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Abstract8

Barium titanate (BaTiO3) is a prototypical ferroelectric perovskite that undergoes the9

rhombohedral–orthorhombic–tetragonal–cubic phase transitions as the temperature increases. In10

this work, we develop a classical interatomic potential for BaTiO3 within the framework of the11

bond–valence theory. The force field is parameterized from first–principles results, enabling accu-12

rate large–scale molecular dynamics (MD) simulations at finite temperatures. Our model potential13

for BaTiO3 reproduces the temperature–driven phase transitions in isobaric–isothermal ensemble14

(NPT ) MD simulations. This potential allows the analysis of BaTiO3 structures with atomic15

resolution. By analyzing the local displacements of Ti atoms, we demonstrate that the phase16

transitions of BaTiO3 exhibit a mix of order–disorder and displacive characters. Besides, from de-17

tailed observation of structural dynamics during phase transition, we discover that the global phase18

transition is associated with changes in the equilibrium value and fluctuations of each polarization19

component, including the ones already averaging to zero, Contrary to the conventional under-20

standing that temperature increase generally causes bond–softening transition, the x polarization21

component (the one which is polar in both the orthorhombic and tetragonal phases) exhibits a22

bond–hardening character during the orthorhombic to tetragonal transition. These results provide23

further insights about the temperature–driven phase transitions in BaTiO3.24
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I. INTRODUCTION25

BaTiO3 is a ferroelectric perovskite with promising applications in electronic devices, such26

as non–volatile memory, high–κ dielectrics, and piezoelectric sensors [1–4]. Therefore, it is27

of great significance to investigate and understand the structural and electronic properties28

of BaTiO3 for designed material optimization and device engineering. First–principles den-29

sity functional theory (DFT) has served as a powerful method to understand the electronic30

structures of ferroelectric materials [5–10]. Due to the expensive computational cost, the ap-31

plication of DFT methods is currently limited to system of fairly small size at zero Kelvin.32

Many important dynamical properties, such as domain wall motions and temperature–33

driven phase transitions, are beyond the capability of conventional first–principles methods.34

An effective Hamiltonian method was developed to study finite–temperature properties of35

BaTiO3 [11–14]. To apply this method, the subset of dynamical modes that determine a36

specific property should be known a priori. Molecular dynamics (MD) simulations with an37

atomistic potential accounting for all the modes offer distinct advantages, especially in pro-38

viding detailed information about atomic positions, velocities and modifications of chemical39

bonds due to a chemical reaction or thermal excitation. The shell model for BaTiO3 has40

been developed [15–19]. However, due to the low mass assigned to the shell, a small time41

step in MD simulations is required to achieve accurate results, which limits the time and42

length scales of the simulations.43

44

Recently, we developed a bond–valence (BV) model potential for oxides based on the bond45

valence theory [20–24]. The force fields for many technologically important ferroelectric ma-46

terials, PbTiO3, PbZrO3 and BiFeO3 [20, 22–25], have been parameterized based on results47

from DFT calculations. A typical force field requires no more than 15 parameters and can be48

efficiently implemented, which enables simulations of systems with thousands of atoms under49

periodic boundary conditions [26, 27]. The development of an accurate classical potential50

for BaTiO3 has proven to be difficult, mainly due to the small energy differences among51

the four phases (rhombohedral, orthorhombic, tetragonal, and cubic) [28–30]. In this paper,52

we apply the bond–valence model to BaTiO3 and parameterize the all–atom interatomic53

potential to first–principles data. Our model potential for BaTiO3 is able to reproduce54

the rhombohedral–orthorhombic–tetragonal–cubic (R-O-T-C) phase transition sequence in55
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isobaric–isothermal ensemble (NPT ) MD simulations. The phase transition temperatures56

agree reasonably well with previous theoretical results [15]. We further examine the temper-57

ature dependence of the local displacements of Ti atoms and discover several features of the58

phase transitions of BaTiO3: the phase transitions of BaTiO3 involve both order–disorder59

and displacive characters; at the moment that the phase transition of the crystal occurs,60

all the polarization components undergo phase transitions, even for the nonpolar ones; and61

temperature increase can also cause bond–hardening for a certain component.62

II. METHODS63

The bond–valence model potential is developed based on the conservation principles of64

bond valence and bond–valence vector. The bond valence, Vij, reflects the bonding strength65

and can be calculated based on the bond length, rij, with [20–24, 31–33]66

Vij =

(

r0,ij
rij

)Cij

(1)

where i and j are the labels for atoms; r0,ij and Cij are Brown’s empirical parameters.67

