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We present results for time-dependent electron transport in a ballistic graphene field-effect tran-
sistor with an ac-driven gate. Nonlinear response to the ac drive is derived utilizing Floquet theory
for scattering states in combination with Landauer-Büttiker theory for transport. We identify two
regimes that can be useful for applications: (i) low and (ii) high doping of graphene under source
and drain contacts, relative to the doping level in the graphene channel, which in an experiment can
be varied by a back gate. In both regimes, inelastic scattering induced by the ac drive can excite
quasi-bound states in the channel that leads to resonance promotion of higher order sidebands.
Already for weak to intermediate ac drive strength, this leads to a substantial change in the direct
current between source and drain. For strong ac drive with frequency Ω, we compute the higher
harmonics of frequencies nΩ (n integer) in the source-drain conductance. In regime (ii), we show
that particular harmonics (for instance n = 6) can be selectively enhanced by tuning the doping
level in the channel or by tuning the drive strength. We propose that the device operated in the
weak-drive regime can be used to detect THz radiation, while in the strong-drive regime it can be
used as a frequency multiplier.

I. INTRODUCTION

Graphene for analogue high-frequency electronics has
been the focus of intense research the last few years,
and is one of the focus areas in the recently published
graphene roadmap1. Two-dimensionality of the material,
high carrier mobility, gate-tunable charge density, and a
unique band structure with massless Dirac electrons are
a few of the properties that make graphene a promis-
ing material in this context2–6. Examples of devices al-
ready produced, with competitive figures of merits, are
field-effect transistors7, frequency doublers8, frequency
mixers9, and detectors10–13.

The electronic mobility has been constantly improv-
ing and ballistic electron transport is today studied in-
tensively. Ballistic transport allows for development of
massless Dirac electron optics, which is the graphene
analogue of usual optics. Electron optics effects that
have been observed include Fabry-Pérot interferences and
snake states14, Veselago lensing15, and so-called whisper-
ing gallery modes in circular p-n junctions16.

For ballistic devices, evidence of hydrodynamic be-
havior has been recently presented: viscous elec-
tron backflow17 and breakdown of the Wideman-Franz
law18,19. This indicates that due to the long elastic
mean free path, and slow electron-phonon relaxation be-
low room temperature, electron-electron interactions can
be the most dominant scattering channel within a certain
temperature window. However, at sufficiently low tem-
peratures (below 100 K) electron-electron interactions
also become weak and, ultimately, at lower temperature,
transport is truly ballistic over long (µm) length scales.

Improved mobility (possibly reaching ballistic trans-
port) is a necessary condition for the development of
high-frequency devices. There has therefore been a

broad interest in the theory of time-dependent trans-
port in graphene in the ballistic transport regime, in-
cluding quantum pumping20–23, nonlinear electromag-
netic response24–33, and photon-assisted tunneling34–40.
In the non-classical regime, when the energy scale ~Ω,
set by the drive frequency Ω (~ is Planck’s constant di-
vided by 2π), and the Fermi energy EF , measured rel-
ative to the charge-neutrality point, are of comparable
magnitude, a variety of interesting quantum mechani-
cal interference and resonance effects become important.
In a recent paper41 we have studied in detail a Fano
resonance38–40,42 induced by a quasibound bound state
on the top gate barrier. We showed how it could be
utilized to develop a frequency doubler for weak or mod-
erate ac drive strength. In this paper we extend this
study to include a more realistic doping profile across the
device as well as strong ac drive. Within a fully quan-
tum mechanical treatment based on Floquet theory and
Landauer-Büttiker scattering theory42–45, we show how
Fano resonances as well as resonant tunneling can be uti-
lized for detection of high-frequency radiation in the THz
range or to generate high harmonics of the ac signal.

The outline of the paper is as follows. In Section II
we give details of the model and the methods of calcu-
lations. This section also includes a characterization of
the dc regime as a prologue to the discussions of time-
dependent transport in the following chapter, as well as
a detailed discussion of the relation between the different
parameters of the model and various possible transport
regimes. In Section III we present results for the weak
ac drive regime, with focus on high-frequency radiation
detection. In Section-IV we present result for the strong
ac drive regime, with focus on high harmonic generation.
Section V summarizes the paper. A few technical results
are collected in the Appendix.
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FIG. 1. (a) Schematics of a graphene field effect transistor,
where a back gate (BG) controls doping of the channel, a
small source (S) - drain (D) bias is applied to generate the
current, which is controlled by the top gate (TG) dc and ac
signals. (b) Potential landscape, including doping of the leads
by the source and drain metallic electrodes.

II. MODEL

Our goal is to establish a relation between intrinsic
electronic transport properties of a ballistic graphene
transistor, depicted in Fig. 1(a), and experimentally con-
trollable physical parameters. Extrinsic (parasitic) ef-
fects due to eventual surrounding circuit elements, must
be dealt with when doing experiments, but can be ne-
glected in an attempt to describe the intrinsic proper-
ties. We make a minimal model based on a number of
assumptions that we outline in the following.

First, we assume that the contacts and gates are ideal,
such that they can be described by the potential land-
scape sketched in Fig. 1(b). We take into account that
the source and drain metallic contacts dope graphene un-
derneath due to work function mismatches. The doping
levels, set by UL and UR, in the graphene source and
drain areas are thereby pinned46. On the other hand, in
the transistor channel region, x ∈ [−L1, L2], the doping
level can be tuned by the back gate potential. We define
the channel Dirac point energy by setting ED = UC (as-
suming absence of e-h puddles), where UC can be tuned
by the back gate. Since we measure energies with respect
to the Fermi level EF = 0 (aligned with the metallic con-
tact Fermi energies), the Dirac point in the channel re-
gion is aligned with the Fermi energy for UC = 0 (the
channel is then charge neutral). In summary, the doping
profile sketched in Fig. 1(b) is given by

U(x) = ULθ(−L1 − x) + URθ(x− L2)

+UC [θ(x+ L1)− θ(x− L2)] . (1)

We assume that the top gate is wide on the scale of
the C-C bond length acc, but short on the scale that the
envelope of the Dirac electron wavefunction varies, which
is given by λD = ~vF /(E − UC), where vF is the Fermi
velocity. For energies E near the Dirac point in the chan-
nel, we have λD � acc. Based on the same arguments
we assume that the doping level is changing slowly near
the contacts on the acc scale but fast on the scale of λD.
These assumptions mean that we can neglect intervalley
scattering in the problem and consider only one valley.
For transport quantities, a factor two for valley degen-
eracy is included in addition to the factor two for spin
degeneracy. The above assumptions also allow us to use
step functions for the doping profile, as in Eq. (1), and
a delta barrier model for the top gate potential. The
effective low-energy Hamiltonian then has the form

H = −iσx∇x+σyky+[Z0 + Z1 cos(Ωt)] δ(x)+U(x), (2)

where we have set the Fermi velocity in graphene equal to
unity, vF = 1, and ~ = 1. The Pauli matrices in pseudo-
spin space (A-B sublattices) are denoted by σx and σy.
We assume the device to be very wide and translationally
invariant along y. Thus any edge effects are negligibly
small and transverse momentum ky is (approximately)
conserved. Above, Z0 and Z1 are respectively static and
dynamic parts of the drive applied at the top gate. The
delta function description of the top gate barrier is ob-
tained as a limiting case of a very high V → ∞ and
narrow D → 0 square barrier, with the product (barrier
strength) V D = Z constant. Note that this theory for
the Dirac quasiparticle envelope wavefunction holds as
long as acc � D � λD.

