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Abstract 

Associated with spin-orbit coupling (SOC) and inversion symmetry breaking, Rashba 

spin polarization opens a new avenue for spintronic applications that was previously 

limited to ordinary magnets. However, spin polarization effects in actual Rashba systems 

are far more complicated than what conventional single-orbital models would suggest. By 

studying via first-principles DFT and a multi-orbital k • p model a 3D bulk Rashba 

system (free of complications by surface effects) BiTeI, we find that the physical origin 

of the leading spin polarization effects is SOC-induced hybridization between spin and 

multiple orbitals, especially those with nonzero orbital angular momenta. In this 

framework we establish a general understanding of the orbital mapping, common to the 

surface of topological insulators and Rashba system. Consequently, the intrinsic 

mechanism of various spin polarization effects, which pertain to all Rashba systems even 

those with global inversion symmetry, is understood as a manifestation of the orbital 

textures. This finding suggests a route for designing high spin-polarization materials by 

considering the atomic-orbital content. 
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I. Introduction 

The coupling between the motion of electrons and spins leading to spin polarization 

without external magnetic field is the focus of the emerging field of spin-orbitronics 1, 2, a 

branch of spintronics 3 that encompasses many interesting areas such as the Dresselhaus 4 

and the Rashba 5 effects, spin-orbital toque 6, 7, topological insulation 8, and Majorana 

fermions 9. The idea of control of spin degree of freedom even without external magnetic 

field is based on the fact that in a non- centrosymmetric system, spin-orbit coupling (SOC) 

sets up an effective internal magnetic field that creates spin splitting ܧଵሺ࢑, ՛ሻെܧଶሺ࢑, ՝ሻ 

between spin-up and spin-down components in bands 1 and 2 away from the time-

reversal invariant wavevector K*. Specifically, Rashba spin splitting provides a classical 

scenario of spin topology encoded already in a simplified single-orbital (e.g., one s band) 

Hamiltonian ܪ ൌ ԰૛࢑૛/2݉כ ൅ ൈ ܸ׏ሺߣ ሻ࢑ · ࣌ , where fully spin-polarized bands form 

two oppositely rotating spin loops at Fermi surface. However, the limitation of the single-

orbital model is already acknowledged in areas of condensed matter physics, such as 

strongly correlated systems 10. In real materials with spin coupling to multiple orbitals 

that make up the band eigenstates, the leading SOC spin effects that deviate from the 

classical single-orbital picture include: (i) the spin polarization Sn(k) of each spin-split 

band (n, k) appears to be truncated below its maximum value 100%; (ii) Each branch of 

the pair of spin-split bands (that are degenerate without SOC) experiences different 

degrees of spin truncation away from the time-reversal invariant wavevector K*, resulting 

in a net spin polarization for the band pair (iii) The Rashba bands with two loops of 

energy contours can have identical helicities of spin texture. These effects were studied 

primarily in two-dimensional (2D) metallic surfaces — the classic Rashba systems 11-17. 

Effect (i) and (ii) were theoretically discussed for freestanding Au(111) films 11, and in 

BiAg2 metallic surface alloys 12, 17, while effect (iii) was predicted in the unoccupied 

bands of Bi/Cu(111) 13 and Bi/Ag(111) 15 surface alloys. The physics behind these 

intriguing spin effects was briefly touched upon in the context of 2D Rashba metallic 

films as being a consequence of the coupling between spin and different in-plane orbitals 
13, 17. However, in all 2D Rashba platform noted above there is a need for a free surface to 

observe the effects, so ordinary surface effects (such as broken bonds and surface band 
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bending 18) can cloud the intrinsic mechanism of these spin effects to be well 

established14. 

    By extending the spin effects (i)-(iii) from the originally studied 2D metallic Rashba 

systems to 3D surface-free bulk Rashba semiconductors, we provide two pertinent 

generalizations: (a) We use the construct of orbital texture [a k-space map ܫ௡ሺ௟,௠ሻሺ݇௫, ݇௬ሻ of 

the content of orbital ml in band n, see Eq. (1)] familiar from topological insulators 19-23. 

