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We study the quantum mechanics of magnetic skyrmions in the vicinity of the skyrmion-crystal to ferromag-
net phase boundary in two-dimensional magnets. We show that the skyrmion excitation has an energy dispersion
that splits into multiple bands due to the combination of magnus force and the underlying lattice. Condensa-
tion of the skyrmions can give rise to an intermediate phase between the skyrmion crystal and ferromagnet: a
quantum liquid, in which skyrmions are not spatially localized. We show that the critical behavior depends on
the spin size S and the topological number of the skyrmion. Experimental signatures of quantum skyrmions in
inelastic neutron scattering measurements are also discussed.

PACS numbers:

I. INTRODUCTION

A magnetic skyrmion is a localized spin texture character-
ized by an integer topological index called the skyrmion num-
ber:

N =
1

4π

∫
d2r n(r) · [∂xn(r) × ∂yn(r)], (1)

where n(r) is a unit vector which describes the magnetiza-
tion density. Skyrmions were predicted theoretically in chi-
ral magnets decades ago1, and recently have been discovered
experimentally2–4. They have attracted broad interest due to
the extraordinary properties.5–10 Typically they appear in a pe-
riodic skyrmion crystal (SkX) phase, examples of which are
being continuously discovered. Some specific properties of
the skyrmions, such as their size, vary from system to system.
For instance, the size of skyrmions in Fe0.5Co0.5Si thin films
is ∼ 90 nm ,4 while skyrmions on Fe thin film deposited on
the Ir surface are ∼ 1 nm.11 In addition, possible realizations
of SkX phases in classical frustrated magnets have been stud-
ied theoretically12–14; their size is comparable to the lattice
spacing.

In thin films of Fe0.5Co0.5Si, the SkX and adjacent phases
have been observed by real-space imaging in the presence
of a magnetic field4. In the high field region just below
the phase boundary between the field-induced ferromagnetic
(FM) phase and the SkX phase, a small density of skyrmions
are introduced in equilibrium in the FM state. On reducing
the field, the number of skyrmions increases, and they even-
tually form a dense crystal. It is known that skyrmions in
thin films including this material remain stable in the wide
range of temperature from the order of ∼ 100K15 to nearly
zero temperature4,16.

In the work discussed above, a classical description of the
spins is sufficient, and skyrmions may simply be regarded
as textures of quasi-static vector moments. Here, we pursue
the possibility of observing skyrmions in the quantum realm.
Several basic theoretical questions arise: What are the quan-
tum states of a skyrmion? What is the corresponding spec-
trum, and what are the quantum numbers associated with a
skyrmion? Is a skyrmion a quasiparticle? How do quantum

effects change universal properties of skyrmion systems? Are
there new skyrmion phases besides the SkX one induced by
quantum dynamics? Practically, we would also like to under-
stand observable consequences of quantum skyrmions, and
when they should be visible. Clearly, quantum effects are
strongest when the spin quantum number S and the skyrmion
diameter Ls is small. One would like to understand their mag-
nitude, and how it scales with these parameters. We address
these questions and provide some first answers in this paper.

First, we argue that a skyrmion indeed becomes a quasi-
particle in the appropriate quantum regime. This occurs close
to the phase boundary between the FM and SkX phases, at
zero temperature. Here, for systems with large skyrmions
such as Fe0.5Co0.5Si, the FM/SkX transition is understood to
be of the so-called “nucleation” type17,18; it is not associated
with a small order parameter. This implies that a small devia-
tion of the order parameter, like a magnon, costs more energy
than the excitation of a skyrmion, at least close to the phase
boundary of the FM state (Fig. 2). This allows, in a quantum
description, the skyrmion to become a stable quasiparticle. In
this limit, we show that a skyrmion excitation has a non-trivial
band structure, which depends on the spin S and the skyrmion
number N . This structure is the quantum descendent of the
well-known Magnus force dynamics of classical skyrmions.
The skyrmion states can be probed by inelastic neutron scat-
tering within the FM phase. They are clearly distinct from
magnons in possessing many bands (while a FM state has a
single magnon branch), with particle dispersion and spectral
weight characteristic of skyrmions.