Wave function solutions have to satisfy the time-
dependent Dirac equation

Hψ(x, ky, t) = i∂tψ(x, ky, t). (3)

The harmonic potential, with frequency Ω, in the Hamil-
tonian H in Eq. (2) allows us to use a Fourier decompo-
sition and construct a Floquet ansatz,

ψ(x, ky, t) = e−iEt
∞∑

n=−∞
ψn(x, ky, E)e−inΩt, (4)

where amplitudes at sideband energies En = E + nΩ
(n integer) are the result of the charge carrier picking
up (or giving up) energy quanta nΩ from the oscillating
barrier. The quasi-energy E is set by the energy of the
particle incident from the source electrode in the scatter-
ing problem. When plugged into Eq. (3) it yields a set
of coupled differential equations for sideband amplitudes
ψn(x, ky, E). The solutions can be derived in a straight-
forward manner by wavefunction matching and collected
into a Floquet scattering matrix describing scattering of
a quasiparticle incoming from left or right reservoir at en-
ergy E and transverse momentum ky. We have collected
all the key steps of the derivation in the Appendix. The
reflection amplitudes rn(ky, E) are given in Eq. (B10)
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and the transmission amplitudes tn(ky, E) are given in
Eq. (B11).

Following the Landauer-Büttiker scattering approach,
the Floquet scattering matrix can be used to compute the
time-dependent conductance G(t) between source and
drain. The conductance is computed in linear response to
the source-drain voltage VSD, but in non-linear response
to the oscillating top gate potential, described by its drive
strength Z1 and frequency Ω. The conductance is also a

function of the static potential landscape, described by
U(x), as well as the static top gate potential quantified by
its barrier strength Z0. We derived the general formula
for G(t) in Ref. 41. Here we choose to present results for
the linear conductance in the right lead at x = L+

2 , i.e.
at the interface with the channel region. The expression
for the conductance (per unit length in the transverse
direction) at zero temperature is then47

G(EF , t) =

∞∑
n=−∞

Gn(EF )e−inΩt, (5)

Gn(EF ) = G∗−n(EF ), (6)

Gn(EF ) =
4e2

h

∫ ∞
−∞

dky
2π

∞∑
m=−∞

η∗(ky, Em − UR) + η(ky, En+m − UR)

2
√
v(ky, Em − UR)v(ky, En+m − UR)

× ei[κ(ky,Em−UR)−κ(ky,En+m−UR)]L2 t†m(ky, E)tn+m(ky, E)
∣∣∣
E=EF

, (7)

where η(ky, E), v(ky, E), and κ(ky, E) are defined in
Eq. (A5). The factor with velocities appears here because
we utilize a scattering basis where elementary waves in
the leads carry unit probability flux. This guarantees
that the scattering matrix coupling incoming and out-
going waves in the leads is unitary. The phase of the
conductance components Gn for n 6= 0 is unimportant
for our discussion and we will present results for |Gn| be-
low. Note that in the static case (i.e. Z1 = 0), the factor
with velocities as well as the phase factor both reduce
to unity and the usual Landauer-Büttiker formula for dc
conductance simply in terms of transmission is obtained.

In the rest of the paper we shall report results for a
symmetric setup with L1 = L2 = L/2 and symmetric
doping profile UL = UR = U . The transmission prob-
abilities are computed for zero back gate voltage, i.e.
UC = 0, as a function of energy E and transverse momen-
tum ky = |E −U | sinϕ parametrized by an impact angle
ϕ. This means that E = 0 corresponds to transmission
at the Dirac point in the channel region. This is a con-
ventional way to present transmission through a poten-
tial landscape. On the other hand, the zero-temperature
linear conductance, computed via Eq. (7), shall be pre-
sented as a function of the channel doping UC (the po-
sition of the Dirac point energy ED). In an experiment,
the channel doping level can be tuned by the back gate
voltage VBG. Since the Fermi energy is pinned to the
metallic source and drain contact Fermi energies, the ra-
dius of the Dirac cone in the graphene leads is constant,
set by the doping level U , while the radius in the channel
is given by UC and varies with back gate voltage. This
choice should correspond to the experimental situation.

A. dc characteristics

We start by analyzing the static case (Z1 = 0) in
order to set the stage for the signatures of the time-
dependent drive that we will study in the following sec-
tions. It is useful to first look at the case with no applied
top gate potential Z0 = 0, thereby highlighting the ef-
fect of the inhomogeneous doping profile. In fact, U(x)
describes a square barrier across the channel of width
L = L1 + L2. We plot the transmission probability
T0(E,ϕ) in Fig. 2(a). The transmission amplitude is gov-
erned by pseudospin matching between regions with dif-
ferent doping. For small angles ϕ the mismatch is negligi-
bly small, thus transmission approaches unity (Klein tun-
neling). The peaks in transmission for large angles ϕ and
negative energies E < −5/L in Fig. 2(a) are analogous to
Fabry-Pérot fringes, i.e. the result of wave interference
between two partially reflecting mirrors (boundaries at
the source and drain in this case). A typical fringe oscil-
lation period is of the order of 2π~vf/L (reinstating the
units). In addition to the two effects described above,
there is a large region where transmission is largely sup-
pressed. It occurs when the waves in the channel region
are evanescent. Their longitudinal momentum compo-

nent κ(ky, E) = ±
√
E2 − k2

y turns imaginary, giving us

a condition on the critical angle of incidence ϕc,

ϕc = arcsin

∣∣∣∣ E

E − U

∣∣∣∣ . (8)