We point out that the effect of switch in orbital texture between two bands is common to 

topological insulators and to 3D Rashba semiconductors. Specifically, in the 

topologically-trivial bulk Rashba semiconductor the orbital textures of different Rashba 

bands switches from “radial” to “tangential” (with respect to the energy contour) 

character at the band crossing wavevector K*, in full analogy with the phenomena 

previously observed 20, 23, 24 and calculated 22, 23 at the surfaces of 3D topological insulator 

(TI) Bi2Se3. Thus, the switch of orbital texture and indeed effects (i)-(iii) are not specific 

to topological or Rashba effects, but originate fundamentally from the fact that energy 

bands in complex solids invariably show a mixture of different azimuthal total orbital 

angular momentum (OAM) mj, and that SOC can induce hybridization specifically 

between spin and multiple orbitals especially those with nonzero ml, respectively. (b) We 

show that the spin polarization truncated by multiple orbital hybridization can be 

generalized even to systems with global inversion symmetry, manifesting the “hidden 

spin polarization effect” 25. The understanding of effects (i)-(iii) and their reflection in the 

switch in orbital texture could provide better design guidelines for material selection and 

for spin manipulation in actual material application, e.g., electron confinement induced 

by spin-flip backscattering 17 and spin-galvanic effect 26, 27. 

We reached these conclusions by applying density functional theory (DFT) and a 

multi-band k • p model to a 3D bulk Rashba compound BiTeI 28. We find that within the 

six energy bands near the Fermi level (EF) there are (i) large spin truncation per band  at 

the band crossing wavevector  K* with the residual spin polarization ranging from 0% to 

85% far greater than the ~5 % seen in Au [111] surface; (ii) a net spin polarization of 

band pairs up to 50% for the top two valence bands, and (iii) identical spin-rotating loops 

at the occupied bands that can be examined by future angle-resolved photon emission 

spectroscopy (ARPES) measurements.  
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II. Methods  

    We use the density functional theory (DFT) with the projector-augmented wave (PAW) 

pseudopotential 29 and the generalized gradient approximation to exchange and 

correlation of Perdew, Burke and Ernzerhof (PBE) 30. The plane wave basis set size 

reflected in energy cutoff is 500 eV, and the total energy minimization was performed 

with a tolerance of 10−5 eV. Spin-orbit coupling is calculated self-consistently by a 

perturbation ∑ ௟ܸௌைܮሬԦ௜,௟,௠ · Ԧܵ|݈, ݉, ,݈ۦۧ݅ ݉, ݅| to the pseudopotential 31, where |݈, ݉, ݅ۧ is the 

angular momentum eigenstate of i-th atomic site. The orbital intensity and orbital-

dependent spin polarization is calculated by projecting the wave functions ߰௡ሺ࢑ሻ with 

plane-wave expansion on the orbital basis (spherical harmonics) of each atomic site, as 

written in the following: 

Orbital intensity: ܫ௡ሺ௜,௟,௠ሻሺ࢑ሻ ൌ ,݈|ሻ|ሺ࢑௡ሺ߰ۦ ݉, ,݈ۦۧ݅ ݉, ݅|ሻ|߰௡ሺ࢑ሻۧ.               (1) 

Orbital-dependent spin polarization: ܵ௡ሺ௜,௟,௠ሻሺ࢑ሻ ൌ ,݈|۪࣌ሻ|ሺ࢑௡ሺ߰ۦ ݉, ,݈ۦۧ݅ ݉, ݅|ሻ|߰௡ሺ࢑ሻۧ.  (2) 

Where n, k and ࣌ denote band index, momentum and Pauli matrix, respectively. Note 

that in this study we only distinguish different |݈, ݉ۧ states by adding up all the sites. All 

these features are implemented in the Vienna ab initio package (VASP) 32. 

III. Truncated spin polarization, net spin polarization and spin texture in BiTeI  

    This compound is a 3D bulk semiconductor [space group P3m1, see Fig. 1(a)] that 

manifest strong SOC, the ensuing orbital hybridization, and a polar field due to the 

positively charged Bi-Te layer that connects to the negatively charged iodine layer. The 

consequent Rashba spin-split bands 28, 33 from DFT calculations are shown in Fig. 1(b). 

We focus on the top four hole bands VB1-VB4 (going down from EF) and bottom two 

electron bands CB1-CB2 (going up from EF) around the K* = A(0,0,0.5) wavevector. The 

spin polarization Sn(k) (n = VB1-VB4, CB1-CB2) along ky direction is shown in Fig. 1(c). 

In what follows we discuss spin effects (i)-(iii) in bulk BiTeI: 

(i) Truncation of single band spin polarization: The band-by-band spin polarization is 

calculated as the expectation value of the spin operator in each of the six spin-split bands 

at the wavevector K*. We find that the magnitude of spin polarization is below the 
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maximal magnitude of 100%. For VB1, VB2 and CB1, CB2 the spin polarization is ±85% 

and ±51%, respectively, while for VB3, VB4 the spin polarization is 0, i.e., a complete 

quenching of spin. Away from the band crossing wavevector K* the spin polarization of 

VB1 and VB2 evolves quite differently with ky. VB1 is highly spin polarized in the 

considered momentum range up to SVB1 = -96%. while VB2 loses its spin polarization 

rapidly with increasing ky down to SVB2 = 46%.  

