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Understanding the effect of vibrations in optically active nano systems is crucial for successfully
implementing applications in molecular-based electro-optical devices, quantum information commu-
nications, single photon sources, and fluorescent markers for biological measurements. Here, we
present a first-principles microscopic description of the role of phonons on the isotopic shift pre-
sented in the optical emission spectrum associated to the negatively charged silicon-vacancy color
center in diamond. We use the spin-boson model and estimate the electron-phonon interactions
using a symmetrized molecular description of the electronic states and a force-constant model to
describe molecular vibrations. Group theoretical arguments and dynamical symmetry breaking are
presented in order to explain the optical properties of the zero-phonon line and the isotopic shift of
the phonon sideband.

PACS numbers: 78.67.Bf, 63.20.kp, 61.72.jn

I. INTRODUCTION

Vibrations play a crucial role in nano systems by mod-
ifying their optical line shape, preventing them from
being described as simple two-level systems1. Several
works have addressed the electron-phonon coupling to
model the effect of vibrations on the optical proper-
ties of molecules2, point defects3 and inter-band optical
transitions in solids4. This interaction is characterized,
in most cases phenomenologically, by a spectral density
function5–7 that is used to describe the dissipation dy-
namics due to acoustic phonons in a two-level system5,
the absorption8 and low temperature effects on the zero-
phonon line transition6 in quantum dots that are strongly
coupled to localized vibrations. There are few works that
treat the electron-phonon interaction with microscopic
models9. The latter approach is particularly accurate for
atomistic systems and highly demanded nowadays as re-
searchers are able to engineer nanoscale devices where
effectively few atoms are involved10. Therefore, a deep
understanding of this interaction is needed for controlling
and engineering the optical properties of such systems.

Here we consider a microscopic model to study the
electron-phonon interaction between the electronic states
of a single negatively charged silicon-vacancy (SiV−) cen-
ter in diamond and lattice vibrations. We focus on the
effect of phonons on the optical properties, i.e., the zero-
phonon line (ZPL) transition and the phonon sideband
associated to the emission or photoluminescence spec-
trum. On Section II we introduce to the electronic states
of the SiV− center for which the optical emission will be
calculated. Section III describes the vibrational degrees

of freedom of a finite size lattice and the electron-phonon
interaction between vibrations and the electronic states.
Section IV introduces the model used to calculate the
emission spectrum taking into account the symmetries
of the electronic wavefunctions and vibrations. In par-
ticular, the spectral density function and its relation to
the emission spectrum is introduced. Section V discusses
the role of symmetry on the defect and finally Section
VI takes into account these considerations to write the
spectral density function for the SiV− center.

II. NEGATIVELY CHARGED
SILICON-VACANCY CENTER IN DIAMOND

In this section we present the bare ground and excited
states from which the optical transitions will take place.
The SiV− center is a point defect composed of six car-
bon atoms and an interstitial silicon atom. The symme-
try group associated to this defect is the C3v+i group, a
subgroup of the host crystal symmetry group Td

16,20 (an
equivalent group is D3 for which the irreducible represen-
tations a1 and a2 are swapped). In particular, the inver-
sion symmetry with respect to the silicon atom leads to
irreducible representations (IR) of the C3v+i group to be
labeled by parity: A1g, A2g, Eg (g = gerade or even) and
A1u, A2u, Eu (u = ungerade or odd) representations20.
The electronic structure of this defect can be represented
by one-electron hole system with electronic spin S = 1/2.
In the absence of external perturbations the relevant elec-
tronic wavefunctions associated to the electron hole rep-
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resentation are

|Ψ(0)
gx,gy〉 = eC

gx,gy, (1)

|Ψ(0)
ux,uy〉 =

1√
1 + 2Nβ + β2

(
eC
ux,uy + βpSi

x,y

)
, (2)

where eC
gx,gy (gerade) and eC

ux,uy (ungerade) are sp3 lin-
ear combinations of single electron orbitals associated to
the carbon atoms20, pSi

x,y are px,y orbitals associated to
the silicon atom (see Fig. 1), β is a coefficient that in-
dicates the contribution of the latter orbitals and it is
estimated to be ≈ 0.13 by ab initio calculations, and
N = 〈pSi

x,y|eC
ux,uy〉. Thanks to inversion symmetry the ex-

cited and ground state can also be labeled by parity. The

degenerate ground states |Ψ(0)
gx 〉 and |Ψ(0)

gy 〉 belong to the
two-fold IR Eg = {Egx, Egy}, respectively. Meanwhile,

the degenerate excited states |Ψ(0)
ux 〉 and |Ψ(0)

uy 〉 belong to
the two-fold IR Eu = {Eux, Euy}, respectively. These
ground and excited states are energetically separated by
the zero-phonon line energy EZPL = 1.68 eV32. There-
fore, the electronic structure associated to the negatively
charged SiV− is modeled by the following Hamiltonian

He =
1

2
EZPL

(
|Ψ(0)
ux 〉〈Ψ(0)

ux | − |Ψ(0)
gx 〉〈Ψ(0)

gx |
)
. (3)

We do not include the effect of spin-orbit interaction,
neither we include the spin degree of freedom as they are
not relevant for determining the broad features of the
optical lineshape.