For any |ϕ| > ϕc the waves injected from the electrodes
are evanescent in the channel (x ∈ [−L1, L2]). Note that
Eq. (8) holds for |E| < |E − U |. Otherwise there are
no evanescent waves involved in transport and we may
put ϕc = π/2. The boundary between propagating wave
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FIG. 2. (a) Dc transmission probability as a function of
energy and incidence angle. Electrodes are doped at U =
−10/L, while the gate potentials are zero such that Z0 = 0
and UC = 0. Green dashed lines indicate boundaries to
evanescent regions |ϕ| > ϕc. (b) Transmission probability
in the presence of a top gate dc potential, Z0 = 0.4π. Blue
long-dashed lines indicate resonant tunneling. (c) and (d)
display the connection between evanescent waves at the delta
barrier for off- and on-resonance tunneling, respectively.

transport and evanescent wave transport is indicated by
a green dashed line in Fig. 2(a). The evanescent wave

factor exp(−
√
k2
y − E2L) lowers the transmission proba-

bility in general. However, for energies close to the Dirac
point and small ky (or small L), this factor is still quite
large and evanescent waves can reach between the two
contacts thus giving rise to large transmission probabil-
ity. Transport at E = 0 is achieved exclusively through

evanescent waves. This is the so-called pseudo-diffusive
transport regime.48

When we introduce the static top gate delta barrier po-
tential, Z0 6= 0, additional features appear in the trans-
mission. First, the Fabry-Pérot oscillations are shifted
due to an additional phase shift at the delta barrier, see
Fig. 2(b). More importantly, the delta barrier can host
one bound state at energy

Eb = UC − sgn(Z0)|ky| cosZ0, (9)

that we studied for U(x) = 0 in Ref. 41. In that case, the
bound state does not affect dc transport properties, but
can be excited by ac drive. Here, for finite electrode dop-
ing U 6= 0, the bound state can be excited already in dc.
In fact, in this case it is not a true bound state, rather
a quasibound state with evanescent waves in the channel
region connected to propagating waves in the leads. In
Fig. 2(b) we see that the resonance in T0(E,ϕ) originates
at E = 0 and then disperses with the angle of incidence
ϕ. The resonance can be understood in analogy with
widely studied resonant double barrier tunnelling49,50 in
Schrödinger quantum mechanics. In the analogy, the two
barriers correspond in our case to the two channel regions
between the contacts and the top gate delta barrier, and
the resonant level between the barriers corresponds in
our case to the quasibound state in the delta barrier.
A complimentary point of view of the resonance can be
found in the equations, see Appendix A 3. Off resonance,
exponentially decaying waves with amplitudes a and c
are connected, as sketched in Fig. 2(c). This results in
an exponentially small transmission amplitude. On the
other hand, when the quasibound state is hit, the expo-
nentially decaying wave with amplitude a on one side of
the delta barrier is coupled only to exponentially rising
solution with amplitude d on the other side, as sketched
in Fig. 2(d). The exponential functions thereby cancel in
the expression for the transmission which leads to reso-
nance behavior [c.f. Eq. (A28)].

For the calculation of the conductance in Eq. (7) we
need to integrate the transmission probability over an-
gles. In an attempt to describe the typical experimental
situation we assume that the Fermi energy in the de-
vice and the doping levels in the leads are pinned by
the Fermi energy in the metal contacts, while the back
gate can be used to tune the doping level in the chan-
nel. The zero-temperature conductance as a function
of UC is then computed by integrating the transmission
function T (E,ϕ;UL, UR, UC) over angles at fixed energy
E = 0 (Fermi energy) and fixed UL and UR. We plot the
corresponding view of the angle-dependent transmission
function in Fig. 3(a)-(b). Note that in Fig. 2 we plotted
T (E,ϕ;UL, UR, UC) as a function of E and ϕ for fixed
UC = 0 and fixed UL and UR. The transmission function
as viewed in Fig. 3(a)-(b) corresponds to leads that are
electron-doped (here U = −10/L). Thus, both incoming
waves and scattered waves in the leads are electron-like
(n-type) at the Fermi energy EF = 0. For UC < 0, we
have electron-like waves at EF = 0 in the channel, while
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FIG. 3. (a) Transmission probability in the absence of top
gate barrier (Z0 = 0) for electrodes with pinned doping lev-
els set by U = −10/L, and varying channel doping level UC ,
which defines the position of the Dirac point relative to the
Fermi energy EF = 0. (b) The transmission probability in-
cluding a top gate barrier of strength Z0 = 0.4π. (c) Corre-
sponding angle-integrated dc linear conductances for Z0 = 0
(blue dashed line) and for Z0 = 0.4π (solid black line).

for UC > 0 we have hole-like waves in the channel (p-
type). Therefore, the Fabry-Pérot interference patterns
for positive UC (n-p-n junction) and negative UC (n-n’-n
junction) are different.

In Fig. 3(c) we present the dc conductance as a func-
tion of channel doping level UC . For |UC | < |U | we have
mainly evanescent mode transport, while for larger val-
ues of |UC | we find oscillations due to the Fabry-Pérot
interferences. The resonance peak near UC = 0 (solid
black line for finite Z0) is due to the delta barrier in-
duced quasibound state.

TABLE I. Energy scales within our model and relevant pa-
rameters they are determined by.

U contact doping levels UR = UL = U
UC channel doping level
~vF /L channel length L = L1 + L2

~vF /∆L channel asymmetry ∆L = |L1 − L2|
~Ω drive frequency Ω

B. Parameter regimes

Starting from the dc characterization above, we can
identify several parameter regimes. They can be de-
scribed by different relations between the relevant energy
scales in the problem, listed in Table I. In the dc char-
acterization above, we used ~vF /L as energy scale. Note
that with vF = 1 = ~, energies are measured in units
of L−1. In addition to the relations between the energy
scales in Table I, we have to take into account the oscil-
lating delta barrier strength Z1.

The observed regimes in dc are (c.f. Fig. 3)

I. |UC | ≥ |U |: propagating wave transport

(a) |U | ∼ ~vF /L: clearly visible Fabry-Pérot in-
terferences as a function of UC with period ap-
proximately given by 2π~vF /L

(b) |U | � ~vF /L: very fast oscillations that in
reality would be washed out by inhomogeneity
or temperature smearing

(c) |U | � ~vF /L: the oscillations are too slow (on
the scale of UC ∼ U) to be observed

II. |UC | � |U |: evanescent wave transport (pseudo-
diffusive regime)

(a) U � ~vF /∆L: resonant tunneling is possible
when the channel is not too asymmetric

The dc drive strength Z0 sets the position of the quasi-
bound state in resonant tunneling regime and shifts the
Fabry-Pérot oscillations, but does not define a regime by
itself. We note that both the evanescent wave regime51

and the Fabry-Pérot regime14 have been observed exper-
imentally.