    (ii) Net spin polarization of pairs of spin-split bands: If we sum SVB1(k) and SVB2(k) 

(which would add up to zero in the absence of SOC), we find a net spin up of -50% at ky 

= 0.06 Å-1. On the other hand, the sum of SVB3(k) and SVB4(k) reaches 48% at k = 0.06 Å-1, 

while SCB1(k) and SCB2(k) change slightly with k. We note that the position of the net 

polarization peak does not overlap with the energy peak in the band structure which 

locates at k = 0.09 Å-1 in ky direction, suggesting that the spin polarization is not a 

reflection of the eigenvalue dispersion. 

    (iii) Identical directions of spin-rotation in the helical spin texture bands: The band 

pair VB1+VB2 and the pair CB1+CB2 show the classical Rashba-type spin texture, i.e., 

opposite helicities of spin loops. However, as shown in Fig. 1(c) before SVB4 falls below 0, 

SVB3 and SVB4 have the same sign, implying two spin loops with the same helicity in the 

area of |k//| < 0.10 Å-1.  

    All three spin effects discussed above are absent in the conventional single-orbital 

model and thus reflect a manner of the complex interplay between spin and various OAM 

under the regime of SOC. To get a full picture it is useful to consider the orbital texture, 

i.e., the  k-space map ܫ௡ሺ௟,௠ሻሺ݇௫, ݇௬ሻ of the content of orbital ml in band n. 

IV. Orbital texture and its behavior for different bands 

In real solids the orbital content generally varies with the wavevector and band index, 

reflecting the changing symmetry. The orbital intensity is obtained by projecting the 

SOC-relevant band eigenstate (n, k) onto local orbitals on atomic sites as shown in Eq. 

(1). Figures 2(a)-2(d) show the DFT calculated orbital texture given by py orbital 

intensity at different energy contours relative to K*, for VB1 and VB2. We find that for 

VB1 the calculated py orbital texture component is maximal along the ky direction and 
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minimal along kx (where the px orbital dominates the in-plane states). On the other hand, 

for VB2 the py orbital texture component is minimal along ky and maximal along kx. Thus, 

the orbital texture of VB1 and VB2 are different from each other and dominated, by 

radial and tangential in-plane orbital patterns, respectively. This difference leads to a 

radial-tangential orbital texture switch. To trace the switch between these two bands we 

follow Ref. 23 to define the in-plane orbital polarization λ as a function of momentum k 

and band index n as ߣሺ݊, ሻ࢑ ൌ ூሺ௣ೣሻିூሺ௣೤ሻூሺ௣ೣሻାூሺ௣೤ሻ, where ܫ൫݌௫,௬൯ denotes the calculated orbital 

intensity of px,y. Figure 2e shows λ as a function of the in-plane azimuth angle θ (defined 

in Fig. 2b), confirming the switch of the intensity distribution in going from  VB1 to VB2. 

Moreover, the intensity variation fits very well to a sin2θ or cos2θ distribution, with a 

period of π. As shown in Fig. 2f, λ changes the sign as the momentum ky, passing through 

K*, indicating that the radial-tangential switch happens exactly at the band crossing 

wavevector. For VB3 and VB4 the orbital textures also have a switch between tangential 

and radial characters at K* (see Fig. 3a and b). On the other hand, in CB1 and CB2 both 

Bi and Te atoms have considerable px,y components, but with different orbital textures. 

For px,y orbitals of Bi atom there is a radial-tangential switch from CB1 to CB2, while for 

px,y orbitals of Te atom the orbital switch has an opposite trend, i.e., tangential-radial (see 

Fig. 3c-f). This observation agrees closly with the recent ARPES measurement by King 

et al. on the conduction surface state of BiTeI 34, and further confirms that such intriguing 

behavior comes from the intrinsic bulk state rather than any surface effects.  