The bond–valence vector is defined as a vector lying along the bond, Vij = VijR̂ij, where68

R̂ij is the unit vector pointing from atom i to atom j. The total energy (E) consists of69

the Coulombic energy (Ec), the short–range repulsive energy (Er), the bond–valence energy70

(EBV), the bond–valence vector energy (EBVV), and the angle potential (Ea) [21–24]:71

E = Ec + Er + EBV + EBVV + Ea (2)

72

Ec =
∑

i<j

qiqj
rij

, (3)

73

Er =
∑

i<j

(

Bij

rij

)12

, (4)

74

EBV =
∑

i

Si (Vi − V0,i)
2 (5)

75

EBVV =
∑

i

Di

(

W2

i −W2

0,i

)2
(6)

76

Ea = k

Noxygen
∑

i

(θi − 180◦)2 (7)
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where Vi =
∑

j 6=i Vij is the bond–valence sum (BVS), Wi =
∑

j 6=iVij is the bond–valence77

vector sum (BVVS, shown in FIG. 1 (a), (b)), qi is the ionic charge, Bij is the short–range78

repulsion parameter, Si and Di are scaling parameters with the unit of energy, k is the79

spring constant and θ is the O–O–O angle along the common axis of two adjacent oxy-80

gen octahedra (FIG. 1 (c)). The bond-valence energy EBV captures the energy penalty81

for both overbonded and underbonded atoms. The bond-valence vector energy EBVV is a82

measure of the breaking of local symmetry, which is important for correctly describing the83

ferroelectricity. V0,i and W0,i are preferred or target values of BVS and BVVS for atom84

i in the ground–state structure, which can be calculated from DFT directly. It is noted85

that the EBV and EBVV can be related to the moments of the local density of states in the86

framework of a tight binding model, providing a quantum mechanical justification for these87

two energy terms [23, 24, 31, 34, 35]. The angle potential is used to account for the energy88

cost associated with the rotations of oxygen octahedra.89

90

We followed the optimization protocol developed in previous studies [23, 24]. The optimal91

values of force-field parameters qi, Si, Di and Bij , are acquired by minimizing the difference92

between the DFT energies/forces and the model–potential energies/forces for a database93

of BaTiO3 structures. All DFT calculations are carried out with the plane–wave DFT94

package Quantum–espresso [36] using the Perdew–Burke–Ernzerhof functional modified95

for solids (PBEsol) [37] and optimized norm–conserving pseudopotentials generated by the96

Opium package [38]. A plane–wave cutoff energy of 50 Ry and 4×4×4 Monkhorst–Pack97

k–point mesh [39] are used for energy and force calcualtions. The database consists of98

40–atom 2×2×2 supercells with different lattice constants and local ion displacements. The99

final average difference between DFT energy and model–potential energy is 1.35 meV/atom.100

III. PERFORMANCE OF THE CLASSICAL POTENTIAL101

The optimized parameters are listed in TABLE I. The performance of the obtained102

force field is examined by investigating the temperature dependence of lattice constants103

(a, b and c), component–resolved local displacements of Ti atoms (dx, dy, and dz), and104

the three components of the total polarization (Px, Py, and Pz). We carried out NPT105

MD simulations using a 10×10×10 supercell (5000 atoms) with the temperature controlled106

4



via the Nosé–Hoover thermostat and the pressure maintained at 1 atm via the Parrinello–107

Rahman barostat [40]. Each simulation was performed for 80 ps with a 1 fs time step. The108

thermal inertia parameter Ms was selected as 1.0 for the first 20 ps and 5.0 for the rest 60109

ps. The local polarization of each unit cell Pu (t) is expressed as110

Pu (t) =
1

Vu

(

1

8
Z

∗
Ba

8
∑

i=1

rBa,i (t) +Z
∗
Ti
rTi,i (t) +

1

2
Z

∗
O

6
∑

i=1

rO,i (t)