Under ac drive we will in the next sections investigate
the following regimes:

III. Z1 < 1: Weak to intermediate drive

(a) ~Ω & U , low contact doping; with I.a above:
Fano and Breit-Wigner resonances

(b) ~Ω < U , high contact doping; with II.a above:
inelastic resonant tunneling

IV. Z1 > 1: Strong drive

(a) ~Ω & U , low contact doping; with I.a above:
multiple Fano and Breit-Wigner resonances
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(b) ~Ω < U , high contact doping; with II.a above:
inelastic resonant tunneling and high-harmonic
generation

We can estimate from experiments the typical param-
eter values. Contact doping (parameter U) has been
reported52,53 in the range of -100 to 100 meV (corre-
sponding to doping levels of up to 1012 cm−2, either n or
p-type). Typical device channel lengths are from 10 nm
to 1 µm, making the corresponding energy scale ~vf/L
in the range of 1 − 100 meV. The corresponding ballis-
tic flight time from source to drain is τ = L/vF and is
about 1 ps. We note in passing that within Landauer-
Büttiker scattering theory, all relaxation times must then
be longer than this, which is the case at low temperature
and low energies in a ballistic device (mobility µ ≥ 105

cm2/Vs). The driving frequency, ~Ω, is between 0.4-
40 meV for the THz frequency range 0.1− 10 THz. The
drive strength Z1, for Z1 ∼ 1, corresponds to a volt-
age of the order of a meV on the top gate for typical
gate lengths (see the estimate in our previous paper41).
Finally, in the following we assume that temperature is
the smallest energy scale (we put T = 0). With these
numbers, all parameter regimes listed above are within
experimental reach.

III. WEAK TO INTERMEDIATE DRIVE, Z1 < 1

A. Low contact doping: Fano and Breit-Wigner
resonances

In Ref. 41 we studied the case when ~vF /L is the
smallest energy scale, i.e the channel is long. We were
then allowed to assume that evanescent waves can not
reach between the contacts and the delta barrier. In
practice we set U(x) = 0, and let L → ∞. In these
limits, we studied Fano and Breit-Wigner resonances in-
duced by the delta barrier quasibound state and argued
that they can be used to enhance the second harmonic.
In the more general formalism introduced here, we can
ask the question what a small amount of contact dop-
ing U 6= 0 leads to. We present in Fig. 4(a)-(b) the
transmission probabilities T0(E,ϕ) and T2(E,ϕ) for a
small amount of contact doping and large distance to
contacts, |U | = ~vF /L = 0.01Ω. Compared with the re-
sults in Ref. 41 we find a small wedge of evanescent wave
transport in an energy window around E = 0 (outside
the green dashed lines). The transmission of propagat-
ing waves displays fast Fabry-Pérot interferences. The
Fano resonance in T0 and the Breit-Wigner resonance in
T2 [processes sketched in Fig. 4(c)] are however not af-
fected. For increasing contact doping (larger |U |), the
Fabry-Pérot oscillations get stronger and will eventually
interfere with the Fano and Breit-Wigner resonances, but
not destroy them. This holds as long as ~vF /L� Ω. For
shorter contacts, the wedge of evenescent wave transport
around E = 0 widens. When ~vF /L and Ω are of com-

FIG. 4. (a) Direct transmission probability T0(E,ϕ) and (b)
transmission probability to the second side band T2(E,ϕ) for
parameters corresponding to Fig. 2 in Ref. 41 (Z0 = 0.4π,
Z1 = 0.45), but including a small doping of contact leads
U = −0.01Ω relative to the channel (UC = 0). The device
is long, such that ~vF /L = 0.01Ω. (c) Sketches of the Fano
resonance process and the inelastic Breit-Wigner resonance
process identified in Ref. 41 to be responsible for the dip-peak
structure in T0 and the peak in T2, respectively.

parable magnitude, the most important feature in the
transmission is instead resonant inelastic tunneling.

B. High contact doping: inelastic resonant
tunnelling

Let us next consider the resonant tunneling regime.
We assume a symmetric device with L1 = L2, with highly
doped leads, and weakly doped channel, |UC | � |U |,
such that we have evanescent wave transport through
the device. The resonance due to the quasibound state
in the delta barrier studied for dc transport above will
also create resonant inelastic tunneling under ac drive.
The resonance condition for weak drive Z1 � 1 is nΩ =
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FIG. 5. Resonant transmission via evanescent waves for elastic transmission (n = 0) and inelastic transmission to sideband
energies (n = ±1 and n = 2). The parameters are U = −10/L, Ω = 0.45/L, Z0 = 0.5π, and Z1 = 0.1.
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FIG. 6. (a) Dc conductance under ac drive of varying strength
Z1 in a range of channel dopings UC correspondning to evanes-
cent wave transport. The resonance peak for dc is reduced un-
der ac drive and side peaks spaced by multiples of Ω appear
due to resonant inelastic tunneling. (b) Horizontal cuts in the
colormap in (a) at particular values of Z1. The parameters
are Z0 = 0.48π, U = −10/L, and Ω = 0.4/L.

Eb. This leads to promotion of higher-order sidebands as
well as higher harmonics in the conductance that we will
study below.

In Fig. 5 we present the transmission probabilities Tn
for n = 0, ±1, and 2. For T0 in Fig. 5(a) two new
transmission peaks emerge, separated by ±Ω from the
main (0th) peak present already in dc. The side peaks
emerge because of possibility of absorbing/emitting en-
ergy quanta, as shown in panel (b) of the figure. In the
evanescent region, multiple sideband energies can now
satisfy the bound state requirement, thus resulting in a
number of resonant peaks separated roughly by Ω (for
Z0 ≈ π/2). Generally, these peaks are weaker than
the one in the static case, since the bound state con-
tribution is now spread across several channels. Anal-
ogous processes are involved during inelastic scattering
between sidebands, as illustrated in Fig. 5(c) and (d) for
T1, Fig. 5(e) and (f) for T−1, and Fig. 5(g) and (h) for
T2.

In Fig. 6 we present the dc conductance G0 as a func-
tion of channel doping UC for increasing ac drive strength
Z1. The inelastic resonant tunneling processes discussed
above for transmission probabilities result in side peaks
in the conductance spaced by multiples of Ω from the
main resonance peak present in dc. Already for rather
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FIG. 7. (a) Dc conductance under varying ac drive frequency
Ω for the same parameters as in Fig. 6, but with fixed channel
doping UC = 1/L. Inelastic tunneling resonance peaks appear
when a sideband coincides with the quasibound state.

weak drive Z0 ∼ 0.1, several peaks are visible and the
main elastic peak is reduced. This can be traced to the
energy dependence in the matrix on the left-hand side in
Eq. (B11), which is given by a combination of functions in
Eq. (A5) all inversely proportional to energy. The bound
state energy |Eb −UC | is small, which results in division
of small numbers and enhanced effective coupling of side-
bands close to the resonance energy. Thus, the range of
validity of a perturbative approach in small Z1 is limited.