III. ELECTRON-PHONON HAMILTONIAN

In this section we derive a model for the electron-
phonon interaction between a single SiV− center and
lattice vibrations in a finite sized crystalline structure.
First, we consider a diamond lattice composed of NLat

atoms including the SiV− center at the origin. Atoms
are arranged so that the whole structure maintains the
C3v+i symmetry of the point defect. We introduce the
normal coordinates that describe lattice vibrations1

QLat
l =

NLat∑
i=1

∑
α={x,y,z}

√
Miuiαh

Lat
iα,l, (4)

where Mi is the mass of the i-th ion and uiα is the dis-
placement of the i-th ion in the α direction (x, y or z).
In this notation, ui is the ion displacement vector from

its equilibrium position R
(0)
i , and hLat

iα,l are eigenvectors

that satisfy the following eigenvalue equation1

NLat∑
j=

∑
β={x,y,z}

Diα,jβh
Lat
jβ,l = ω2

l h
Lat
iα,l, l = 1, ..., 3NLat,

(5)
where Diα,jβ is the dynamical matrix associated with
the ion-ion potential interaction and ωl are the frequency

associated with the l-th lattice mode. The dynamical
matrix is given by1

Diα,jβ =
1√
MiMj

(
∂2VIon-Ion

∂uiα∂ujβ

)∣∣∣∣
R0

, (6)

where VIon-Ion is the ion-ion Coulomb interaction (see Ap-
pendix B for further details). The electron-phonon inter-
action between the electronic states associated to this
point defect and lattice vibrations can be written as

Ve-ph(r, {Q}) =

3NLat−6∑
l=1

3ND−6∑
l′=1

αl′l

(
∂Ve-Ion

∂QSiV
l′

)QLat
l ,

(7)
where ND is the number of defect atoms (ND = 7 for
the SiV− center), Ve-Ion is the electron-ion Coulomb in-
teraction between one electron located at r and the NLat

surrounding atoms, and QSiV
l′ are the local normal coor-

dinates of the SiV− center. The factor αl′l is given by

αl′l = 〈HSiV
l′ ,hLat

l 〉 =

ND∑
i=1

∑
α={x,y,z}

HSiV
iα,l′ h

Lat
iα,l, (8)

where HSiV
l′ center and hLat

l are the eigenvectors associ-
ated to the vibrational modes of the SiV− and the finite
lattice structure. We assume that the electron wavefunc-
tions are non-zero only on the ND defect atoms, therefore
it is sufficient to consider the inner sum on the defect
atoms only. In the Appendix A we show a full derivation
of the electron-phonon interaction. Next, we promote
the normal coordinates and the corresponding momen-
tum conjugate to operators as follows

QLat
l =

√
~

2ωl

(
b̂†l + b̂l

)
, PLat

l = i

√
~ωl
2

(
b̂†l − b̂l

)
,

(9)
where the set of 3NLat − 6 independent boson creation

b̂†l and annihilation b̂l operators obey the commutation
relation

[b̂l, b̂
†
l′ ] = δll′ . (10)

Note that we only quantize vibrational modes, as
translational and rotational modes leave invariant the
electron-phonon interaction. Finally, by expanding the
electron-phonon interaction in the electronic basis |i〉 =

{|Ψ(0)
gx 〉, |Ψ(0)

ux 〉} the following electron-phonon Hamilto-
nian is obtained

He-ph =
∑
i,l

λi,l|i〉〈i|(b̂†l + b̂l), (11)

where the electron-phonon coupling constants are given
by

λi,l =

√
~

2ωl

3ND−6∑
l′=1

〈HSiV
l′ ,hLat

l 〉γi,l′ (12)

γi,l′ = 〈i|
(
∂Ve-Ion

∂QSiV
l′

)∣∣∣∣
R0

|i〉. (13)
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To evaluate γi,l′ we used symmetrized Gaussian orbitals
(see Appendix C for details). On Eq.(11) we have only
kept those terms that shift the energy of the electronic
states. Other terms such as∑

i 6=j,l

λij,l|i〉〈j|(b̂†l + b̂l), (14)

are not considered. The latter terms make Hamiltonian
(11) analytically unsolvable for a direct diagonalization
calculation6. Nevertheless, these terms will be considered
by means of dynamical symmetry breaking.