V. Universality of orbital texture in bulk Rashba and surface of TI revealed by k • p 

modeling  

    The orbital texture switch between two bands at K* in the topologically-trivial 

semiconductor bares an interesting analogy to the recently observed angle-resolved 

photon emission spectroscopy (ARPES) measurements 20, 23 and DFT calculations 22 at 

the surfaces of TI Bi2Se3. Here we use a multi-orbital k • p model to illustrate how 

mixing orbitals of different ml and mj couple with spin and lead to the orbital texture 

switch and the spin polarization effects (i)-(iii). The crucial basis set represented in terms 

of mj is obtained in DFT; we now explicitly isolate it from all other DFT bands in k • p 

model below. Taking VB1 and VB2 as an example, we consider the SOC Hamiltonian as 
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a perturbative form ܪோ ൌ ௬݇௫ߪሺߙ െ  ௫݇௬ሻ that is valid for both Rashba bulk and TIߪ

surface 22, and thus write the wavefunctions in the vicinity of K* as: 

,1ܤܸ| ݇ۧ ൌ ଵ√ଶ ሺඥ1 െ ߱௏஻ଶ ൅ ۧܪܮ|௧۪ۧ݌|௏஻݇ሻߤ ൅ ሾ ௜√ଶ ሺെඥ1 െ ߱௏஻ଶ ൅ ߭௏஻݇ሻ|݌௥ۧ ൅ ሺ߱௏஻ െߦ௏஻݇ሻ|ܼۧሿ۪|ܴ(3)       ۧܪ  

,2ܤܸ| ݇ۧ ൌ ଵ√ଶ ሺെඥ1 െ ߱௏஻ଶ ൅ ۧܪܴ|௧۪ۧ݌|௏஻݇ሻߤ ൅ ሾ ௜√ଶ ሺඥ1 െ ߱௏஻ଶ ൅ ߭௏஻݇ሻ|݌௥ۧ ൅ ሺ߱௏஻ ൅ߦ௏஻݇ሻ|ܼۧሿ۪|(4)        ۧܪܮ 

Where the in-plane p orbital basis are tangential |݌௧ۧ ൌ െ sin ௫ۧ݌|ߠ ൅ cos ߠ ௬ൿ݌|  and 

radial |݌௥ۧ ൌ cos ௫ۧ݌|ߠ ൅ sin ߠ ௬ൿ݌| ; |ܼۧ ൌ ߱௦|ۧݏ ൅ ߱௭|݌௭ۧ  with |߱௦|ଶ ൅ |߱௭|ଶ ൌ 1 ; the 

spin basis are eigenstates of ܪோ, i.e., LH and RH helical spin states |ۧܪܮ ൌ ଵ√ଶ ൬݅݁ି௜ఏ1 ൰ 

and |ܴۧܪ ൌ ଵ√ଶ ൬െ݅݁ି௜ఏ1 ൰; and ߱௏஻ , ߭௏஻ ௏஻ߦ ,  are the wavefunction coefficients that are 

band-dependent. More details on these wavefunctions can be found in Appendix. By 

calculating the difference of pt and pr intensity and omitting the higher-order k term we 

find that ሾݐ݊ܫሺ݌௧ሻ െ ௥ሻሿ|௏஻ଵሺ௏஻ଶሻ݌ሺݐ݊ܫ  ൌ േ|݇|ሾඥ1 െ כܤܸߤଶሺܤܸ߱ െ ሻכܤܸ߭ ൅ ܿ. ܿ. ሿ        (5) 

From the modeling wavefunctions Eq. (3) and (4) and the difference of pt and pr intensity 

shown in Eq. (5), clear evidence is provided that the dominant in-plane orbital is different 

for the two spin-split valence bands, in other words the radial-tangential orbital texture 

switches at k = 0, i.e., the band crossing point K*. The model also reveals that the 

symmetry lowering away from K* permits the mixing of new mj = ±3/2 (|൅۪ۧ|՛ۧ and |െ۪ۧ|՝ۧ, or “heavy hole” like) components into the K* wavefunctions (mj = ±1/2 for the 

VB1 and VB2 of BiTeI), leading to the orbital texture switch.  

Benefiting from the truncated basis set represented in terms of mj, as distilled from the 

all-orbital DFT representation, we conclude that the underlying physical origin of the 

common behavior in both TI and non-TI materials is the SOC symmetry-enforced 

hybridization of different azimuthal total OAM mj components into band eigenstates. 

This hybridization was absent at the high symmetry K* point. Thus, this effect is not 
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limited to topological insulators but is far more general and applies also to Rashba 

compounds that are topological-trivial bulk semiconductors such as BiTeI 34. It is 

noticeable that the orbital switch is generally a small k effect available only in the vicinity 

of K*, where px and py orbitals have equal intensity. Comparing with TI surface states, the 

Hamiltonian of BiTeI has an additional kinetic term ԰ଶ݇ଶ/2݉כ, leading to two parabolic-

like branches with a critical band crossing point. Unlike the TI Dirac cone, the band 

crossing point in a Rashba semiconductor seems trivial, but it still manifests such orbital 

texture switch, indicating the physical origin from the fundamental spin-orbital effects 

rather than the topological feature.  