Next, we consider how quantum dynamics modifies the
classical nucleation transition. The nucleation scenario works
well if skyrmions are fully classical, in other words, the size of
a skyrmion is much larger than the lattice spacing of the under-
lying lattice. However, the fate of this transition is nontrivial
when the skyrmion develops a quantum nature, which can be
prominent for small skyrmions, especially when the density is
low enough so that they do not form a classical crystal. We
find that skyrmions can undergo a variant of Bose condensa-
tion to form a quantum liquid phase between the FM and SkX
phases. We also show that this phase is connected to the FM
phase via a phase transition or a crossover depending on the



2

(a)

(c)

FMSk Crystal

Quantum 
 Liquid 

B

     Bc

FMSk Crystal
B

(b)
Quantum 

 Liquid 
     Bc

FMSk Crystal
     B* B

Classical

even

odd

     B*

FIG. 1: Schematic phase diagrams at zero temperature for (a) classi-
cal spins18, (b) quantum spins with even 2SN , and (c) odd 2SN . S is
the spin size and N is the skyrmion number of a single skyrmion. In
(a), Skyrmions (Sk) are introduced in the ferromagnetic (FM) back-
ground below the critical magnetic field. In (b) and (c), the quantum
liquid phase of skyrmions appears. It is connected to the FM phase
via the continuous phase transition for (b) or the crossover for (c).
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FIG. 2: Schematic field dependence of the excitation energy. Ls

is the characteristic length of skyrmions, and a is the lattice spacing.
Our low energy effective theory focuses on the colored region, where
a skyrmion is the lowest excitation. See Sec. II for the detail.

parity of 2SN .

The organization of this paper is as follows. In Sec. II,
starting from a two-dimensional spin model on a lattice, we
derive the low energy effective action for single skyrmion
excitations. We include the effect of the underlying lattice,
which cannot be neglected for small skyrmions. Then, from
the effective action, we calculate the energy dispersion of the
low energy excitation. Sec. III discusses the phase diagram
(Fig. 1) and the critical phenomena in light of the skyrmion
spectrum. In Sec. IV, we show how the quantum states of a
skyrmion can be detected through neutron scattering experi-
ments. Finally, in Sec. V, we summarize our results and dis-
cuss the generalizations of our theory.

II. SINGLE PARTICLE EXCITATION

A. Effective Action

We first introduce the effective action for a single skyrmion
excitation that includes the effects of the underlying crystal
lattice.

We start with the quantum counterpart of an effective
Hamiltonian for two dimensional chiral magnets:18,19

Ĥ = − J
∑
〈i, j〉

Ŝi · Ŝ j + D
∑

i

∑
µ=x,y

eµ ·
(
Ŝi × Ŝi+eµ

)
− B

∑
i

Ŝ z
i − K

∑
i

(Ŝ z
i )

2. (2)

Here, the first term is the ferromagnetic (J > 0) exchange cou-
pling between the nearest neighbor spins, taken for simplicity
on a square lattice, and the second term is the Dyaloshinskii-
Moriya coupling. B is the external magnetic field perpendicu-
lar to the plane, and the last term is an uniaxial anisotropy.

In this paper, we focus on the vicinity of the phase boundary
between the FM and SkX phase. While a skyrmion has a large
energy under a very high field as ∼ BS (Ls/a)2, with the size
of a skyrmion Ls and the lattice spacing a, it has the lower
energy than a magnon close to the phase boundary of the SkX
phase (Fig. 2). We thus only consider a skyrmion excitation
as the low energy excitation.

To obtain the effective action for single skyrmion, we
use the path integral formalism. At each site labeled by
i, the state |ni〉 is parametrized by a unit vector ni =

(sin θi cos φi, sin θi sin φi, cos θi) to give 〈ni|Ŝi|ni〉 = Sni. The
whole system is represented by a product state of all the sites:
|Ψ(τ)〉 = ⊗i|ni(τ)〉. The distribution function and the action
are given by,

Z =

∫ ∏
i

Dni(τ) exp(−S[{ni}]), (3)

S({ni}) = iS
∫

dτ
∑

i

ṅi ·A(ni) +

∫
dτH({ni}). (4)

The first term in the action is the Berry phase term, where
the explicit form of A(ni) depends on the gauge choice, e.g.
ṅi · A(ni) = φ̇i(1 − cos θi) for a certain gauge. The second
term is H({ni}) = 〈Ψ(τ)|Ĥ|Ψ(τ)〉.