IV. MODEL FOR THE EMISSION SPECTRUM

The fluorescence spectrum of the emitted radiation in
a thermal equilibrium state is determined by the spectral
intensity radiated per unit solid angle by an oscillating
dipole and it is given by11

dI

dΩ
=

ω4
0

8π2c3
|(n× d)× n|2 E(ω), (15)

E(ω) =

∫ ∞
−∞
〈σ−(t)σ+(0)〉eq e−iωt dt, (16)

where d is the dipole vector and n = r/|r| is the
unitary vector pointing in the direction of r. There-
fore, we calculate the emission spectrum associated to
the electronic transition from the excited |e〉 to ground
state |g〉 as the Fourier transform of the current-current
correlation function at thermal equilibrium by apply-
ing the Kubo formula7,11 Eq.(16), where σ+ = |e〉〈g|,
σ− = |g〉〈e|, σ±(t) = U†(t)σ±(0)U(t) and U(t) =
e−iHSBt/~. The Hamiltonian HSB, known as the spin-
boson Hamiltonian7, is given by

HSB = He +He-ph +
∑
l

~ωlb̂†l b̂l, (17)

where the first, second and third term are the Hamilto-
nians of the electronic states of the point defect (Eq.(3)),
the electron-phonon interaction to first order in the ion
displacements (Eq.(11)), and the phonon bath, respec-
tively. The average 〈...〉eq is taken over phonons, which
are assumed to be in thermal equilibrium. The electron-
phonon interaction in Eq.(17) describes acoustic, opti-
cal and quasi-local phonon modes coupled to the elec-
tronic states of the point defect. Physically, during the
emission or absorption processes, the electronic charge
changes its spatial distribution leading to a change in
the potential seen by the ions close to the charge lo-
calization. Ions will seek for new equilibrium positions,
resulting in a relaxation process inducing lattice vibra-
tions. In order to determine how the phonon relaxation
processes affect the optical properties we introduce the
polaron transformation7,12 given by

H ′ = eSHe−S , (18)

where

S =
∑
i,l

λi,l
~ωl
|i〉〈i|

(
b̂†l − b̂l

)
. (19)

In the density operator formalism, the state of thermal
equilibrium that maximizes the von Neumann entropy
S(ρ̂) = −Tr (ρ̂ ln ρ̂) is given by ρ̂eq = e−βHSB/Z, where
Z = Tr

(
e−βHSB

)
is the partition function, β = 1/kBT , T

is the temperature, and kB is the Boltzmann constant.
Therefore, the expectation value can be calculated as

〈σ−(t)σ+(0)〉eq =
1

Z
Tr
(
σ′−(t)σ′+(0)e−βH

′
SB

)
. (20)

Under these approximations the emission spectrum can
be analytically calculated as

E(ω) =

∫ ∞
−∞

e−i(ω−ωeg+∆e−∆g)t+Φ(t) dt, (21)

where ωeg = ωe − ωg is the bare electronic frequency
transition, ∆i =

∑
l λ

2
i,l/(~2ωl) is the polaron shift and

Φ(t) contains the effect of phonons on the optical line
shape and is given by

Φ(t) =

∫ ∞
0

J0(ω)

(~ω)
2

[
coth

(
β~ω

2

)
(cosωt− 1)− i sinωt

]
dω,

(22)

and

J0(ω) =
∑
l

(λe,l − λg,l)2
δ(ω − ωl), (23)

is the spectral density function where λi,l is the expec-
tation value of the electron-phonon coupling between
phonon modes l and the electronic wavefunction |i〉. If
the electronic states interact with the same strength to
phonons, both coupling constants for the ground and ex-
cited states are similar and the spectral density function
is small leading to a transition involving few phonons
and resulting in a fluorescent shape that closely resembles
that of a phonon-free system. On the contrary, if these
two couplings are substantially different, the change on
electronic distribution, and therefore, on the potential
seen by the ions is large and the emission spectrum is
greatly modified (Fig. 1).
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FIG. 1: Schematic representation of the potential energy
diagram. The two parabolas represent the phononic potential of
the ground egx and excited eux states of the SiV− including vibra-
tional levels. Structure of the SiV− in diamond: six carbon atoms
(dark gray) and the interstitial silicon atom (green) embedded in a
diamond lattice (light gray) . The molecular orbital representation
of the electronic states egx and eux are represented by red (blue)
for the positive (negative) sign of the electronic wavefunction.