    From Eq. (5) we can see that the orbital switch for both TI surface and Rashba bulk 

must occur at a critical point (Dirac point in TI and band crossing point in Rashba 

semiconductor) because of the symmetric form of the wavefunctions. However, the 

question of which orbital dominates a certain state depends on the wavefunction 

coefficients, which is material-dependent. Therefore, if the sample is inverted within a 

fixed laboratory frame (like the bottom surface of TI), the orbital texture will remain 

unchanged. On the other hand, the chirality of the spin texture of the Rashba system is 

coordinate-dependent. The helical spin texture will change the chirality by the inversion 

of sample, due to the flip of the polar field inside the crystal. This is analogous to the top 

and bottom surface states of Bi2Se3 in which the spin texture is opposite but the orbital 

texture has the same switching trend. We can also expect the truncated spin polarization 

and uncompensated spin polarization at the same k point for upper and lower Dirac cone 
24, 35-38 from the discussion mentioned above.  

VI. Understanding the spin polarization effects 

Eq. (3) and (4) show that each orbital component couples with a certain spin state, 

forming orbital-dependent spin textures [see Eq. (2)]. Maximal spin magnitude arises 

when every orbital-dependent spin texture co-aligns, i.e., has the same helicity. This 

requires that the band eigenstate be composed exclusively of orbitals with the same 

azimuthal quantum number ml. In real materials where SOC mixes orbitals with different 

ml in one eigenstate (n, k), the corresponding spin polarization is truncated relative to its 

maximal value. Specifically, the tangential in-plane orbital (pt) always couples opposite 
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spin texture to that of radial in-plane orbital (pr), s and pz orbital. At the wavevector A 

with k ՜ 0, pt and pr components have the same intensity but opposite spin pattern and 

thus cancel each other, making the spin polarization S(k՜0) = |߱௏஻|ଶ all contributed by s 

and pz orbital. This scenario gives the truncated spin polarization at K* for all the bands 

shown in Fig. 1c. The total spin polarization summing over all bands is equivalent to the 

value obtained from the contributions of ml = 0 states, e.g., s, pz, and dz
2, etc. This 

statement is valid also in the traditional 2D Rashba systems like Au(111) surface 11, in 

which the surface Rashba bands are nearly exclusively composed by the s and pz states, 

and thus have nearly 100% spin polarization. 

Due to the orbital texture switch, we find from Eq. (3) and (4) that the dominate in-

plane p orbitals of a pair of Rashba bands couple to spin textures with the same helicity. 

This fact is confirmed by DFT calculation showing that the dominating radial orbital for 

VB1 and tangential orbital for VB2 both have RH spin texture (see Fig. 4). In BiTeI, the 

wavefunctions of VB1 and VB2 are dominated by s+pz orbitals [Te-pz (~50%), I-pz 

(~13%) and Bi-s (13%)]. We consider here two categories of orbitals classified by ml = 0 

(s and pz for all sites) and ml ≠ 0 (in-plane px and py for all sites) and examine the 

corresponding spin textures coupled by these two classes. The s+pz-dependent spin 

texture has opposite helicity for VB1 and VB2, i.e., VB1 has a right-handed (RH) spin 

texture, while VB2 has a left-handed (LH) spin texture (see Fig. 5). On the other hand, 

the in-plane orbital (px+py) also contributes helical spin textures, but these orbital-

dependent spin textures have the same RH helicity for both VB1 and VB2, as shown in 

the white arrows in Fig. 4a and b. This can also be understood by multi-orbital model Eq. 

(1) and (2), where the pr (pt) orbitals always provide positive (negative) contributions to 

the s+pz-orbital dependent spin textures. Consequently, at a finite k the different intensity 

of pt and pr orbitals for VB1 and VB2 can cause different spin magnitudes to the 

respective bands, and thus a nonzero net spin polarization S1(k) + S2(k). From Fig. 4a we 

find that for VB1 pr dominates the in-plane orbital, so the in-plane spin texture followed 

the radial feature, i.e., RH. On the other hand, for VB2 pt dominates the in-plane orbital 

as shown in Fig. 4b, so the total in-plane spin texture is still RH. Therefore, by summing 

the in-plane orbital contribution and the s+pz orbital contribution to the spin textures, the 
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total spin polarization shows different spin truncation for VB1 and VB2, as shown in Fig. 

1(c).  