)

(8)

where Vu is the volume of a unit cell, Z∗
Ba
, Z∗

Ti
, and Z

∗
O
are the Born effective charges of111

Ba, Ti, and O atoms, with Z
∗
Ba

= 2.9, Z∗
Ti

= 6.7, and Z
∗
O
= 1

3
(Z∗

Ba
+Z

∗
Ti
) [41]. rBa,i (t),112

rTi,i (t), and rO,i (t) are the positions of Ba, Ti, and O atoms at time t.113

As shown in FIG. 2, the simulations clearly reveal four distinct phases under different114

temperature ranges and three first–order phase transitions. Below 100 K, the displace-115

ments of Ti atoms and the overall polarization of the supercell are along [111] direction116

(Px = Py = Pz), characteristic of the rhombohedral phase. At 100 K, the z component117

of the total polarization, Pz, becomes approximately 0, indicating a phase transition from118

rhombohedral to orthorhombic (Px = Py > 0, Pz = 0). As the temperature increases119

further to 110 K, the total polarization aligns preferentially along x direction (Px > 0,120

Py = Pz = 0) and the lattice constants have b = c < a. The supercell stays tetragonal until121

160 K at which point the ferroelectric–paraelectric phase transition occurs. The phase tran-122

sition temperatures match well with those predicted by the shell model [15] (TABLE II).123

Experimental phase transition temperatures are also listed in TABLE II. It can be seen124

that phase transition temperatures are consistently underestimated in our MD simulations.125

This underestimation has been observed previously in other DFT fitted simulations, and is126

due to the systematic error of exchange–correlation functional used for force field optimiza-127

tion [12, 23, 42, 43]. The accuracy of DFT depends on exchange–correlation functionals.128

Using different exchange–correlation functionals in parameterization affects the simulated129

phase transition temperatures, but nearly all DFT calculations underestimate the energy130

barries between states corresponding to different phases [43]. There are ad–hoc techniques131

for fixing this problem, such as scaling the ab–initio energy surface [43] or using a negative132

pressure [12]. These techniques would not be discussed detailedly in this study, because the133

underestimation does not affect the practiacl application of this potential much [23–25, 27].134

We extract the averaged lattice constants at finite temperatures from MD simulations and135

find that they are in good agreement (error less than 1%) with the PBEsol values (TA-136
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BLE III).137

Domain walls are interfaces separating domains with different polarities. They are im-138

portant topological defects and can be moved by applying external stimulus [26, 27]. The139

domain wall energy for a 180◦ wall obtained from our MD simulations is 6.63 mJ/m2, which140

is comparable to PBEsol value, 7.84 mJ/m2. This indicates that our atomistic potential141

can be used for studying the dynamics of ferroelectric domain walls in BaTiO3. All these142

results demonstrate the robustness of this developed classical potential. This potentail is an143

atomistic potential, in which modeled atoms represent real atoms. By using this potential,144

we can calculate real experimental observables, such as dielectric constant, frequency de-145

pendent dielectric response, vibrational modes, and their temperature, pressure and stress146

dependence. In the following section, we will discuss atomistic features of BaTiO3 phase147

transitions.148

IV. ATOMISTIC FEATURES OF DIFFERENT PHASES149

To provide an atomistic description of the different phases of BaTiO3, we analyze the150

distribution of local displacements of Ti atoms in each phase. Ti displacement is defined as151

the distance between the Ti atom and the center of the oxygen octahedral cage of a unit152

cell, which scales with the magnitude of polarization.153

In FIG. 3 (a), we plot the distributions of Ti displacements (d =
√

d2x + d2y + d2z). It154

can be seen that in all four phases, the distribution is approximately a Gaussian curve155

whose peak shifts toward lower values as the temperature increases. This suggests that156

the temperature–driven phase transition has a displacive character. It is noted that the157

distribution of magnitudes is peaked at non–zero value even in the paraelectric cubic phase,158

suggesting that most Ti atoms are still locally displaced at high temperature, and that159