V. ROLE OF INVERSION SYMMETRY ON
THE EMISSION SPECTRUM

The electron-phonon coupling constants depend cru-
cially on the atomic configuration, the symmetry of the
point defect and the symmetry of the host material. As
an example, the fluorescent of the nitrogen-vacancy cen-
ter (NV-center) and SiV− center in diamond are very dif-
ferent from each other although they differ in one atom
in their molecular composition. The NV-center has a
broad emission ranging from 637 nm zero-phonon line
(ZPL) to 750 nm, meanwhile the emission of the SiV− has
a width of few nanometers at the same temperature13.
The symmetry of the point defect is determined by the
atomic configuration14. In the case of the NV-center, the
nitrogen atom is substitutional and its atomic configu-
ration does not remain the same under inversion, i.e.,
parity is not a good description for wavefunctions and
vibrations15. On the contrary, in the SiV−, the silicon
atom is interstitial between two vacancies and its configu-
ration remains the same under inversion16, i.e., electronic
wavefunctions and vibrations can be described by parity.
As the coupling constants λi,l are the integration of three
functions, its expectation value will be zero if the total
product is odd. The lack of inversion symmetry in the
NV-center allows in principle the contribution from all
vibrational modes. Whereas the coupling constants λe,l
and λg,l for the SiV− can be very similar due to inversion
symmetry. Indeed, in the SiV− the ground state is a ger-
ade (even) linear combination of dangling bond atomic
orbitals meanwhile the excited state is an ungerade (odd)
function of these orbitals. These wavefunctions might dif-
fer only by a phase leading to a very similar electronic
distribution, a small change upon electronic transitions
in the trapping potential seen by the ions, and therefore
a very small phonon contribution to the spectral density
function J0(ω).

VI. SPECTRAL DENSITY FUNCTION AND
THE EMISSION SPECTRUM

A quantitative analysis of the phonon modes can be
performed by considering a macro molecule composed of
N ∼ 103 atoms where the defect is placed at its center
as described in Section III. The vibrational modes are
calculated using a force-constant model to second order
nearest-neighbor interaction17,18 in order to better re-
semble the real phonon dispersion relation of diamond19

(see Fig. 2). See Appendix B for further details. Using
only a first order nearest-neighbor model does not give
an accurate description of the high density areas for the
acoustic bands from which arouses the main contribution
to the spectral density function. In the Appendix B we
show the numerical methodology implemented to obtain
the vibrational properties of the macromolecule.
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FIG. 2: Numerical phonon dispersion curves for diamond.
Red lines and black circles correspond to the numerical calculations
using the force-constant model to second order nearest-neighbor
interactions and experimental neutron-scattering data extracted
from19. The phonon frequencies are plotted as a function of the
reduced phonon wave-vector between some symmetry points in the
First Brillouin Zone.

Vibrational modes of even parity (a1g, a2g and eg
phonons) contribute to the spectral density function

J0(ω) associated to the transition |Ψ(0)
ux 〉 −→ |Ψ(0)

gx 〉 (see
Fig. 3a) with the breathing mode of symmetry a1g be-
ing the strongest contribution. This peak also contains
contributions from eg phonon modes which contribute to
the width of the peak. So far the motion of the silicon
atom does not play a role if we consider phonon modes
with even symmetry. However, recently an isotopic shift
of the phonon sideband was observed for different sili-
con isotopes21: as the mass of the silicon atom increases,
the distance between the ZPL and the phonon sideband
decreases suggesting that a local vibrational mode pri-
marily composed of the silicon atom is involved. Such
mode is necessarily of character u (odd), and for sym-
metry reasons it should not contribute to the coupling
constants λe,l and λg,l if the electronic states given in
Eqs.(1)-(2) are used. This indicates that inversion sym-
metry is broken and it is no longer a good description
of the wavefunctions. Inversion symmetry can be broken
by vibrations of character u, which can dynamically mix
both ground and excited states. External electric fields
can also break inversion symmetry. Global strain does
not mix ground and excited states as it only mix the
states among each manifold20. In addition, ab initio cal-
culations support that inversion symmetry is not broken
if vibrations are not included. In this scenario, the new
electronic wavefunctions can be described by

|Ψg〉 =
√

1− ε2|Ψ(0)
g 〉 − εe+iθ|Ψ(0)

e 〉 (24)

|Ψe〉 =
√

1− ε2|Ψ(0)
e 〉+ εe−iθ|Ψ(0)

