. To determine the true asymptotic
exponents, we include the leading corrections to scaling
via the ansatz Lmax

τ = aLz(1 + bL−ω) with universal
(dilution-independent) critical exponents z and ω but
dilution-dependent prefactors a and b. The exponent val-
ues resulting from a combined fit of the data for all five
dilutions are z = 1.526(5) and ω = 0.76(2). The fit is
of good quality giving χ̃2 ≈ 1.4. [We denote the reduced
sum of squared errors of the fit (per degree of freedom)
by χ̃2 to distinguish it from the susceptibility χ.] The
fit is also robust against removing complete data sets or
removing points from the upper or lower end of each set.
Interestingly, the leading corrections to scaling appear
to vanish somewhere between p = 1/3 and 9/25, as the
prefactor b of the correction term changes sign. Corre-
spondingly, pure power-law fits of the p = 1/3 and 9/25
data yield z = 1.502 and 1.546, respectively. These val-
ues are close to the estimate from the combined fit and
nicely bracket it on both sides. An additional significant
source of errors is the uncertainty of the critical temper-
ature. To assess its effect on the dynamical exponent,
we repeat the Lmax

τ vs. L analysis (for dilutions p = 1/3
and 9/25) at temperatures slightly above and below our
estimated Tc (∆Tc ≈ 0.003, roughly at the boundaries
of our confidence intervals). This leads to shifts in z of
about 0.01 to 0.02. Our final estimate for the dynamical
critical exponent therefore reads z = 1.52(3).

To find the remaining critical exponents, we now turn
to the Monte Carlo runs that use the optimal sample
shapes (L,Lmax

τ ). According to Eqs. (5) and (6), β/ν
and γ/ν can be obtained from the L dependence of the
order parameter and susceptibility at Tc of the optimally
shaped samples. As we expect corrections to scaling to
be important, we again include subleading terms in our
fit functions, m = aL−β/ν(1+bL−ω) for the order param-
eter and χ = aLγ/ν(1+bL−ω) for the susceptibility. Here
β/ν, γ/ν, and ω are the universal, dilution-independent
critical exponents while the coefficients a and b are again
non-universal. (Note that a and b generally differ from
quantity to quantity; we use the same symbols to avoid
cluttering up the notation too much.) When performing
fits of our data to these expressions, we noticed, how-
ever, that the quality of the fits is extremely sensitive
to small changes of the estimates for Tc (much more so
than in the analysis of the dynamical exponent z above).
To determine higher accuracy estimates of Tc, we use the
criterion that the value of gmax

av at criticality should ap-
proach a dilution-independent constant with L → ∞ at
a universal critical point. Varying T until this criterion
is fulfilled yields improved estimates for the critical tem-
peratures, viz. Tc = 1.9989 for p = 1/8, Tc = 1.8603
for p = 1/5, Tc = 1.6838 for p = 2/7, Tc = 1.5735 for
p = 1/3, and Tc = 1.5049 for p = 9/25. We estimate the
error of these values to be about 0.001. Figure 5 shows
the resulting dependence gmax

av on L. In the large-L limit,
gmax
av approaches the value 0.599(2). Note that the non-

monotonic behavior of gmax
av for weak dilutions suggests

that at least two corrections to scaling terms contribute
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FIG. 5. (Color online) gmax
av vs. L at the improved estimates

for Tc. The statistical errors of the data points are about a
symbol size or smaller. The shading represents the range of
gmax
av values for temperatures T within Tc ± 0.0002 and is in-

tended to illustrate to what extent the extrapolation depends
on T . Based on these data we estimate that the error of Tc
does not exceed 0.001.
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FIG. 6. (Color online) Double logarithmic plot of m vs. L for
several dilutions p below the percolation threshold. Solid lines
at fits to m = aL−β/ν(1 + bL−ω) giving β/ν = 0.480(8) and
ω = 0.82(2). The lines are dotted in the regions not included
in the fit. The statistical errors of the data are well below a
symbol size.

at small L.
Using the improved critical temperatures, we now pro-

ceed to determine β/ν and γ/ν. Figure 6 shows the order
parameter m at Tc as a function of L for all dilutions p <
pc. The combined fit of all data to m = aL−β/ν(1+bL−ω)
is of good quality (χ̃2 ≈ 0.64) if the smallest system sizes
are excluded (see figure). Interestingly, the sizes that
need to be excluded are exactly those for which gmax

av in
Fig. 5 appears to be dominated by the second sublead-
ing correction to scaling term.) The exponents result-
ing from the fit read β/ν = 0.480(8) and ω = 0.82(2).
To assess the error arising from the uncertainty in Tc,
we repeat the analysis for temperatures Tc ± ∆Tc with
∆Tc = 0.001. This leads to shifts of β/ν of about 0.01.
Our final estimate therefore reads β/ν = 0.48(2).
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FIG. 7. (Color online) Double logarithmic plot of χ vs. L
for several dilutions p below the percolation threshold. Solid
lines at fits to χ = aLγ/ν(1+bL−ω) giving γ/ν = 2.524(8) and
ω = 0.77(1). The lines are dotted in the regions not included
in the fit. The statistical errors of the data are well below a
symbol size.
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FIG. 8. (Color online) Average Binder cumulant gav and re-
duced correlation length ξτ/Lτ as functions of temperature
for dilution p = 1/3 and systems of optimal shape. System
sizes range from L = 10 to 100 (as listed in Fig. 3) with
increasing slope.