In the literature, when other systems than graphene
have been studied, the conductance is often presented
as a function of ac drive frequency45. That is natu-
ral since there is often no knob corresponding to the
very convenient back gate which can be used to tune
the graphene channel doping level (i.e. the parameter
UC varied above). For comparison, we present in Fig. 7
the dc conductance for varying frequency, keeping the
doping level UC = 1/L, i.e. a hole doped channel. In
this case, we find conductance peaks at frequencies such
that a sideband coincides with the quasibound state, i.e.
nΩ = Eb. Higher order processes are weaker for weak
drive strength Z1, thus the resonance peaks have smaller
amplitudes and widths.

Considering Figs. 6-7 together, it is clear that the de-
vice can be used as a tunable detector. The frequency
Ω of the signal that needs to be detected tells us which
channel doping we should choose (tunable by the back
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FIG. 8. Bessel functions envelopes (dashed lines) and normal-
ized angle-integrated sideband transmissions Tn (solid lines)
for UC = −9/L. The parameters are U = −10/L, Z0 = 0.4π,
and Ω = 1/L.

gate), such that the first sideband is resonant. Then the
dc conductance is monitored to detect the signal.

IV. STRONG DRIVE, Z1 > 1

To understand the system behavior at strong drive it
is useful to look at the transmission probability behavior
as a function of driving strength Z1. Since the δ bar-
rier boundary condition matrix M̌ is directly related to
Bessel functions of the first kind in sideband space, see
Eq. (C10), we can expect transmission amplitudes to also
follow corresponding Bessel functions. To illustrate the
point, we introduce normalized angle-integrated trans-
missions

τn(UC , Z1) =

∫
dϕTn(ϕ,UC , Z1)∫

dϕT0(ϕ,UC , Z1 = 0)
. (10)

Indeed, the general behavior of τn for constant UC fol-
lows that of J2

n(Z1), see Fig. 8. Next, let us discuss how
the resonances described above for weak drive evolve for
strong drive, bearing in mind that the distribution of
sideband amplitudes is in simplified terms given by Bessel
functions.

A. Low contact doping

First, we would like to discuss the evolution of Fano
and Breit-Wigner resonances described above for low
doping U of contacts. We observe multiple Fano res-
onances, c.f. Fig. 9, that are due to the bound state
condition satisfied by sideband waves in the contacts. It
is useful to note, that since we fixed the energy EF = 0
and have UC as our parameter, the evanescent wave re-
gion boundaries for sideband n become horizontal lines
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FIG. 9. Transmission functions Tn(UC , ϕ) for strong drive
Z1 = 1.5 and low contact doping U = 1.2/L. The drive
frequency is Ω = 1/L, and the static barrier strength is Z0 =
0.4π.

given by |ϕ| = φnc where

φnc = arcsin

∣∣∣∣nΩ− U
U

∣∣∣∣ . (11)

Note that this equation holds for |nΩ−U | < |U |. Other-
wise waves are propagating in the contacts for all ϕ and
we can set φnc = π/2. To avoid confusion, we emphasize



10

-0.5

-0.25

0.0

0.25

0.5
/

(a) G0 (Uc , )

0.00

0.05

0.10

0.15

0.20

0.12

0.18

0.24

0.30

0.36

G
0

[4
e2 /h

L]

(b)

0.00

0.05

0.10

0.15

0.20

|G
n

|[
4e

2 /h
L]

(c) n
1
2
3
4

6 4 2 0 2 4 6

UC L

0.0

0.2

0.4

0.6

0.8

W
n

(d)

FIG. 10. (a) Angle resolved and (b) angle-integrated dc con-
ductance for the same parameters as in Fig. 9. (c) First four
ac harmonics, and (d) the relative weight of ac harmonics as
defined in Eq. (12).

that φnc in Eq. (11) defines critical angles for evanescent
sideband waves in the contacts (which do not contribute
to transport), while ϕc in Eq. (8) defines a critical angle
for evanescent waves in the channel (which do contribute
to transport). For parameters used in Fig. 9, only n = 1
and 2 sidebands have evanescent regions. Corresponding
Fano and Breit-Wigner resonances now originate at the
critical angle boundary and disperse with the angle of in-
cidence. As has been shown in our previous work41, Fano

resonances broaden as Z2
1 and their positions change as

the driving strength is increased. We note also that due
to the strong coupling between sidebands for Z1 > 1, the
evanescent region boundary is clearly visible across all
transmission channels. Unlike in the weak driving case,
the zeroth transmission channel stops being dominant
and thus higher sidebands are increasingly important in
the conductance calculation.

Given the strong separation between evanescent and
propagating wave regions as a function of angles in trans-
missions, it leads to a similar pronounced behaviour in
angle resolved conductances, as shown in Fig. 10(a) for
the dc component. After integration over angles, we ob-
serve clear oscillations in the UC-dependence of the dc
conductance, see Fig. 10(b), which are due to the mul-
tiple Fano resonances discussed above. The second and
third harmonics are of equal size as the first harmonic for
Uc corresponding to the resonances, see Fig. 10(c).

It is useful to define a quantitative estimate of the rel-
ative power of ac harmonics as

Wn =
|Gn|
∞∑
n=1
|Gn|

, n ≥ 1. (12)

For simplicity we exclude negative n harmonics in this
estimate, since we know that G−n = G∗n. In Ref. 41 we
discussed weak drive and second harmonic generation. In
Fig. 10(d) we show for strong drive Z1 = 1.5 that both
second and third harmonic can be resonantly enhanced
and become of the same order as the first harmonic for
the case |UC | > |U |. Higher harmonics n > 3 are however
not enhanced above the first harmonic in the regime of
low contact doping U , even for stronger Z1, because the
multiple resonances are not equidistant in energy space.

B. High contact doping

Next, let us study the effect of strong contact doping
(|U | large). See Fig. 11(a) for the angular dependence
of the dc conductance in this case. A clear valley in the
dc conductance is centered at the Dirac point in the cen-
tral region (i.e. around UC = 0), which corresponds to
evanescent wave transport in the channel. The double-
barrier inelastic tunneling resonances at nΩ = Eb result
in a fine comb of equidistant peaks inside the valley. Af-
ter integration over angles, see Fig. 11(b), the dc conduc-
tance shows small oscillations related to the inelastic tun-
neling processes. Note that the weight of the resonance
peak we studied in the absence of ac drive (Z1 = 0) in
Fig. 3(b), has been completely redistributed across the
many peaks of the comb. The peak period (Ω) is the
same for all transmission channels. Therefore, analogi-
cal fine oscillations show up in ac harmonics as well, see
Fig. 11(c).