g 〉, (25)
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where ε is a mixing parameter, θ is an arbitrary phase,

and |Ψ(0)
g 〉, |Ψ(0)

e 〉 are the electronic wavefunctions given
in Eqs.(1)-(2). A similar argument can be given by means
of the Herzberg-Teller effect which can also show a dy-
namical symmetry breaking22–24. The spectral density

function J(ω) =
∑
l

(
λΨe,l − λΨg,l

)2
δ(ω−ωl) can be ex-

plicitly calculated in order to incorporate the effect of
the dynamical symmetry breaking given by the mixing
of the ground and state states of the SiV− center. Using
group theoretical arguments, averaging over the phase θ
and evaluating in the small mixing limit (|ε| � 1) we find
that (see Appendix D)

J(ω) = J0(ω) + 8ε2Jeg(ω) (26)

where J0(ω) is given by Eq. (23) and

Jeg =
∑
l

(λeg,l)
2
δ(ω − ωl), λeg,l = 〈Ψ(0)

g |H
(l)
e-ph|Ψ

(0)
e 〉,

(27)
is the spectral density function that incorporates the con-
tribution of phonon modes with odd symmetry. See Ap-
pendix D for a derivation of the spectral density function
Jeg(ω). Fig. 3b shows Jeg(ω) where a strong peak as-
sociated to an a1u quasi-local phonon mode (a2u in D3

symmetry) is observed with a frequency of ω28 = 63.19
meV, ω29 = 62.66 meV and ω30 = 62.16 meV for iso-
topes Si28 , Si29 and Si30 , respectively. The ratio between
these energies is approximately ω28/ω29 ≈ 1.01 and
ω28/ω30 ≈ 1.02 and has a good agreement with experi-
mental values (ω28/ω29 = 1.016 and ω28/ω30 = 1.03621).
However, the exact value for the energy of this a1u quasi-
local phonon mode can be better estimated with more
precise methods. The prominent sharp feature of Jeg(ω)
has also contributions from eu and a2u modes where eu
modes contribute approximately twice as much as the a2u

modes. The frequency of the quasi-local phonon mode
a1u has a strong dependence on the silicon mass. In this
mode, the silicon atom moves along the symmetry axis.
In addition, we observe that Jeg(ω) is considerably larger
that J0(ω) and strongly depends on the silicon contribu-
tion to the electronic wavefunction (see Eq.(2)). Only a
small mixing parameter is sufficient to make Jeg(ω) the
largest contribution to the spectral density function given
in Eq.(26) (see Appendix D).

This microscopic procedure allows to numerically cal-
culate the contribution of acoustic, optical and quasi-
local phonon modes to the spectral density function.
However, a large number of atoms is required to have
a better estimate of the mode density and of the emis-
sion spectrum. Alternatively, known models of the spec-
tral density function can be fitted to simplify the ef-
fect of phonons. Bulk phonons have been modelled
with a spectral density function of the form5 JBulk(ω) =
2αω1−s

c ωse−ω/ωc , where α is the dissipation strength,
ωc is a cut-off frequency and s is a dimensionless pa-
rameter characterizing the regimes: sub-ohmic (s < 1),
ohmic (s = 1) and super-ohmic (s > 1). At low fre-
quencies the contribution from acoustic phonon modes

to the SiV− can be modeled as J(ω) ∝ ω3 which implies
a super-ohmic regime (s = 3)9. For quasi-local phonons

JLoc1(ω) = J0
π

1
2 Γ

(ω−ωb)2+( 1
2 Γ)

2
33, where J0 is the coupling

strength, Γ is a characteristic width and ωb is the fre-
quency of the phonon. In the numerical estimation at
least two localized contributions JLoc1(ω) and JLoc2(ω)
are recognised at 63.19 meV and around 45.5 meV, re-
spectively. We fit Jeg(ω) to a spectral density function of
the form Jeg(ω) = JBulk(ω) + JLoc1(ω) + JLoc2(ω)25. We
found, however, that JLoc2(ω) is best fit to a gaussian
function as it is probably composed of multiple quasi-
local phonon modes.

frequencies (THz)

a 1u

 quasi-local mode

frequencies (THz)

a 1g

 quasi-local mode

(a)

(b)
frequencies (mev)

frequencies (mev)

FIG. 3: Numerical spectral functions J0(ω) and Jeg(ω) for
the SiV− in diamond. (a) Spectral function J0(ω), where the
blue bar graph and the green line are the numerical estimation and
the fit spectral function obtained from simulations. The strongest
contribution is given by an a1g phonon mode (breathing mode)
at around ω0 = 37 meV. (b) Spectral function Jeg(ω), where the
blue bar graph and the green line are the numerical estimation and
the fit spectral function, respectively. The strongest contribution
is given by an a1u quasi-local phonon mode at around ω1 = 63.19
meV. A second contribution of the Jeg(ω) spectral function is given
at around ω2 = 45.5 meV.