The system-size dependence of the order parameter
susceptibility χ at criticality is presented in Fig. 7 for
all dilutions p < pc. After excluding the smallest sys-
tem sizes (see figure), the combined fit of all data to χ =
aLγ/ν(1 + bL−ω) is again of good quality (χ̃2 ≈ 1.5) and
yields the exponents γ/ν = 2.524(8) and ω = 0.77(1).
After including potential errors from the uncertainty
in Tc and the fit range, the final exponent estimate is
γ/ν = 2.52(4).

So far, the analysis has focused on the behavior right
at Tc. To find a complete set of critical exponents, we
now determine the correlation length exponent ν which
requires off-critical data. Figure 8 shows the temperature
dependence of the Binder cumulant gav and the reduced
correlation length ξτ/Lτ for systems of optimal shape
but different sizes at dilution p = 1/3. Both quantities
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FIG. 9. (Color online) Slope xL = (d/dT )ξτ/Lτ at criticality
vs. system size L for optimally shaped samples at different
dilutions p. Solid lines at fits to xL = aL1/ν(1 + bL−ω) giving
ν = 1.165(6) and ω = 0.74(1). The lines are dotted in the
regions not included in the fit.
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FIG. 10. (Color online) Slope xL = (d/dT )gav at criticality
vs. system size L for optimally shaped samples at different
dilutions p. Solid lines at fits to xL = aL1/ν(1 + bL−ω) giving
ν = 1.146(16) and ω = 0.97(23). The lines are dotted in the
regions not included in the fit.

have scale dimension zero, therefore, the curves for dif-
ferent system sizes are expected to cross at the critical
temperature Tc. The figure demonstrates that the cross-
ings for both quantities shift with increasing L, reflecting
significant corrections to scaling. According to Eqs. (4)
and (8), the slopes (d/dT )gav and (d/dT )ξτ/Lτ at the
critical temperature Tc vary as L1/ν with system size.
To extract the slopes, we fit straight lines (for ξτ/Lτ )
or quadratic parabolas (for gav) to the data close to Tc.
The resulting slopes are shown as a function of system
size in Figs. 9 and 10, respectively. The exponent
ν is now obtained from fits of the slopes to the form
aL−1/ν(1 + bL−ω). In the case of the reduced correla-
tion length ξτ/Lτ (Fig. 9) a combined fit of all dilutions
p < pc is of good quality after the smallest system sizes
have been excluded (χ̃2 ≈ 1.2) and yields ν = 1.165(6) as
well as ω = 0.74(1). The corresponding fit of the slopes

of the Binder cumulant has a somewhat poorer quality
(χ̃2 ≈ 5.5) and is not very stable with respect to adding
and removing data points at the ends of the interval. The
resulting exponents ν = 1.146(16) and ω = 0.97(23) have
therefore larger errors. In addition to the slopes of the
Binder cumulant gav and the reduced correlation length
ξτ/Lτ at Tc, we have also studied the slopes of ξs/L and
lnm (not shown). After we account for the differences
between all these estimates and include potential errors
from the uncertainty in Tc (by repeating the analysis at
temperatures Tc ± 0.001) we arrive at the final estimate
ν = 1.16(5). This value fulfills the inequality56 dν > 2.

The critical exponents β/ν, γ/ν, and z are not inde-
pendent of each other as they must fulfill the hyperscaling
relation 2β/ν + γ/ν = d+ z where d = 2 is the space di-
mensionality. Our values, β/ν = 0.48(2), γ/ν = 2.52(4),
and z = 1.52(3) fulfill this relation within their error
bars. We also note that all our estimates for the leading
irrelevant exponent ω are roughly consistent with each
other, giving us confidence that our results represent true
asymptotic rather than effective critical exponents.