To study the skyrmion excitations, we consider a single
skyrmion configuration of ni : ni = nsk(ri − R(τ)). nsk(r)
is the unique continuous O(3) vector field with a skyrmion
centered at the origin that minimizes the classical energy in
the continuum limit. While it cannot be obtained explicitly,
nsk(r) is fully specified in this way and we can use it success-
fully. R(τ) = (X(τ),Y(τ)) is the position of the skyrmion.

The resulting effective action for single skyrmion is given
by

Seff(R)

=

∫
dτ

[
2πiSN

a2 (YẊ − XẎ) + g
(
cos

(
2πX

a

)
+ cos

(
2πY

a

))]
,

(5)



3

where Ẋ (Ẏ) is the imaginary time derivative of X (Y), g is
the magnitude of the periodic potential that arises from the
underlying lattice, and N is the skyrmion number defined by
Eq. (1). The time derivative term arises from the Berry phase
term, and has been derived by many authors.20–22 It makes X
and Y canonically conjugate, and yields the Magnus force in
the classical motion of a skyrmion.

We obtain the periodic potential by considering the leading
corrections to the continuum limit beginning with the lattice
model. Under some assumptions, the magnitude is

g ∼
2C
π
εL2

s exp
(
−C

L2
s

a2

)
, (6)

where ε (∼ JS 2/a2) is the “energy density” of a skyrmion in
the continuous limit, and C ∼ O(1) is a dimensionless con-
stant. Details of the derivation are shown in Appendix A.

B. Single Particle Energy

From the effective action in Eq. (5), we obtain the effective
Hamiltonian of skyrmion via canonical quantization:

Ĥeff = g
(
cos

(
2πX̂

a

)
+ cos

(
2πŶ

a

))
, (7)

[X̂, Ŷ] =
ia2

4πSN
≡

ia2

2πp
, (8)

where 2S Nsk ≡ p ∈ Z. The two position operators of
skyrmion, X and Y , become commutative in the classical limit,
S → ∞, or in the large skyrmion limit, a/Ls → 0.

To calculate the eigenstate, we first introduce the translation
operators T1 ≡ e−2πiŶ/a and T2 ≡ e2πiX̂/a. These operators shift
the position of a skyrmion by

T †1 X̂T1 = X̂ +
a
p
, (9)

T †2 ŶT2 = Ŷ +
a
p
, (10)

due to the commutation relation in Eq. (8). These operators
are non-commutative, T1T2 = exp

(
−2πi/p

)
T2T1, but T1 com-

mutes with T p
2 (translation over the lattice spacing) and vice

versa. In particular this implies further that T p
1 and T p

2 com-
mute, which is a mathematical expression of the fact that the
effective flux per unit cell is an integer multiple (p) of the flux
quantum. Using these operators, the Hamiltonian is given by

Ĥeff =
g
2

(T1 + T2) + h.c.. (11)

To calculate the energy eigenstates, it is convenient to use a
basis given by simultaneous eigenstates of T p

1 and T2,

T p
1 |kx, ky〉 = eikxa|kx, ky〉, (12)

T2|kx, ky〉 = eikya/p|kx, ky〉, (13)

with |kx| ≤ π/a and |ky| ≤ |p| π/a. We choose a boundary
condition such that the operation of T1 on |kx, ky〉 yields

T1|kx, ky〉 = eikxa/p|kx, ky + 2π/a〉, (14)

which implies that |kx, ky + 2πp/a〉 = |kx, ky〉. We also define
|kx + 2π/a, ky〉 = |kx, ky〉.

In this basis, the Hamiltonian is

Ĥeff = g
∑
kx,ky

cos
(

kya
p

)
|kx, ky〉〈kx, ky|

+
g
2

∑
kx,ky

(
eikxa/p|kx, ky + 2π/a〉〈kx, ky| + h.c.