The emission spectrum associated with Jeg(ω) is shown
on Fig. 4 and has good agreement with the observed iso-
topic shift21. The largest contribution to the phonon
sideband at 766 nm is due to the main peak in Jeg(ω)
at 63.19 meV and it is associated to an a1u quasi-local
mode as previously discussed (see Fig. 3(b)). Chang-
ing the isotopic mass indeed shifts the distance between
the ZPL and this feature on the phonon sideband con-
firming previous observations21. A second contribution
to the sideband is observed at 755 nm and is associated
with a peak in Jeg(ω) at 45.5 meV and does not have a
dependence on the silicon mass. Other peaks in the ob-
served experimental phonon sideband27 can be associated
to other features in the spectral density function J0(ω)
and Jeg(ω). A peak at 796 nm (with no dependence
on the silicon mass)21 might correspond to the highest
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phonon frequency of the acoustic band of highest sound
speed, close to the L symmetry point of the measured
dispersion relation18,28.

Our second nearest-neighbor model over estimate
mode frequencies at higher frequencies and locates this
points at 136.5 meV, frequency at which there seems to
be a contribution on the spectral function Jeg(ω) (see Fig.
3(b)). A similar argument applies for a contribution at
87 meV in the observed phonon sideband corresponding
to a 103.4 meV feature in Jeg(ω). The model also allows
to calculate temperature effects. As an example, we have
plot the emission spectrum at 4K and 297 K (see Fig. 4).
Finally, we remark that the isotopic shift is not possi-
ble to explain with phonons that transform evenly under
inversion. Therefore, a dynamical symmetry breaking is
needed, which can be caused by non-inversion preserv-
ing perturbations such as external electric fields or odd
vibrational modes.

Further improvements of the current numerical esti-
mations can be performed by increasing the number of
atoms around the defect for which the defect electronic
wavefunctions are non-zero.
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FIG. 4: Numerical emission spectra of the SiV− in dia-
mond. The blue and red curves represent the numerical emission
spectrum obtained for T = 4 K and T = 296 K, respectively. The
ZPL at 736 nm and the prominent sharp feature of the phonon side-
band at 766 nm are reproduced. The peak at 766 nm its associated
with the a1u quasi-local phonon mode.

VII. CONCLUSIONS

In summary we have presented a microscopic model
for estimating the emission spectrum of the SiV− using
the Kubo formula and the spin-boson model. In addition
we have considered effects to second-order on the spec-
tral density function via dynamical symmetry breaking.
This spectral density function is estimated using a force-
constant model for describing the vibrational modes and
symmetrized electronic wavefunctions constructed using
group theoretical arguments. This approach allows us

to gain detailed insight on the microscopic origin and
the role of symmetries on the emission spectra and the
spectral density function, approach which is crucially dif-
ferent from, but validates, phenomenological models pre-
sented in previous works5,6,8. These results might be use-
ful for understanding and engineering the optical proper-
ties of colour centers in solids by extending the analysis
to other deep and shallow centers coupled to phonons
and subject to instabilities such as dynamic Jahn-Teller
effects and external perturbations such as electric fields
or strain.
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Appendix A: Electron-phonon interaction

In this section we present a more detailed derivation
of the electron-phonon interaction used to model the op-
tical properties of the SiV− center. Using the normal
coordinates QLat

l defined in Eq.(4) the electron-phonon
interaction can be expanded as follow

Ve-ph(r, {Q}) = V0 +

3NLat−6∑
l=1

(
∂Ve-Ion

∂QLat
l

)
QLat
l + . . . ,

(A1)
where only the 3NLat − 6 vibrational modes are consid-
ered, as translational and rotational modes leave invari-
ant the electron-phonon interaction1. As we will focus on
deep centers, i.e., center whose electronic wave functions
decay quickly with distance29, it will be convenient to de-
fine local vibrational modes involving only those atoms
on which the electronic wave functions are considered to
be non-zero. These modes can be obtained from group
theoretical considerations1,14 or by numerically solving a
small molecular system considering only the atoms re-
lated with the defect structure using a force-constant
model30 or ab initio calculations. These defect normal
coordinates are defined as

QSiV
l′ =

ND∑
i=1

∑
α={x,y,z}

√
Miuiαh

SiV
iα,l′ , (A2)

where ND is the number of atoms of the defect (ND <
NLat), uiα is the displacement of the i−th ion in the α