C. Percolation transition

We now turn to the percolation transition that occurs
when the system is tuned through the percolation thresh-
old pc at low (classical) temperatures (see Fig. 2). The
critical behavior of this transition stems from the criti-
cal geometry of the percolating lattice while the dynam-
ical fluctuations of the rotor variables are uncritical and
“just go along for the ride” (the rotor model on each
of the percolation clusters is locally ordered). Vojta and
Schmalian33 developed a theory of this percolation quan-
tum phase transition. It predicts critical behavior gov-
erned by the lattice percolation exponents. For two space
dimensions it yields the exact exponent values β = 5/36,
γ = 59/12, ν = 4/3, and z = 91/48.

To test these predictions, we perform simulations at
dilution p = pc = 0.407253 and temperature T = 1.0.
These calculations require a particularly high numerical
effort, because the large value of z leads to a rapid in-
crease with L of the optimal system size Lmax

τ in imagi-
nary time direction. We have thus restricted the simula-
tions to sizes up to L = 56 and Lτ = 1792 using between
10 000 and 50 000 disorder configurations.

The data analysis proceeds in analogy to Sec. III B.
We obtain Lmax

τ from the maxima of the Binder cumu-
lant gav as a function of Lτ at fixed L. In Fig. 11, we
present a plot of Lmax

τ vs. L. The data can be fitted
with high quality (χ̃2 ≈ 0.4) to the predicted power law
Lmax
τ ∼ L91/48. After having found Lmax

τ , we calculate
the order parameter and susceptibility right at critical-
ity for optimally shaped samples of different sizes. The
resulting data are also presented in Fig. 11. The suscep-
tibility data can be fitted well to the predicted power law
χ ∼ L59/16 giving χ̃2 ≈ 0.8. The exponent β/ν = 5/48
is very small, corresponding to a slow decay of the order
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FIG. 11. (Color online) Double logarithmic plots of Lmax
τ ,

m and χ for dilution p = pc = 0.407253 and T = 1.0.
The lines are fits to the predictions of the Ref. 33, namely
Lmax
τ ∼ L91/48 and χ ∼ L59/16. For the order parameter, a

subleading correction is included via m = aL−5/48(1+bL−ω).
The statistical errors are of the order of the symbol size or
smaller.

parameter m with L. Subleading corrections are thus
much more visible as indicated by the curvature of the
m vs. L curve in Fig. 11. We have therefore fitted the
order parameter to m = aL−5/48(1 + bL−ω). This fit is
again of high quality, with χ̃2 ≈ 0.5.

Our simulation data thus agree nearly perfectly with
the critical behavior predicted in Ref. 33.

D. Soft-spin model

We also consider a soft-spin version of the classical
Hamiltonian to test whether or not its critical exponents
agree with those of the hard-spin model analyzed above,
as is expected from universality. The soft-spin Hamilto-
nian reads

Hsoft = −
∑
〈i,j〉,t

εiεjSi,t · Sj,t −
∑
i,t

εiSi,t · Si,t+1

−1

2

∑
i,t

εi|Si,t|2 +
∑
i,t

εi
(
|Si,t|2

)2
(11)

where Si,t now represents an unrestricted two-component
vector. We perform Monte-Carlo simulations of this soft-
spin model using the efficient Worm algorithm57, study-
ing dilutions p = 0.286 and 0.337. The system sizes range
from L = 8 to 24 with Lτ fixed at Lτ = Lz using the dy-
namical exponent value found in Sec. III B58.

We now analyze the correlation length ξτ in imagi-
nary time direction (equivalent to the inverse energy gap
of the corresponding quantum model) on the disordered
side of the phase transition. According to Eq. (10), its
scaling form for samples of shape Lτ = Lz can be writ-
ten as ξτ = LzXξτ (rL1/ν , 1). Thus, if we plot ξτ/L

z vs.

(T − Tc)L1/ν , the data for different sizes and tempera-
tures should all fall onto a single master curve. Figure

 1
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Z
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/x

) t

 L |T - T |C
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FIG. 12. (color online) Scaling plot of the correlation length
ξτ in imaginary time direction of the soft-spin model (11).
Shown are data for two dilutions p, several system sizes L,
and temperatures T on the disordered side of the transition.
The exponents z and ν are fixed at the values found in Sec.
III B. The data are averages over 100 disorder configurations.
Their statistical errors are about one symbol size.

12 presents such a plot for two site dilutions p, with the
critical exponents z and ν fixed at the values found in
Sec. III B. Within their statistical errors, the data scale
well. Consequently, even though we have not indepen-
dently determined the critical exponents of the soft-spin
model (11), the Monte Carlo data are compatible with
the critical behavior found earlier.

IV. CONCLUSIONS

In summary, we have carried out large-scale com-
puter simulations to determine the critical behavior of
the superfluid-Mott glass quantum phase transition in
two space dimensions. To this end, we have mapped a
quantum rotor model with commensurate filling and off-
diagonal disorder onto a (2+1)-dimensional classical XY
model with columnar defects. We have then analyzed
this classical system by means of Monte Carlo methods.