the overall net zero polarization is the result of an isotropic distribution of local dipoles160

along different directions. This confirms the order–disorder character for BaTiO3 at high161

temperature.162

We can categorize the instantaneous phase of each unit cell based on the local displace-163

ment of Ti atom. The categorization criteria are164

(1) If d < 0.1 Å, the unit cell is considered to be paraelectric cubic;165

(2) For a ferroelectric unit cell, the k–th component is considered to be ferroelectric if166
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dk > d/
√
6. The rhombohedral, orthorhombic, and tetragonal unit cells have three, two,167

and one ferroelectric component(s), respectively.168

The results are shown in FIG. 3 (b). At 30 K, the supercell is made only from rhombo-169

hedral unit cells, showing that the rhombohedral phase is the ground–state structure. As170

the temperature increases, the supercell becomes a mixture of the four phases. It should be171

noted that the cubic unit cell with nearly–zero local Ti displacement seldom appears, be-172

cause a cubic unit cell is energetically less favorable. The relative energies of the four phases173

of BaTiO3 from PBEsol DFT calculations are listed in TABLE IV. It can be seen that174

the energy differences between the tetragonal, orthorhombic and rhombohedral unit cells175

are small (within several meV per unit cell) [5, 44]. Due to the thermal fluctuations, the176

populations of higher–energy ferroelectric phases (tetragonal and orthorhombic) increase as177

temperature increases. Above the ferroelectric–paraelectric transition temperature, locally178

ferroelectric unit cells are still favored over paraelectric due to the relatively high energy of179

cubic, the high–symmetry structure.180

In FIG. 4, the distributions of Ti displacements along the three axes are plotted. At181

100 K, BaTiO3 is at the rhombohedral phase and the distributions of Ti displacements182

are Gaussian–like. As the temperature increases, the phase changes to orthorhombic. The183

average of the x polarization component shifts to zero, indicating a displacive phase tran-184

sition. Besides, the standard deviation increases and the center of the distribution curve185

becomes flatter. For the cubic phase, the center of the Ti displacement distribution curve186

is also flat. As shown in FIG. 5, the center–flat curve is a summation of a Gaussian curve187

centering at zero, and a double–peak curve. The latter is characteristic of order–disorder188

transition [26]. These results further demonstrate that phase transitions of BaTiO3 have a189

mix of order–disorder and displacive characters [28, 45–50].190

V. FEATURES OF THE PHASE TRANSITIONS191

To investigate the structural dynamics during phase transitions in more detail, we con-192

ducted MD simulations with varying temperatures. In three different sets of simulations,193

the temperatures were increased from 100 K to 110 K (R to O), 110 K to 120 K (O to T) and194

155 K to 165 K (T to C) respectively. The temperature was controlled by the Nosé–Hoover195

thermostat with a thermal inertia parameter Ms=10 and the 10 K temperature change was196
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accomplished in 60 ps. We analyze the temperature dependence of Ti displacement distri-197

butions along three axes. The dynamics of Ti displacement distributions during the phase198

transitions are plotted in FIG. 6. The time evolution of the average and standard deviation199

of the Ti displacement distributions are shown in FIG. 7.200

Phase transition occurs when one component undergoes polar–nonpolar transition. The201

first column (from 100 K to 110 K) shows the changes of Ti displacement distributions during202

the rhombohedral to orthorhombic phase transition. In the x and y direction, the averages203

of the distribution shift up, which is a characteristic of displacive transition. Meanwhile,204

in the z direction, the average becomes zero and the variance becomes significantly larger,205

indicating that the transition is a mix of displacive and bond–softening characters [51].206

For the orthorhombic to tetragonal phase transition (second column), the transition of the207

y component, which is a polar–nonpolar transition, includes both displacive and bond–208

softening features. For the x component, the transition involves both an increase of the209

average and a decrease of the standard deviation. For the z direction, even though the210

Ti displacement distribution is centered at zero above and below the transition, the Ti211

displacements are located closer to zero, indicating an increase in bond hardness. From 155212

K to 165 K, there is also a bond–hardness–changing transition for the components (x and213

y) with zero averages. We collectively refer to ‘bond–softening’ and ‘bond–hardening’ as214