)
, (15)

which is the same form as Harper’s equation.23 There are |p| =
2S |N| split bands, and the eigenstates are given by

|ψαk〉 =

p−1∑
`=0

cα,k(`)|kx, ky + 2π`/a〉, (16)

where α = 0, · · · , |p| − 1 is the band index, and their eigenen-
ergies are E0,k ≤ · · · ≤ E|p|−1,k. The crystal momentum
is restricted to {|kx| ≤ π/a, |ky| ≤ π/a}. Note that these
states are the eigenstates of the lattice translation operators:
T p

1 |ψαk〉 = eikxa|ψαk〉 and T p
2 |ψαk〉 = eikya|ψαk〉.

The eigenenergies of Harper’s equation are well studied.24

In Fig. 3, we show the energy spectrum of the Hamiltonian
(Eq. (15)). Fig. 4 shows the lowest band dispersion, which
has a single minimum at kmin = (0, 0) [kmin = (±π,±π)] when
p = 2SN is even (odd) for g > 0. The value of kmin alters the
critical behavior, which will be discussed in the next subsec-
tion.

III. PHASE DIAGRAM

In this section, we study the phase diagram in the presence
of interactions between skyrmions (Fig. 1). In the following
analysis, we assume g > 0, and we comment on the case with
g < 0 in the end of this section. Focusing on the lowest energy
band, we consider a many body action: S = S0 + S′ with

S0 =

∫
dτ

∑
k

b̄k(∂τ + ξk)bk +
∑
k,k′,q

Uk,k′,q b̄k+q b̄k′−qbk′bk

 .
(17)

bk = bk(τ) and b̄k = b∗k = b̄k(τ) are canonical Bose operators
that annihilate and create the skyrmion excitations obtained in
the last section.

ξk = E0,k + E0 − EFM (18)

is the single particle energy of skyrmions measured from the
FM energy, where E0 is the energy of a single skyrmion in
the continuum limit, and EFM is the energy of a FM state.
The last term is a short range repulsive interaction, which
eventually leads to the crystallization of skyrmions. S′ repre-
sents the terms that do not conserve the number of skyrmions,
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FIG. 3: Energy spectrum of a single skyrmion excitation for (a)
|p| ≡ 2S |N| = 3, (b) |p| = 4, (c) |p| = 5, and (d) |p| = 6. The
vertical axis represents energy in the unit of g > 0, and the energy is
measured from the energy in the continuum limit. Eigenenergies for
different ky are plotted.
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FIG. 4: Band dispersion of the lowest bands for (a) p is odd ( |p| = 5)
and (b) p is even ( |p| = 6) for g > 0.

which are allowed due to the DM interaction; it breaks the
U(1) spin rotation symmetry about the applied field, and hence
violates conservation of S z. Thus although a skyrmion pos-
sesses flipped spins in its core, its spin is not a good quantum
number and cannot microscopically protect skyrmion number.
The processes that change the skyrmion number may be con-
sidered tunneling events which can occur due to lattice scale
physics25. In a high field with E0 � EFM , the density of
skrymions is suppressed

〈nk〉 ≡ 〈b̄kbk〉 ∼ 0. (19)

In a lower field with ξkmin ∼ 0, the density of skyrmions in-
creases, with the first skyrmions entering being those with

k = kmin:

〈nkmin〉 � 1. (20)

The resulting quantum state is a quantum liquid of skyrmions,
where skyrmions “condense” at k = kmin, and they are not
spatially localized. We note that this condensation differs
from ideal Bose Einstein condensation since the action does
not conserve skyrmion number.

To clarify the nature of the condensation, we focus on the
states around the minimum of ξk, and define a new field
b(r, τ) ∼ η(r, τ)eikmin·r, where b(r, τ) is the inverse Fourier
transform of bk(τ), and η(r) has small space time gradients.
Then we obtain

S ∼

∫
dτd2r

[
η̄∂τη + r|η|2 + c0|∇η|2 + c1|η|

4
]

+ S′, (21)

where r = ξkmin , c0 = 1
2∂

2
kµ
ξkmin , and c1 is a constant given by

the interaction.
For odd p = 2SN , there is a continuous phase transition.