    Similar to VB1 and VB2, the degenerate state at A in CB1 and CB2 are also mj = ±1/2 

states. Therefore, they have the form of wave functions analogous to Eq. (3) and (4), but 

with different wavefunction coefficients. DFT shows that the weight of the s+pz orbital 

and in-plane p orbital is about 50%:50% at A [Bi-pz (~35%), Te-px,y  (~27%) and Bi-px,y 

(18%)], leading to ±0.5 spin polarization. The spin textures as well as the px,y and s+pz 

orbital-dependent spin textures for CB1 and CB2 is shown in Fig. 6. We find that the 

total spin texture is predominately contributed by pz orbital, while the px,y orbital-

dependent spin texture is negligible. This is because of the competition between the px,y 

orbital textures of Bi and Te atom. Recalling that the tangential and radial orbitals always 

couple opposite spin textures [see Eq. (3) and (4)], the similar distribution of the two 

kinds of orbitals in each conduction band leads to a cancelling of in-plane orbital-

dependent spin texture (see Fig. 3). In contrast, VB1 and VB2 have less px,y components 

and are mainly from a single source (Te atom), so they manifest a larger spin magnitude 

and non-compensation effect by the same helicity of the in-plane orbital-dependent spin 

textures. 

For VB3 and VB4, pt and pr dominate the whole state around K*, respectively. 

Therefore, VB3 and VB4 bands are mj = ±3/2 states with the corresponding 

wavefunctions at K* containing only in-plane p components: ା۪ۧ|՛ۧ݌|  and |۪ۧି݌|՝ۧ , 

leading to the complete quenching of spin. Consequently, the total spin textures form two 

LH helical spin loops (see Fig. 3). Unlike the case in Bi/Cu(111) 13 and Bi/Ag(111) 15 

surface alloys, these identical spin-rotating loops occur at the occupied bands that is 

detectable by ARPES measurements. 

VII. Effects of different SOC strength 

    To demonstrate that the intriguing spin polarization effects originate from SOC we 

artificially rescaled the strength of SOC with adding a multiplier ∆ on the SOC 

Hamiltonian (∆ = 1 for the real system). The spin magnitude and spin splitting energy ER 

for VB1 and VB2 of BiTeI as a function of ∆ is shown in Fig. 7. Using a small SOC 

strength ∆ = 0.01 and extrapolate the results to ∆ = 0, we find that the two valence bands 
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are degenerated with fully polarized spin-up and spin-down component [S1(k1) = -1 and 

S2(k1) = 1] with the absence of SOC. At this time the A states are composed by pure ml = 

0 orbitals, i.e., s and pz. When increasing ∆, there is a reduction on spin magnitude at k1 ՜ 0, i.e., the A point, due to the mixture of in-plane p orbitals. On the other hand, the 

spin polarizations of VB1 and VB2 apparently compensate with each other at A with 

S1(k1) + S2(k1) = 0, while away form the A point such as k2 = 0.06 Å-1, the sum of spin 

magnitude of the valence bands deviates from zero with the increasing ∆. Therefore, it 

clearly shows that SOC not only manifests an energy splitting between spin polarized 

bands, but also introduces a complex interplay between spin and multi-orbitals leading to 

various spin polarizations effects. 

VIII. Generalizing to systems with inversion symmetry 

The truncated spin polarization and the net polarization effect are illustrated above in a 

Rashba semiconductor BiTeI. However, we are not using any special feature of this 

orbitally-hybridized compound other than SOC-induced (Rashba) spin splitting, and thus 

expect our finding to pertain to a very broad range of such compounds, whether inversion 

symmetry is present or not. In centrosymmetric crystals the spin bands are degenerate in 

E vs k momentum space, but this does not mean that the spins are mixed in position space. 

Correspondingly, the centrosymmetric systems with lower-symmetry sectors could 

manifest a “hidden” form of spin polarization named R-2 effect 25, 39. Like two oppositely 

stacked Rashba layers, in R-2 system there is still finite spin polarization localized on 

each atomic site i that feels inversion-asymmetric environment, and such polarization is 

compensated in k space by another atom forming inversion partner of site i. Therefore, if 

we consider the local spin polarization in real space, i.e., localized on one inversion-

asymmetric atoms or sectors, the spin truncation effects also happen when spin is coupled 

by multi-orbitals with different ml. It is noticeable that the orbital-dependent spin texture 

is robust again small perturbation that breaks the global inversion symmetry such as 

electric fields, which is highly feasible for the detection on experiments.  