In Fig. 11(c) we note that for UC corresponding to the
direct double-barrier resonance, the second harmonic is
enhanced above the first harmonic, which is suppressed.
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FIG. 11. (a) Angle resolved, and (b) angle-integrated dc con-
ductance for high contact doping U = −10/L and strong drive
Z1 = 1.5. (c) First few ac harmonics for the same parame-
ters. The drive frequency is Ω = 1/L and the static barrier
strength is Z0 = 0.4π.

By tuning parameters, we can in fact enhance a selected
even n harmonic, as shown in Fig. 12, where we present
the weights Wn as a function of channel doping UC for
increasing drive strength Z1. In panels (a)-(c) we obtain
the n = 2, n = 4, and n = 6 harmonic, respectively.
To emphasize this result, we plot the distribution be-
tween harmonics roughly on resonance (UC = 0.3/L) as
a function of Z1 in Fig. 13. In the whole range of drive
strengths Z1 > 0.25, all odd n harmonics are suppressed,
while even n harmonics are enhanced, one after the other.

For weak drive strength Z1, we can show that G1 is
suppressed while G2 is enhanced through destructive (for
G1) and constructive (for G2) interferences between the
transmission processes responsible for the corresponding
harmonic, c.f. Eq. (7). To explain this behavior, we first
note that Eq. (C9) tells us that sideband amplitudes tn
are proportional to i|n−m|J|n−m|(Z1) to lowest order in
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FIG. 12. High harmonic enhancement for (a) Z1 = 0.5, (b)
Z1 = 2.5, and (c) Z1 = 3.8. The parameters are U = −10/L,
Z0 = 0.48π, and Ω = 0.45/L.

Z1. For instance t0 ∝ J0 and t±1 ∝ iJ1 (symmetric). It
follows that for small Z1 the first conductance harmonic
(before integration over transverse momentum) can be
written as a sum of two terms involving two different
transfer processes:

G1(E,ϕ) ∝ t∗−1(E,ϕ)t0(E,ϕ) + t∗0(E,ϕ)t1(E,ϕ)

= J0J1 [−ic−1(E,ϕ) + ic1(E,ϕ)] , (13)

where c±1 are complex numbers. On resonance, c−1 ≈ c1,
the two terms cancel, and G1 is suppressed. That this
symmetry appears on resonance can be seen from Fig. 5,
where the peaks in T±1(Eb) [panels (c) and (e)], cor-
responding to processes labeled 0 [panels (d) and (f)],
have the same shape and magnitude. Off resonance, the
probabilities T±1(E) are obviously not equal, the two
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FIG. 13. High harmonic enhancement with increasing drive
strength Z1 for UC = 0.3/L, corresponding to on-resonance
transport. The parameters are the same as in Fig. 12.

terms do not cancel, and G1 is not suppressed. For
the enhancement of the second harmonic, we note that
for small Z1 we have G2 ∝ t∗−2t0 + t∗−1t1 + t∗0t2. All
terms consist of real products of the coupling matrix el-
ements Mnm in sideband space. On resonance, for in-
stance t∗−2t0 + t∗0t2 ∝ J0J2(c−2 + c2) with c−2 ≈ c2, and
the two terms sum up constructively because of the real
coupling in sideband space. For stronger drive, the odd
(even) harmonics are suppressed (enhanced) in an anal-
ogous way, where pairs of processes add up destructively
(constructively).

V. SUMMARY

We have presented results for the ac conductance in
a ballistic graphene field-effect transistor with a time-
modulated top gate potential, including an inhomoge-
neous doping profile across the device. We have studied
two regimes, corresponding to (i) low doping of contacts
and (ii) high doping of contacts, relative to the doping
level in the channel (which is tunable by a back gate).
For case (i) we find Fano resonances in direct transmis-
sion and Breit-Wigner resonances in inelastic scattering
to sideband energies. The resonances are due to excita-
tion of quasibound states in the channel, analogous to
what we found in Ref. 41. Here we have shown that
these resonances survive when a moderately varying dop-
ing landscape across the device is taken into account. For
case (ii) we find inelastic tunneling resonances via quasi-
bound states in the top gate barrier potential. For weak
drive, the resonances lead to a large response in the di-
rect current between source and drain already for weak
ac drive on the top gate. We propose that the device
can be utilized as a detector in the THz frequency range.
In addition, for strong drive, inelastic tunneling to mul-
tiple sidebands results in resonant excitation of higher

harmonics nΩ [we demonstrate dominance of n = 6 in
Fig. 12(c)], with n an even number due to an interfer-
ence effect between different tunneling processes. The
harmonic n (even) can be selected either by the back
gate or by tuning the drive strength. In summary, ac
transport in ballistic graphene field-effect transistors is a
rich subject for studying quantum mechanical resonance
phenomena that can possibly also be utilized in applica-
tions such as detectors of THz radiation or to generate
high harmonics.
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Appendix A: Wave solutions - static case

First we derive the wave solutions to the Dirac equa-
tion without time-dependent perturbation. We assume
translational invariance and conserved parallel momen-
tum ky, in which case the Hamiltonian has the form

H0 = −iσx∇x + σyky + Z0δ(x) + U(x), (A1)

where the device doping profile is described by

U(x) = ULθ(−L1 − x) + URθ(x− L2). (A2)

This means that in this derivation we choose the Dirac
point in the device channel, x ∈ [−L1, L2], as reference
level where E = 0 (i.e. UC = 0). The static Dirac
equation

H0ψ(x, ky, E) = Eψ(x, ky, E) (A3)

is straightforward to solve by making a plane-wave ansatz
and find unknown coefficients through boundary condi-
tions. But first it is convenient to introduce a scattering
basis.

1. Scattering basis

Consider the homogeneous case, i.e. Z0 = 0 and
U(x) = 0 in Eq. (A1). The solutions, labeled by ky and
E, can be organized into a scattering basis for right- and
left-moving (along the x-axis) plane waves, as defined by
their group velocities. This scattering basis has the form

ψ→(x, ky, E) =
1√

2v(ky, E)

(
1

η(ky, E)

)
eiκ(ky,E)x,

ψ←(x, ky, E) =
1√

2v(ky, E)

(
1

η̄(ky, E)

)
e−iκ(ky,E)x,

(A4)
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where

η(ky, E) =
κ(ky, E) + iky

E
,

η̄(ky, E) =
−κ(ky, E) + iky

E
,

v(ky, E) =
κ(ky, E)

E
, (A5)

κ(ky, E) = sgn(E)
√
E2 − k2

y

The normalization of these plane waves is such that they
carry unit probability flux along the x-axis, defined as

jx(x, ky, E) = ψ†(x, ky, E)σxψ(x, ky, E). (A6)

That is, we have j→x = 1 and j←x = −1. This scatter-
ing basis is useful in deriving the scattering matrix and
computing the current within the Landauer-Büttiker for-

malism, as we described in detail in Ref. 41 for the case
U(x) = 0.