Since the energy minimum is at kmin = (π, π), the odd or-
der terms of η, η̄ are forbidden in S′ by translational symme-
try/momentum conservation:

S′ ∼

∫
dτd2r

[
f (2)ηη + ( f (4a)ηηηη + · · · ) + c.c.

]
. (22)

To obtain the critical theory, we define η(r, τ) = ϕR(r, τ) +

iϕI(r, τ). Up to quadratic order, the total action is given by

S ∼

∫
dτd2r

[
−2ϕI(i∂τ + F1)ϕR + ϕR(r + F0 − c0∂

2
µ)ϕR

+ϕI(r − F0 − c0∂
2
µ)ϕI

]
. (23)

We have defined F1 = 2Im f (2) and F0 = 2Re f (2)(> 0), whose
sign can be arbirarily chosen by redefining η. In the critical re-
gion where the single particle energy gap of ϕI becomes small
(r − F0 ∼ 0), we can integrate out ϕR, which has the energy
gap ∼ 2F0. Then, the critical behavior is described by the
following action:

S ∼

∫
dτd2r

(
1
2

(
(∂τϕI)2 + r′ϕ2

I + v(∂µϕI)2
)

+
u
4!
ϕ4

I

)
, (24)

where v, u and r′ = (r+F0)(r−F0)−F2
1 are constants, and ϕI is

redefined to absorb some constants. (See Appendix B for the
detail.) This is the standard ϕ4 action describing to the Ising
phase transition, e.g. in the three-dimensional ferromagnetic
classical Ising model. The zero temperature transition in 2 + 1
space-time dimensions has quantum critical behavior in this
universality class. The phase transition is described by the or-
der parameter 〈ϕI〉 that breaks the symmetry ϕI → −ϕI . Thus,
the condensation of skyrmions is accompanied by the phase
transition at B∗ with the critical behavior given by Eq. (24).

On the other hand, for even p, the energy minimum is at
kmin = (0, 0), and we have

S′ ∼

∫
dτd2r

[
f (1)η + f (2)ηη + · · · + c.c.

]
. (25)
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The first order terms, f (1)η+ f (1)∗η̄ give rise to −hϕI in the final
action (Eq. (24)) with a constant h. It results in a crossover,
which is the same as the Ising model under a magnetic field.

In this case, there is no true quantum phase transition cor-
responding to the condensation of skyrmions. To under-
stand this, note that, both for even and odd p, some virtual
skyrmions are present in the ground state at all fields, even
above the naı̈ve condensation point. In the case of even p,
the real (not virtual) skyrmion state with minimum energy has
the same quantum numbers as the ground state (e.g. momen-
tum zero), and so a level crossing of this excited state with
the ground state cannot occur due to level repulsion. This ex-
plains the absence of a condensation phase transition for even
p. However, at lower fields, a transition to a SkX state still
occurs.

Next we discuss this phase transition from the quantum liq-
uid state to the SkX phase, which occurs at the even lower field
(B = Bc). Let us define the typical magnitude of the two-body
repulsive interaction Ū(n), which depends on the distance be-
tween skyrmions ∼ n−1/2. The band width W of the skyrmion
excitation is bounded by g, where g is estimated in Eq. (A6).
For W � Ū(n), the kinetic energy is dominant, so that the
skyrmions have itinerant properties (quantum liquid). When
the density becomes large enough such that W � Ū(n), the
repulsive interaction becomes dominant, and skyrmions form
a density wave, i.e. a SkX, to minimize the interaction. The
density-density correlation has the Fourier expansion

〈n(r)n(0)〉 = const. + Re
∑

i

AieiQi·r + · · · , (26)

where n(r) is the local density for skyrmions, and Qi are in-
commensurate wave vectors determined by the structure of
the interaction. The amplitudes Ai are order parameters for
the SkX phase, which breaks lattice translational invariance.
The critical field Bc is determined by the critical density nc
that satisfies Ū(nc) ∼ W. Thus, for smaller bandwidth, the
region of the quantum liquid phase becomes narrower.