We choose a centrosymmetric R-2 material LaOBiS2 (using the reported space group 

P4/nmm) to illustrate the truncation effects. Figure 8(a) and (e) exhibits the projected 

atomic-orbital dependent spin textures of LaOBiS2 on one BiS2 layer of the two-fold 
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degenerated conduction band minimum (CBM) and valence band maximum (VBM), 

respectively. The local spin textures on the other BiS2 layer is exactly opposite formed 25, 

and not shown here. All the spin textures are in the x-y plane, with almost zero z-

component. We observe helical spin for holes but non-helical spin for electrons, 

suggesting Rashba-type polarization (R-2) and the combination of Rashba and 

Dresselhaus effects (R-2 and D-2) for VBM and CBM, respectively. In general, the 

environment of R-2 material contains simultaneously polar field and inversion 

asymmetry, indicating the coexistence of R-2 and D-2 effects, depending on different 

band characters.  

We note that the hole spin is nearly fully polarized with the spin magnitude ~90%, 

while the electron spin is only ~30% polarized. Besides the spin mixture effect due to the 

interlayer coupling (vanished along X-M direction), the reason that leads to the partially 

polarization is the diverse atomic-orbital dependent spin textures. Figure 8b-d and 8f-h 

shows the spin textures from different atomic orbitals within one BiS2 layer. We see all 

the orbital-dependent spin textures are parallel or antiparallel to the total spin texture, and 

they can make either positive or negative effects on the total spin polarization. We 

consider 4 atomic orbitals s, px, py, and pz for each site of one BiS2 layer. Table I shows 

the sign of spin polarization induced by each atomic orbital of different sites, valid for 

both VB and CB. The whole expectation of the local spin is calculated by adding all the 

12 orbital-projected components. Looking into different orbitals, we find that for each 

site, s, px, and pz has the same spin direction, while py always has opposite one, which is 

determined by the band symmetry character around X point. At the X (0, 1/2, 0) point, the 

nonequivalence between x and y direction leads to anisotropic feature between px and py. 

The VBM is mainly composed of Bi-s and S-py states, with the same spin helicity (2 “+”). 

On the other hand, the CBM is dominated by Bi-px and py states, which couple anti-

parallel spin textures (1 “+” and 1 “-”). Therefore, the total spin polarization of electrons 

is strongly reduced comparing with the holes. 

IX. Discussion and design implications  

In the past few years wide areas of physics and material science that related to SOC 

build up the new field spin-orbitronics. By generalizing the previously observed orbital 
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texture switch in TI surface to a bulk Rashba semiconductor, we unveil the deeper 

mechanism of various spin polarization effects that is unexpected in the simple Rashba 

model, and provide a clear picture of the delicate interplay between spin and multi-

orbitals. Our work is also expected to open a route for designing by the atomic-orbital 

feature high spin-polarization materials that are of vital importance for nonmagnetic 

spintronic applications3. For example, in Rashba splitting the in-plane spin drives a 

current perpendicular to the direction of spin polarization induced by the asymmetric 

Elliot-Yafet spin-relaxation, named spin-galvanic effect 26, 27. Since the current is 

proportional to the average magnitude of the spin polarization, the effects of spin 

truncation and that different branches experience different degrees of spin polarization 

could have a more complex impact on the conversion process between spin and current in 

a Rashba system, which calls for further investigation. 
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Fig. 1: (a) Crystal structure and (b) DFT band structure of BiTeI along the high-
symmetric line L(0,0.5,0.5) – A(0,0,0.5) – H(1/3,1/3,0.5). (c) Spin polarization Sn(k) of 
the six bands VB1-4 and CB1,2 along ky direction at the kx = 0 cut. Note that Spin 
polarization at ky < 0 fulfills S1(-k) = -S2(k) due to Kramer’s degeneracy. 
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Fig. 2: (a-d) Orbital texture indicated by py intensity at different energy contours relative 
to the band crossing point, (a,b) for VB1 and (c,d) for VB2. (e,f) In-plane orbital 
polarization λ for (a) different energy contours as a function of the azimuth angle θ 
defined in panel b, and for (f) different spin-splitting bands as a function of the 
momentum ky at the kx = 0 cut. Note that the orbital polarization switch signs exactly at 
the band crossing point ky = 0. 