‘bond–hardness–changing’.215

Based on the features of the Ti displacement distributions at different phases, the216

schematic representation of the thermal excitation between different energy surfaces is217

presented in FIG. 8. From our results, the characteristics of BaTiO3 phase transition can218

be summarized as: (1) For BaTiO3, the mechanisms of phase transitions include both219

bond–hardness–changing and displacive transition. The sudden shifts of the average and220

standard deviation correspond to displacive with some order–disorder contribution and221

bond–hardness–changing transitions respectively; (2) Unlike the conventional understand-222

ing that thermal excitation usually causes bond–softening, increasing temperature can also223

cause bond hardening. The x component of polarization during the orthorhombic to tetrag-224

onal transition is an example of this case. (3) When the phase transition occurs, each225

component of polarization undergoes a change, even for the component(s) which is(are)226

non–polar before and after the transition. The transition(s) that each component undergoes227

are listed in TABLE V.228
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In phenomenological models, people use order parameters, such as polarization or any229

modes, to describe the free energy [52, 53]. Geneste pointed out that free energy should be230

expressed with the density of probability (DOP) of the order parameter, rather than local231

order parameters [42]. DOP is defined as the average of the order parameters in a give232

region, and is characterized by its standard deviation. Our simulation is consistent with233

this study, and all these results demonstrate that both the average and standard deviation234

of the polarization distribution are features of each specific phase.235

VI. CONCLUSION236

In this work, we develop a classical atomistic potential for BaTiO3 based on the bond237

valence model. Molecular dynamics simulation with this optimized potential can not only238

reproduce the temperature–driven phase transitions, but can also be a powerful tool in239

studying the phase transition process with high temporal and spatial resolutions. The de-240

tailed analysis of the local displacements of Ti atoms reveals that in each phase (including the241

paraelectric phase), the majority of Ti atoms are locally displaced, and the phase transitions242

in BaTiO3 exhibit a mixture of order–disorder and displacive character. The distribution243

of Ti displacement is a Gaussian curve or a curve involving a Gaussian and a double peak244

one. By analyzing the dynamics of Ti displacement distributions during phase transition, we245

discover several rules of BaTiO3 phase transitions: the global phase transition is associated246

with significant changes in each component, even for the components which are nonpolar,247

and the orthorhombic to tetragonal transition exhibits a bond–hardening character in the x248

component, which is opposite to the conventional understanding that temperature increase249

generally causes bond–softening transition.250
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Bββ′

(

Å
)

r0,βO C0,βO qβ(e) Sβ(eV) Dβ Ba Ti O V0,β W0,β

Ba 2.290 8.94 1.34730 0.59739 0.08429 2.44805 2.32592 1.98792 2.0 0.11561

Ti 1.798 5.20 1.28905 0.16533 0.82484 2.73825 1.37741 4.0 0.39437

O -0.87878 0.93063 0.28006 1.99269 2.0 0.31651

TABLE I. Optimized force field for BaTiO3. The angle constant k = 6.1 meV/(deg)2.

R–O O–T T–C

BV model 100 K 110 K 160 K

Shell model 80 K 120 K 170 K

Experiments 183 K 278 K 393 K

TABLE II. Comparison of the phase transition temperatures given by the BV model, the shell

model [15], and experiments [43].
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Lattice constant MD (Å) DFT (Å) error

Rhombohedral

a = b = c 4.036 4.024 0.30%

Orthorhombic

a 3.997 3.977 0.50%

b = c 4.059 4.046 0.32%

Tetragonal

a = b 4.005 3.985 0.50%

c 4.109 4.089 0.49%

Cubic

a = b = c 4.037 4.002 0.87%

TABLE III. Comparison of lattice constants of BaTiO3 given by MD simulations with BV model

potential and PBEsol DFT calculations. For MD simulation, lattice constants of rhombohedral,

orthorhombic, tetragonal and cubic phases are obtained at 5 K, 105 K, 120 K and 165 K respectively.

Since DFT neglects thermal expansion, the results given by MD simulations, which are larger but

less than 1%, demonstrate that this set of potential can predicts the lattice constants of BaTiO3

quite well.