Finally, we also comment on the case with g < 0. In this
case, the energy minimum of a skyrmion is at kmin = (0, 0)
regardless of 2SN , and it results in the crossover between a
quantum liquid and a FM state.

IV. INELASTIC NEUTRON SCATTERING

In this section, we discuss how single skyrmion excitations
can be observed in the FM state. We first introduce an approx-
imated wave function for a single skyrmion excitation:

b†
k
|FM〉 ∼

1
N

∑
s

e−ik·Rsψ†
Rs
|FM〉, (27)

where Rs = (a/2, a/2) + (sxa, sya) with sx, sy ∈ Z, |FM〉 de-
notes a FM state, bk is the operator for a skyrmion excitation,
and

ψ†
Rs
|FM〉 = ⊗i|nsk(ri −Rs)〉, (28)

is a state with a skyrmion excited at Rs.
Recall that a spin coherent state at each site can be repre-

sented by

|ni〉 = eiS zφeiS yθeiS zχ|S , S 〉, (29)

=

(
cos

θi

2

)2S 2S∑
m=0

1
m!

(
tan

θi

2

)m

eimφi (Ŝ −i )m|S , S 〉, (30)

where we have chosen the gauge as χ = −φ, ni =

(sin θi cos φi, sin θi sin φi, cos θi) and |S , S 〉 is the maximally
polarized state of a single spin. The skyrmion configuration
ni = nsk(ri − Rs ≡ δri) can be simply represented with a
polar coordinate δr = (δri,Θi) centered at Rs (Fig. 5):

θi = θ(δri), (31)
φi = Θi + α, (32)

where θ(0) = π and θ(δr � Ls) ∼ 0. Here we consider a
configuration stabilized by the DM interaction, i.e. N = −1
with the fixed “helicity” α.

As is clear from Eq. (30), a skyrmion state is a superposi-
tion of states with different numbers, mtot of bound magnons:
mtot ≡

∑
i(S − S z

i ), which includes a state with mtot = 1. This
state can be captured by inelastic neutron scattering measure-
ments, which measures the dynamical spin correlation

Im χ+−(Q, ω) = Im
[
i
∫ ∞

0
dteiωt〈Ŝ +

Q(t)Ŝ −−Q(0)〉
]
. (33)

Let us estimate the magnitude of the signal of a single
skyrmion excitation:

Im χ+−(Q, ω) ∼ π
∑
k

|〈FM|bkŜ −−Q|FM〉|2δ(ω − ξk). (34)

Using the explicit configuration ni in Eqs. (31) and (32), we
obtain

|〈FM|bkŜ −−Q|FM〉|

=
S
N

∏
j∈A

cos
θ(δr j)

2

2S ∣∣∣∣∣∣∣∑i∈A

tan
θ(δri)

2
ei(Qδri cos Θi−Θi)

∣∣∣∣∣∣∣ δQ,k,

(35)

where A is the region such that θ(δri∈A) , 0; the region
where a skyrmion spreads over. The number of sites in A is
∼ (Ls/a)2.

For L−1
s � Q � a−1, we can further estimate Eq. (35) with

a continuous approximation

Im χ+−(Q, ω) ∼
1

a2Q2 exp
(
−(ln 2)S (Ls/a)2

)
δ(ω − ξQ),

(36)

where ξQ is the excitation energy of a skyrmion defined in the
last section. Although the intensity remains weak, it should
be distinct from the signal of a magnon; skyrmion excitations
have multiple bands, and the dispersion is much smaller.
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FIG. 5: Polar coordinate for a skrymion configuration. Rs is the
center of the skyrmion.

V. SUMMARY AND DISCUSSION

In this paper, we have studied the quantum description
of magnetic skyrmions in a two-dimensional chiral magnet.
Such quantum mechanical properties may appear for small
skyrmions, especially in the region close to a SkX phase. We
have shown that a quantum liquid phase can appear as an in-
termediate phase.