2. Scattering matrix derivation

Below we solve the scattering problem for quasiparti-
cles at energy E injected from the left contact at con-
served transverse momentum ky given by

ky = |E − UL| sinϕ, (A7)

where ϕ is the incidence angle on the scattering region,
measured with respect to the x-axis. There are four re-
gions in our device: left and right contacts labeled L and
R and left and right channel regions (with respect to the
delta potential barrier) labeled 1 and 2. The scattering
state ansatz si then

ψ(x, ky, E) =


ψ→(x, ky, E − UL) + r(ky, E)ψ←(x, ky, E − UL), x < −L1,

a(ky, E)ψ→(x, ky, E) + b(ky, E)ψ←(x, ky, E), −L1 < x < 0

c(ky, E)ψ→(x, ky, E) + d(ky, E)ψ←(x, ky, E), 0 < x < L2

t(ky, E)ψ→(x, ky, E − UR), x > L2.

(A8)

Note that the doping level in the channel region (UC = 0)
is different from that in the contacts (UL and UR). As a
consequence, the waves can be evanescent in the channel
region. This is included in the ansatz above by allowing
κ(ky, E) in Eq. (A5) to be imaginary. The convention
we use is that Ψ→ denotes a wave evanescent towards
positive x, while Ψ← denotes a wave evanescent in the
opposite direction. This means that if UR 6= UL and
κR = κ(ky, E − UR) turns imaginary, the ansatz above
also holds, although in this case t(ky, E) is not a trans-
mission amplitude. It is then eliminated in favor of the
reflection coefficient r(ky, E), with |r(ky, E)| = 1. This is
not so important in the present discussion, but becomes
important in the following section on ac transport. In
the main text we only consider the special case UR = UL
for simplicity.

The coefficients in Eq. (A8) are found through the
boundary conditions, which are simple wave continuity
at x = −L1 and x = L2, and a pseudospin rotation op-
eration at the delta barrier (c.f. Ref. 41):

ψ(−L−1 , ky, E) = ψ(−L+
1 , ky, E), (A9)

ψ(0−, ky, E) = exp[iZ0σx]ψ(0+, ky, E), (A10)

ψ(L−2 , ky, E) = ψ(L+
2 , ky, E). (A11)

From Eq. (A11) we can obtain c(ky, E) and d(ky, E)
in terms of t(ky, E)

c =

√
v

vR
ηR − η̄
η − η̄

ei(κ
R−κ)L2t (A12)

d =

√
v

vR
η − ηR

η − η̄
ei(κ

R+κ)L2t. (A13)

Note that vR = v(ky, E − UR), and analogous for κR

and ηR (also, vL, κL etc. appearing below are computed
at energy E − UL). The quantities in regions 1 and 2,
computed at energy E, lack superscripts. Above and in
the following we suppress the explicit reference to the
dependences on ky and E unless necessary.

From Eq. (A10) we then obtain a and b in terms of t

a =

√
2v

η̄ − η
(
η̄ −1

)
exp[iZ0σx] ~Bt, (A14)

b =

√
2v

η − η̄
(
η −1

)
exp[iZ0σx] ~Bt, (A15)

where

~B =

[
ηR − η̄
η − η̄

(
1
η

)
e−iκL2 +

η − ηR

η − η̄

(
1
η̄

)
eiκL2

]
eiκ

RL2

√
2vR

.

(A16)
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Finally, from Eq. (A9) we obtain reflection and trans-
mission coefficients

r = ~C T exp[iZ0σx] ~Bt, (A17)

t =
(
~AT exp[iZ0σx] ~B

)−1

, (A18)

where

~A =

[
η̄L − η
η − η̄

(
η̄
−1

)
e−iκL1 +

η̄ − η̄L

η − η̄

(
η
−1

)
eiκL1

]
eiκ

LL1

√
2vL

,

(A19)
and

~C =

[
η − ηL

η − η̄

(
η̄
−1

)
e−iκL1 +

ηL − η̄
η − η̄

(
η
−1

)
eiκL1

]
e−iκ

LL1

√
2vL

.

(A20)
The superscript T in Eqs. (A17)-(A18) denotes transpo-
sition.

3. Double barrier tunneling

Since waves are always propagating inside the delta
potential, the channel regions on either side of it form a
double tunnel barrier when lead regions are highly doped
such that waves are propagating there as well. It is well-
known that the bound state in this structure can lead to
resonances in the transmission amplitude derived above.
To understand it qualitatively we write down a propaga-
tion matrix that relates amplitudes a and b at the left
edge of the channel to amplitudes c and d at the right
edge, see Fig. 2, i.e. (

a
b

)
= Pb

(
c
d

)
(A21)

where

Pb =

(
e−iκL1 0

0 eiκL1

)
D̂

(
e−iκL2 0

0 eiκL2

)
. (A22)

The four elements of the 2×2-matrix D̂ are obtained from
the boundary condition at the delta barrier Eq. (A10) as

D11 =
1

2v

(
−η̄ 1

)
exp[iZ0σx]

(
1
η

)
, (A23)

D12 =
1

2v

(
−η̄ 1

)
exp[iZ0σx]

(
1
η̄

)
, (A24)

D21 =
1

2v

(
η −1

)
exp[iZ0σx]

(
1
η

)
, (A25)

D22 =
1

2v

(
η −1

)
exp[iZ0σx]

(
1
η̄

)
. (A26)

For the case of evanescent waves in the channel, the
wavevector becomes imaginary κ = iκ and Eq. (A22)
takes the form

Pb =

(
D11e

κL D12e
−κ∆L

D21e
κ∆L D22e

−κL

)
, (A27)

where L = L1 + L2 and ∆L = L1 − L2.
For a symmetric system with ∆L = 0, and on reso-

nance, i.e. when the energy E of the scattering state
coincides with the delta barrier bound state Eb, it fol-
lows from the derivation in Ref. 41 [c.f. Eq. (B4)] that
D11 = 0. When that happens, we see that Eq. (A21)
with Eq (A27) leads to

a = D12d, (A28)

b ≈ D21c, (A29)

where we also noted that D22 exp(−κL) � D21. This
shows the cross connection between decaying and explod-
ing solutions illustrated in Fig. 2(d). When transmission
is enhanced to unity, the exponential functions due to
tunneling through the two barriers cancel each other. Off
resonance, this clean-cut cross connection does not occur
and the transmission is exponentially suppressed.