Rhombohedral Orthorhombic Tetragonal Cubic

Energy

(meV/unit cell)

-39.31 -37.23 -29.47 0

TABLE IV. Relative energies (potential energies) of different phases from DFT calculations. The

cubic unit cell is chosen as the reference structure.
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R to O O to T T to C

Component dx dy dz dx dy dz dx dy dz

Hardness–changing N N Y Y Y Y Y Y Y

Displacive Y Y Y Y Y N Y N N

TABLE V. Phase–transition characters of each component. ‘Hardness–changing’ includes bond

softening and bond hardening, which are characterized by the change of the standard deviation of

the Ti displacement distribution.
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|WTi| > 0 |WTi| = 0

Paraelectric PhaseFerroelectric Phase

(a) (b) (c)

Angle Potential

WTi

FIG. 1. Bond valence vector sum and angle potential. (a) Tetragonal BaTiO3 with a non-zero

BVVS; (b) Cubic BaTiO3 with zero BVVS; (c) Schematic of the angle potential. Ba, Ti, and O

atoms are represented by green, blue and red spheres respectively.
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(a)

(b)

(c)

FIG. 2. Temperature dependence of the polarization, Ti displacement, and lattice constants in

BaTiO3. Phase transitions between rhombohedral, orthorhombic, tetragonal, and cubic occur at

105 K, 115 K and 160 K.

17



(a) (b)

FIG. 3. (a) The distribution of total Ti displacement magnitude at different temperatures. (b)

Instantaneous compositions of different phases. Supercells at 30 K (rhombohedral), 70 K (rhom-

bohedral), 110 K (orthorhombic), 150 K (tetragonal) and 190 K (cubic) are studied. Heights of

the dark blue, light blue, orange, and red rectangles represent the percentages of rhombohedral,

orthorhombic, tetragonal and cubic unit cells respectively. The phases of unit cells are categorized

by their Ti displacements d: for d < 0.1 Å, the unit cell is considered as a nonpolar one; for a polar

unit cell, if one component is larger than d/
√
6, this component is considered as a ferroelectric

one. The ferroelectric phase (tetragonal, orthorhombic and rhombohedral) is determined by the

number of ferroelectric components.
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100 K, Rhombohedral

110 K, Orthorhombic

120 K, Tetragonal

165 K, Cubic

FIG. 4. The distributions of Ti displacement at different temperatures.

displacive

order-disorder

displacive and

order-disorder

FIG. 5. Schematic figure of the distributions of Ti displacement for displacive transition, order–

disorder transition and a mix of them.
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dx

dy

dz

R to O O to T T to C

time (ps) time (ps) time (ps)

100 K to 110 K 110 K to 120 K 155 K to 165 K
P

ercen
tag

e

FIG. 6. Temperature dependence of Ti displacement distributions in three Cartesian directions.

The horizontal axis shows the time. In these simulations, the temperature increases with time

approximately linearly. The vertical axis represents the fraction of the Ti displacements and the

color scale represents the percentages of Ti displacement with a certain value. Note that in the

bottom center plot, the color showing the distribution becomes redder after the orthorhombic to

tetragonal transition, indicating a narrower distribution around dz = 0 and a bond hardening in

this direction.
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(a)Rhombohedral to Orthorhombic

Orthorhombic to Tetragonal (b)

(c)Tetragonal to Cubic 

FIG. 7. The change of the average and standard deviation of the Ti displacement distribution. In

the standard deviation plot of (b), the green and black lines increase with temperature and are

parallel until the transition.
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FIG. 8. Schematic representations of bond–softening, bond–hardening and displacive excitations.

Two points worth mentioning: (1) For the x component (first column), the minima of the energy

profile for the tetragonal phase are further from the center and have a higher curvature, compared

with those for orthorhombic phase, because the Ti displacement distribution has a larger average

and smaller variance; (2) For the z component (third column), compared with the energy profile

for orthorhombic phase, the one for the tetragonal phase has a higher curvature at the center (Ti

displacement more closely distributed around 0, as seen from FIG. 6) and smaller curvature for

larger z–direction displacements (larger standard deviation, seen from FIG. 7 (b)).
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