The corresponding clean superfluid-Mott insulator
transition is in the three-dimensional XY universality
class; its correlation length exponent ν ≈ 0.6717 violates
the Harris criterion dν > 2 with d = 2. The clean critical
behavior is therefore expected to be unstable against the
columnar disorder. Accordingly, we have found that the
critical behavior of the superfluid-Mott glass transition
differs from that of the clean superfluid-Mott insulator
transition.

In contrast to other quantum phase transitions in dis-
ordered systems39–44, the superfluid-Mott glass transi-
tion features a conventional finite-disorder critical point
whose dynamical scaling is characterized by a power-
law relation ξτ ∼ ξzs between the correlation lengths in
the space and time directions (rather than an infinite-
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Value This work Ref. 26 Ref. 28 Ref. 29

ν 1.16(5) 1.09(4) 0.96(6)

z 1.52(3) 1.5(2) 1.31(7) fixed at 1

β/ν 0.48(2) 0.60(15) 1.1(2)

γ/ν 2.52(4) 2.3(1) 1.1(2)

η −0.52(4) −0.3(1) 0.9(2)

TABLE I. Critical exponents of the superfluid-Mott glass
quantum phase transition. Upright numbers are directly
given in the respective papers, italic ones were calculated
using scaling relations such as 2β/ν + γ/ν = d + z and
η = 2 − γ/ν.

randomness critical point with activated dynamical scal-
ing for which ξτ would grow exponentially with ξs). This
result agrees with the general classification of phase tran-
sitions in disordered systems based on the rare region (or
defect) dimensionality18,45. In terms of the mapped, clas-
sical Hamiltonian (2), the rare regions in our problem are
one-dimensional rods with XY order-parameter symme-
try. As the lower-critical dimension of the classical XY
model is d−c = 2, the rare region dimensionality fulfills
dRR < d−c , putting the system into the conventional class
A of the classification.

For the generic transition occurring at dilutions p be-
low the lattice percolation threshold pc, our Monte Carlo
data are described well by a universal critical behavior
with dilution-independent critical exponents. The nu-
merical estimates of the exponent values are summarized
in Table I and compared to earlier results in the litera-
ture. Our results are in reasonable agreement with (but
more accurate than) Monte Carlo simulations of a link-
current model26 that is expected to be in the same uni-
versality class as our Hamiltonian. The results in Ref. 28
were obtained using a numerical implementation of the
strong-disorder renormalization group. This method is
expected to give approximate rather than exact results
at a conventional finite-disorder critical point such as the
one under consideration here. In view of this, the agree-
ment of ν and z can be considered satisfactory. However,
the values of β/ν, γ/ν, and η (that all involve the scale
dimension of the order parameter) are far away from the
Monte Carlo results in this work and in Ref. 26. Our
findings are also incompatible with the clean value z = 1
that was assumed in Ref. 29.

It is interesting to consider the evolution of the dynam-
ical exponent z with the order parameter dimensionality.

The deviation of z from the clean value, which is z = 1
for any number of components, can be understood as
a measure of the strength of the disorder effects. In the
(2+1)-dimensional Heisenberg model (three order param-
eter components) with columnar defects, the exponent
takes the value32 z = 1.31. The (2+1)-dimensional XY
model (two components) studied in the present paper
has z = 1.52, while the corresponding Ising model59 (one
component) features activated scaling that corresponds
to z = ∞. The value of z thus increases monotonically
with decreasing order parameter dimensionality.

In addition to the generic superfluid-Mott glass transi-
tion that occurs for dilutions p < pc, we have also investi-
gated the percolation quantum phase transition across pc.
Here, our Monte Carlo data agree very well with the pre-
dictions of the scaling theory by Vojta and Schmalian33.

Potential routes to study the superfluid-Mott glass
transition in experiment include disordered bosonic sys-
tems in ultracold atoms as well as dirty and granualar su-
perconductors (for some superconductor-insulator tran-
sitions, there is experimental and numerical evidence for
the bosonic nature of the transition). In these systems,
it may be hard, though, to fulfill the condition of exact
particle-hole symmetry in the presence of disorder. Sta-
tistical particle hole symmetry may be easier to achieve,
but it is not fully resolved whether or not it would desta-
bilize the Mott glass and turn it into a Bose glass25,60,61.

Another type of experimental systems that con-
tain Mott-glass physics are diluted anisotropic spin-1
antiferromagnets62. In this case, the particle-hole sym-
metry appears naturally as it is a consequence of the
up-down symmetry of the spin Hamiltonian in the ab-
sence of an external magnetic field. Such a magnetic re-
alization of a Mott glass (albeit in three dimensions) was
recently observed in bromine-doped dichloro-tetrakis-
thiourea-nickel (DTN)9.
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