A basic result is that the well-known classical Magnus force
dynamics of skyrmions,20–22 extends to the quantum level and
dominates the band structure of skyrmion states, making them
quantitatively very different from the usual magnon band(s)
of a ferromagnet. While this is not surprising from a semi-
classical point of view, it may raise flags for a many-body
quantum physicist. The skyrmion is a local excitation (i.e. it
does not affect spins far from its core) of a ferromagnetic state,
which has only short-range entanglement: it is essentially a
product state of up spins. The microscopic spin Hamiltonian
for a chiral magnet is local and the spins are neutral and do
not transform under any gauge symmetry. In general, we ex-
pect that a short-range entangled state of such a Hamiltonian
would possess only neutral quasiparticles which could not ex-
perience any orbital magnetic fields (i.e. they do not couple
to any gauge fields). More formally, a charged particle in a
magnetic field transforms under translations differently from
a neutral particle. The latter transforms under simple coor-
dinate transformations only, while for the former particle, a
coordinate transformation must be accompanied by a gauge
transformation as the vector potential is not translationally in-
variant: such transformations are known as magnetic transla-
tions. It would be exceedingly strange (we believe impossible)
for a skyrmion in a ferromagnet to truly exhibit such a gauge
structure. In our calculations here we found a resolution to
this dilemma. Specifically, taking into account even weak lat-
tice effects, which are necessary for a finite quantum theory,
the effective number of flux quanta per unit cell is found to
be integer. Under this condition magnetic and ordinary trans-
lations coincide. Consequently, the bands of skyrmion states
are not qualitatively distinct from those of magnons, although
we find that quantitatively they are very different and should
be easily differentiated in experiment.

In our study, we have not included a mass term ∼ (Ẋ2 +

Ẏ2) in the effective action. Microscopically it can arise from
coupling to some gapped modes, such as the deformation of
a skyrmion.26 The mass term makes skyrmions form Landau

bands, which are flat without periodic potentials. Therefore
the interaction between skyrmions immediately forces them
to form a crystal; this is consistent with the classical models.
However, once the cosine potential is considered, it recovers
the subbands structure with dispersion.27,28 From this point
of view, our study corresponds to projection onto the lowest
landau level.

Regarding experiments, hexagonal Fe film on Ir (111) sur-
face11 and thin films of Fe0.5Co0.5Si and MnSi grown along
〈111〉 direction have lattice structures effectively modeled by
triangular lattices. We, however, note that the triangular lat-
tice also gives qualitatively same results; the band splits into
|p| = 2S |N| subbands, and a crossover to the quantum phase
for even p, and a quantum phase transition for odd p.

We note that the magnetization of quantum skyrmions is a
fluctuating quantum field, but it would be possible to calculate
the average magnetization profile of the quantum skyrmion to
compare it with classical configurations of a skyrmion as a
further analysis.

Finally, we comment on skyrmions in frustrated spin sys-
tems. Theoretically it has been shown that SkX phases appear
on a triangular lattice with frustrated interactions, which pre-
serves spin U(1) symmetry along the field12–14. We showed
that the quantum states of skyrmions in chiral magnets have
crystal momentum as a good quantum number (Eq. (16)). On
the other hand, skyrmions in frustrated magnets are have addi-
tional quantum numbers: the number of bound magnons mtot
and the discrete angular momentum related to the helicity of a
skyrmion. The magnon number mtot is related to the size of a
classical configuration of a skyrmion. It would be interesting
to investigate the quantum phase and critical theory for such
skyrmions. We leave the detailed discussion for future work.

Appendix A: Effective action

We first show that the periodic potential in Eq. (5) is ob-
tained from H({ni}) in Eq. (4). Let us define the “energy den-
sity” h(r) as

H({ni}) ≡ a2
∑

i

h (ri −R) , (A1)

h(r −R) =
JS 2

a2 −
JS 2

2
∂µn · ∂µn +

DS 2

a

∑
µ=x,y

êµ ·
(
n × ∂µn

)
−

BS
a2 nz −

KS
(
S − 1

2

)
a2 (nz)2 + O

(
Ja2

L4
s

)
, (A2)

where ri = (ixa, iya) denotes the position of a site i, and n
abbreviates nsk(r −R).