Appendix B: Wave solutions - dynamic case

Let us now derive the Floquet scattering matrix in
presence of an oscillating delta barrier. The Hamiltonian
we consider is

H = H0 + Z1 cos(Ωt)δ(x). (B1)

The time-dependent Dirac equation

Hψ(x, ky, t) = i∂tψ(x, ky, t), (B2)

including a time-periodic potential as in Eq. (B1), can
be solved by making use of the Floquet ansatz:

ψ(x, ky, t) = e−iEt
+∞∑

n=−∞
e−inΩtψn(x, ky, E). (B3)

In analogy with the static case above, this ansatz is made
in each region. Coefficients for transmitted and reflected
waves are then contained in the amplitudes ψn(x, ky, E).
The coefficients are determined through the boundary
conditions. A complication in the dynamic case is the
boundary condition at the oscillating delta barrier, which
mixes amplitudes at different sideband energies En =
E + nΩ. Following Ref. 41, the boundary condition is
best formulated by first introducing a column vector with
the many sideband amplitudes ψn(x, ky, E),

Φ(x, ky, E) =


. . .

ψ−1(x, ky, E)
ψ0(x, ky, E)
ψ1(x, ky, E)

. . .

 . (B4)

The condition to be satisfied at x = 0 is then

Φ(0−, ky, E) = M̌Φ(0+, ky, E),

M̌ = exp

[
iZ0σx ⊗ Γ̌0 + i

Z1

2
σx ⊗ Γ̌1

]
, (B5)[

Γ̌0

]
n,m

= δn,m,
[
Γ̌1

]
n,m

= δn,m+1 + δn,m−1.
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The barrier scatters an incident wave labeled by E and
ky into a linear combination of waves labeled by En and
ky. In the end, when calculating transport properties, we

have to consider only propagating outgoing waves in the
leads, |En−UL| > |ky| and |En−UR| > |ky|. We use the
following ansatz:

ψn(x, ky, E) =


δn0ψ→(x, ky, En − UL) + rnψ←(x, ky, En − UL), x < −L1,

anψ→(x, ky, En) + bnψ←(x, ky, En), −L1 < x < 0,

cnψ→(x, ky, En) + dnψ←(x, ky, En), 0 < x < L2,

tnψ→(x, ky, En − UR), x > L2.

(B6)

The three boundary conditions can be written as

ψn(−L−1 , ky, E) = ψn(−L+
1 , ky, E), (B7)

ψn(0−, ky, E) =
∑
m

M̌nmψm(0+, ky, E), (B8)

ψn(L−2 , ky, E) = ψn(L+
2 , ky, E). (B9)

The steps to solve for the coefficients are analogous to the static case and we do not present them here. The resulting
transmission and reflection amplitudes are computed from

rn =
∑
m

~C T
n M̌nm

~Bmtm, (B10)∑
m

~AT
n M̌nm

~Bmtm = δn0, (B11)

where

~An =

[
η̄Ln − ηn
ηn − η̄n

(
η̄n
−1

)
e−iκnL1 +

η̄n − η̄Ln
ηn − η̄n

(
ηn
−1

)
eiκnL1

]
eiκ

L
nL1√
2vLn

, (B12)

~Bn =

[
ηRn − η̄n
ηn − η̄n

(
1
ηn

)
e−iκnL2 +

ηn − ηRn
ηn − η̄n

(
1
η̄n

)
eiκnL2

]
eiκ

R
nL2√
2vRn

, (B13)

~Cn =

[
ηn − ηLn
ηn − η̄n

(
η̄n
−1

)
e−iκnL1 +

ηLn − η̄n
ηn − η̄n

(
ηn
−1

)
eiκnL1

]
e−iκ

L
nL1√

2vLn
. (B14)

This system of equations for tn(ky, E) reduces for the static case (then only t0 is relevant) to Eq. (A18). For the case
of no contact doping of the leads, i.e. U(x) = 0, these equations reduce to Eq. (B14) in Ref. 41.

Appendix C: Boundary condition Bessel function
expansion

In this section we show that the boundary condi-
tion at the oscillating delta barrier in Eq. (B5) can be
rewritten in terms of Bessel-functions of the first kind.
The matrix elements M̌nm in Eq. (B11) for transmis-
sion amplitudes, which determines the strength of side-
band coupling, thereby decay with increasing |n−m| as
J|n−m|(Z1).

The tensor M̌ in Eq. (B5) that represents the boundary
condition at the delta barrier can be written as,

M̌ = exp
[
iZ0σx ⊗ Γ̌0

]
exp

[
i
Z1

2
σx ⊗ Γ̌1

]
. (C1)

We will rewrite it to highlight the sideband space distri-
bution. We will start by expanding the ac part of it in a

Taylor series,

M̌AC = exp
[
i
Z1

2
σx ⊗ Γ̌1

]
=

∞∑
l=0

(
i
Z1

2
σx

)l
⊗ Γ̌l1

l!
. (C2)

Let us study the off-diagonal matrix Γ̌1 taken to the l’th
power, i.e. Γ̌l1. Its matrix elements are given by binomial
coefficients(

Γ̌l1
)
nm

=
l!

l+|n−m|
2 ! l−|n−m|2 !

(l + 1 + |n−m| mod 2),

(C3)
where |n −m| ≤ l. Matrix elements for |n −m| > l are
zero. Let us now introduce a matrix with unity entries
on its (±d)’th diagonals,

(Γ̌d)nm = δ|n−m|,d. (C4)
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Note that Γ̌0 and Γ̌1 in Eq. (C1) are included in this
definition. Then we can rewrite Eq. (C3) by setting d =
|n−m|. We obtain

Γ̌l1 =

l∑
d=0

l!
l+d
2 ! l−d2 !

(l + 1 + d mod 2)Γ̌d. (C5)

The Taylor series is therefore given by

M̌AC =

∞∑
l=0

l∑
d=0

(iZ1

2 σx)l ⊗ Γ̌d
l+d
2 ! l−d2 !

(l + 1 + d mod 2) (C6)

By introducing a substitution l̃ = l−d
2 we can rewrite it

in a more convenient form

M̌AC =

∞∑
l̃=0

∞∑
d=0

(iZ1

2 σx)2l̃+d ⊗ Γ̌d

(l̃ + d)! l̃!
. (C7)

Using the Bessel function of the first kind series repre-
sentation,

Jd(Z1) =

∞∑
l=0

(−1)l
(
Z1

2

)2l+d
(l + d)! l!

, (C8)

we arrive at

M̌AC =

∞∑
d=0

idJd(Z1)σdx ⊗ Γ̌d. (C9)

Including the dc prefactor, we arrive at

M̌nm = exp[iZ0σx](iσx)|n−m|J|n−m|(Z1). (C10)
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