7

direction from its equilibrium position, and hSiV
iα,l′ are the

eigenvectors l′ associated to the defect molecular vibra-
tions of the i−th ion in the α direction. The local normal
coordinates of the defect can be written as a linear com-
bination of the lattice normal modes given in Eq. (4)

QSiV
l′ =

3NLat−6∑
l=1

αl′lQ
Lat
l , (A3)

where the parameter αl′l is given by Eq.(8). HSiV
l′ and

hLat
l are vectors with the same dimensionality and whose

components are given by

HSiV
l′ =



hSiV
1x,l′

hSiV
1y,l′

hSiV
1z,l′

...
hSiV
NDz,l′

0
...
0


, hLat

l =



hLat
1x,l

hLat
1y,l

hLat
1z,l
...

hLat
NDz,l

hLat
ND+1x,l

...
hLat
NLatz,l


(A4)

where HSiV
iα,l′ are obtained from group theoretical argu-

ments and HLat
iα,l′ are numerically obtained by solving the

eigenvalue equation (5). Therefore, using the chain rule
and neglecting the constant term V0 on Eq.(A1) we re-
cover electron-phonon interaction given in Eq.(7).

Appendix B: Force constant model to second order
nearest-neighbor

In this section we present the force constant model
used to numerically solve the vibrational modes associ-
ated to the eigenvalue equation given in (5). Using the
general valence force field for diamond17, we can extract
the vibrational dynamics of the system using the follow-
ing expression for the ion-ion interaction including up to
second nearest-neighbor interactions

VIon-Ion =
∑
ks∈K

Vks , K = {kr, krr, krθ, kθ, kθθ}, (B1)

where the contributions to the ion-ion potential interac-
tion are given by

Vkr =
1

2
kr
∑
〈ij〉

(δuij)
2
, (B2)

Vkrr = krr
∑
〈ij〉,〈kj〉

(δuij) (δukj) , (B3)

Vkrθ = bkrθ
∑
〈ijk〉

(δuij) (δθijk) , (B4)

Vkθ =
1

2
b2kθ

∑
〈ijk〉

(δθijk)
2
, (B5)

Vkθθ =
1

2
b2kθθ

∑
〈ijk〉,〈ljm〉

(δθijk) (δθljm) , (B6)

where Vkr is the potential energy associated with the
bond-stretching of the first nearest neighbor 〈ij〉, Vkrr is
the potential energy associated with bond-stretching of
the bond-pair 〈ij〉 and 〈kj〉 that share the atom j, Vkrθ is
the potential energy associated with the bond-stretching
of the first nearest-neighbor 〈ij〉 that shares a bond with
the bond-bending angle θijk, Vkθ is the potential energy
associated with the bond-bending angle θijk such that i
and k are nearest-neighbor of j, and Vkθθ is the potential
energy associated with the bond-bending of the angles
θijk and θljm when no bond is shared. These interaction
depends on the geometrical distortions of the lattice

δuij = |ui − uj |, ûij = (ui − uj)/δuij (B7)

δθijk = cos−1(ûij · ûkj), (B8)

and the elastic constants kr, krr, krθ, kθ, kθθ. These elas-
tic constants are obtained from literature in the case of
bulk-diamond17,18 and from ab initio simulations for the
SiV− center. The parameter b = 1.95 Å for the point
defect and b = 1.54 Å for the bulk diamond. We use the
following elastic constants for the SiV− center

kSiV

r = 45 N/m = 2.8087 eV/Å
2

(B9)

kSiV

rr = 17.7 N/m = 1.1047 eV/Å
2

(B10)

kSiV

rθ = 37.5 N/m = 2.3406 eV/Å
2

(B11)

kSiV

θθ = 3.5 N/m = 0.2091 eV/Å
2

(B12)

kSiV

θ = 47.23 N/m = 2.9479 eV/Å
2

(B13)

Appendix C: Electron-phonon coupling constants
and Gaussian orbitals

The electron-phonon coupling constants given in
Eqs.(12)-(13) can be numerically solved by estimating
the following integral

〈i|
(
∂Ve-Ion

∂uiα

)∣∣∣∣
R0

|j〉 =

∫
R3

ϕ∗i (r)

(
∂Ve-Ion

∂uiα

)∣∣∣∣
R0

ϕj(r) dr,

(C1)
where the electron-Ion potential is modeled by a screen-
ing Coulomb potential given by