We consider skyrmions whose energy density h(r) has the
maximum at the center r = 0, the center of the skyrmion. The
characteristic length of h(r) is given by the skyrmion con-
figuration as Ls(� a). We then expand the discrete summa-
tion with the Poisson summation formula

∑
i δ

(2)(r − ri) =

a−2 ∑
lx,ly e−

2πi
a l·r as

H({ni}) ∼
∫

d2rh(r −R)
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+ 2
∫

dr
(
cos

(
2πx

a

)
+ cos

(
2πy
a

))
h(r −R),

(A3)

∼ E0 + g
(
cos

(
2πX

a

)
+ cos

(
2πY

a

))
, (A4)

E0 is the energy in the continuous limit, which is constant for
R. The second term in Eq. (A3) gives the periodic potential
for R with the coefficient

g ∼
8π h(0)2

|∂2
µh(0)|

exp
− 4π2h(0)

a2|∂2
µh(0)|

, (A5)

=
2C
π

L2
sh(0) exp

(
−C

L2
s

a2

)
. (A6)

Here we have assumed h(r) has rotational sym-
metry, and expanded h(r) = exp(log h(r)) ∼

h(0) exp
(

1
2h(0) (x2∂2

xh(0) + y2∂2
yh(0))

)
. We define a di-

mensionless constant C ≡ 4π2h(0)/(L2
s |∂

2
µh(0)|) ∼ O(1).

The higher harmonics, which are dropped in Eq. (A3), gives
different periodic potentials, but their strength is higher order
of exp (−CL2

s/a
2). In Eq. (A6), we denote h(0) by ε.

Next we discuss the Berry phase terms. As in Eq. (A3), we
can expand the discrete summation over sites. To the lowest
order, we obtain

iS
∫

dτ
∑

i

ṅi ·A(ni) ∼
iS
a2

∫
dτ

∫
drṅ ·A(n), (A7)

=
2πiSN

a2

∫
dτ(YẊ − XẎ), (A8)

up to the surface terms in the time integral20. The rest of the
terms in the harmonic expansion are smaller than Eq. (A4) be-
cause of the time derivative, and thus we take only the lowest
order, i.e. the continuous limit.

Appendix B: Critical Theory

We show the derivation of the effective action in the critical
region for even 2SN and odd 2SN (Eq. (24)). We consider
the action up to quadratic order

S ∼

∫
dτdr

[
η̄∂τη + r|η|2 + c0|∇η|2

+ f (1)η + f (1)∗η̄ + f (2)ηη + f (2)∗η̄ η̄
]
, (B1)

Note that f (1) = 0 for odd 2SN . We now define D0 = 2Re f (1)

and D1 = 2Im f (1), F0 = 2Re f (2) > 0, F1 = 2Im f (2), and
η(r, τ) = ϕR(r, τ) + iϕI(r, τ), and obtain

S =

∫
dτdr

[
−2iϕI∂τϕR + ϕR(r − c0∂

2
µ + F0)ϕR

+ϕI(r − c0∂
2
µ − F0)ϕI − 2F1ϕRϕI + D0ϕR − D1ϕI

]
.

(B2)
For r ∼ F0, we integrate out ϕR, and obtain

S =

∫
drdτ

(
1
2

(
(∂τϕI)2 + r′ϕ2

I + v(∂µϕI)2
)
− hϕI +

u
4!
ϕ4

I

)
,

(B3)

where we redefine ϕ→
√

2
r+F0

ϕI , and

r′ = (r + F0)(r − F0) − F2
1 , (B4)

v = c0

r + F0 +
F2

1

r + F0

 , (B5)

h =

√
r + F0

2

(
D1 −

F1D0

r + F0

)
. (B6)

We have recovered the interaction term in Eq. (B3). For odd
2SN , we note that h = 0.
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21 F. Jonietz, S. Mühlbauer, C. Pfleiderer, A. Neubauer, W. Münzer,

A. Bauer, T. Adams, R. Georgii, P. Böni, R. a. Duine, K. Ever-
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