Ve-Ion = −
ND∑
i=1

keZie
2

εD|r−Ri|
, Ri = R

(0)
i + ui, (C2)

where ke = 1/(4πε0) is the Coulomb constant, εD = 10 is
the diamond dielectric constant, and the effective charge
Zi = 3.25, 4.15 for carbon and silicon atoms, respectively.
The electronic wavefunctions ϕi(r) are approximated by
symmetrized Gaussian orbitals in order to numerically
solve the integral (C1). In this approximation, the sin-
gle atomic orbitals for the carbon and silicon atoms are
written as linear combinations of the following Gaussian



8

orbitals,

sa =

(
2a

π

)3/4

exp
(
−a|r− ra|2

)
, (C3)

pak =
√

4π

(
2a

π

)3/4

ek · (r− ra) exp
(
−a|r− ra|2

)
,

(C4)

where ek = {x̂, ŷ, ẑ} for k = {x, y, z}. The integral
(C1) can be numerically solved using spherical coordi-
nates (r, θ, φ) and the seed integral is given by

∫
R3

1

r
exp

(
−a|r−A|2

)
exp

(
−b|r−B|2

)
dr = S

erf(
√
c u)

u
,

(C5)

where

S =

(
2
√
ab

a+ b

)3/2

exp

(
− ab

a+ b
|A−B|2

)
, (C6)

c = a+ b, u =
a|A|+ b|B|

a+ b
, (C7)

erf(x) =
2√
π

x∫
0

e−t
2

dt. (C8)

Note that integrals involving p-orbitals can be obtained
by taking the derivative of equation (C5) with respect to
some of the components of the ion positions A or B. The
exponential decay constants of the Gaussian orbitals (C3)
and (C4) are determined by minimizing the error on the
radial probability distribution with respect to the radial
probability distribution of the Slater orbitals. We obtain
a = 1.7105 Å−2 for the carbon atoms and a = 2.9879
Å−2 for the silicon atom.

Appendix D: Dynamical symmetry breaking and
spectral density function

In this section we derive the modified spectral den-
sity function due to dynamical symmetry breaking. Let
V (t) = Vue

−iωpht be a periodic time-dependent operator
which perturbs the localized electronic degree of freedom
of SiV− center. Using time dependent perturbation the-
ory we can define the electronic wavefunctions given in
Eqs.(24)-(25). As a consequence of the mixing effect in-
duced by this external perturbation the effective electron-
phonon coupling must be calculated as follows

λΦe,l − λΦg,l = f(ε) [λe,l − λg,l] + g(ε)λe,g,l, (D1)

where

f(ε) = 1− 2ε2, g(ε) = 4ε
√

1− ε2 cos θ. (D2)
The coupling constants λg,l, λe,l, and λeg,l are the
electron-phonon coupling constants associated to the un-

perturbed electronic states |Ψ(0)
g 〉 and |Ψ(0)

e 〉, respec-
tively. Here θ is an arbitrary phase and ε is a mixing
parameter approximately given by

ε ≈ 〈e|Vu|g〉
~ (ωeg − ωph)

, (D3)

where Vu is the intensity of the periodic perturbation
perturbation, ~ωeg is the electronic gap between the ex-
cited and ground states, and ~ωph is the energy of the
phonon mode. For the SiV− center ~ωeg = 1.68 eV
and Vu � ~ωeg, therefore we expect that |ε| � 1.
By symmetry considerations only phonons with char-
acter odd or even contribute to the effective coupling
constants λe,l − λg,l or λe,g,l, respectively. As a con-
sequence of both symmetry constraints we deduce that
(λe,l − λg,l)λe,g,l = 0 for each lattice mode l. Finally,
taking the limit |ε| � 1 and averaging over the phase the
spectral density function is

J(ω) =
∑
l

(
λφe,l − λφg,l

)2
δ(ω−ωl) = J0(ω)+8ε2Jeg(ω)

(D4)
and we recover the spectral density function given in
Eq.(26).
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Maze, M. Atatüre, and C. Becher, Phys. Rev. Lett 112,
036405 (2014).

21 A. Dietrich, K. D. Jahnke, J. M. Binder, T. Teraji, J. Isoya,
L. J. Rogers, and F. Jelezko, New. J. Phys 16, 113019
(2014).

22 G. Herzberg and E. Teller, Z. Physik. Chem. B 21, 410
(1933).

23 M. Matsushita, A. M. Frens, E. J. J. Groenen, O. G.
Poluektov, J. Schmidt. G. Meijer, and M. A. Verheijen.
Chem. Phys. Lett 214, 349 (1993).

24 E. Londero, G. Thiering, M. Bijeikytė, J. R. Maze, A.
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