 



 18

 
Fig. 3: (a,b) The in-plane p-dependent spin textures (white arrows) and orbital texture 

(denoted by py orbital intensity as background colors and the inset on the top right) of 

VB3 (a) and VB4 (b) in the vicinity of the band crossing point. (c,d) The in-plane Bi-p-

dependent spin textures and orbital texture of CB1 (c) and CB2 (d) in the vicinity of the 

band crossing point. (e,f) Same as (c,d) but for Te-p-dependent spin textures of CB1 (e) 

and CB2 (f). 
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Fig. 4: (a,b) The in-plane p-dependent spin textures (white arrows) for VB1 (a) and VB2 
(b). The background color indicates the py intensity. (c,d) Schematic plots for the radial 
orbital texture and the corresponding orbital-dependent spin texture of VB1 (c) and the 
tangential orbital texture and the corresponding orbital-dependent spin texture of VB2 (d). 
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Fig. 5: Orbital-dependent spin texture coupled by in-plane p orbital (px+py) and ml = 0 

orbital (s+pz), and the total spin texture of VB1 (upper row) and VB2 (lower row). The 

background color indicates the out-of-plane spin component Sz. LH (RH) denotes left-

handed (right-handed) in-plane spin texture (Sx, Sy). 
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Fig. 6: Orbital-dependent spin texture coupled by in-plane p orbital (px+py) and ml = 0 

orbital (s+pz), and the total spin texture of CB1 (lower row) and CB2 (upper row). The 

background color indicates the out-of-plane spin component Sz. LH (RH) denotes left-

handed (right-handed) in-plane spin texture (Sx, Sy). 
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Fig. 7: (a) Spin magnitude S1(k1) at k1 = 0+, S1(k2) + S1(k2) at k2 = 0.06 Å-1 along the ky 
direction for VB1and VB2, and the spin splitting energy ER as a function of the strength 
of SOC.  
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Fig. 8: (a) Local spin texture of LaOBiS2 projected on one BiS2 layer for CBM. (b-e) 

Local spin texture for CBM contributed from s, px, py and pz atomic orbitals, respectively. 

(e) Same as (a), but for VBM. (f-j) Same with (b-e), but for VBM. For clarity, the arrow 

scale of (a-e) is twice as that of (e-h). 
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Table I: Direction of atomic-orbital dependent spin textures in the vicinity of X point. S1 and S2 

form in-plane and perpendicular Bi-S bonds, respectively. 

 s px py pz 

Bi + + - + 

S1 - - + - 

S2 + + - + 
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Appendix. k • p wavefunctions of multi-band Rashba model  

    The model starts from the basic spin doublets at the band crossing K* point and 

expands the wavefunctions to a small wave vector k away from K* [Eq. (3) and (4) of the 

main text], to see how different p orbitals couple the spin angular momentum with a LH 

or RH texture. Without the loss of generality, we consider the K* state with the azimuth 

total angular momentum mj being ±½, as the case of VB1 and VB2 in BiTeI (double 

group representation A4). We can therefore write the doubly degenerate states at the A 

point as 33, 40: 

,ସ௩ܣ| ଵଶ඀ ൌ ඥ1 െ ߱௏஻ଶ|൅۪ۧ|՝ۧ ൅ ߱௏஻|ܼ۪ۧ|՛ۧ      (A1) 

,ସ௩ܣ| െ ଵଶ඀ ൌ ඥ1 െ ߱௏஻ଶ|െ۪ۧ|՛ۧ ൅ ߱௏஻|ܼ۪ۧ|՝ۧ         (A2) 

where ߱௏஻ is the wavefunction coefficient that can be determined by DFT calculation. |ܼۧ ൌ ߱௦|ۧݏ ൅ ߱௭|݌௭ۧ  with |߱௦|ଶ ൅ |߱௭|ଶ ൌ 1  and |േۧ ൌ ௫ۧ݌|ሺט േ ௬ൿሻ/√2݌|݅  stand for 

different orbital basis. The |൅ۧ, |െۧ and |ܼۧ basis hold the orbital angular momentum ml 

= 1, -1, and 0, respectively, coupling with certain spin angular momenta to preserve the 

total angular momentum mj. Although the spin splitting happens at the wavevectors away 

from A, the zero-order wave functions at A still need to approximately fit the Rashba 

Hamiltonian ܪோ ൌ ௬݇௫ߪ൫ߙ െ   :௫݇௬൯, written as the matrix form in the followingߪ

ோܪ  ൌ |݇|ߙ ൬ 0 െ݅݁ି௜ఏ݅݁௜ఏ 0 ൰        (A3) 

Therefore, the zero-order wavefunctions at A are written as: 

|VB1, 0 ൅ۧ ൌ 1√2 ሾെ݅݁ି௜ఏ|ܣସ௩, 12඀ ൅ ,ସ௩ܣ| െ 12඀ሿ ൌ 

ଵ√ଶ ሾඥ1 െ െۧ|2ܤܸ߱ െ ݅݁െ݅ܤܸ߱ߠ|ܼۧሿ۪|՛ۧ െ ሾ ଵ√ଶ ݅݁െ݅ߠඥ1 െ ൅ۧ|2ܤܸ߱ െ  ሿ۪|՝ۧ   (A4)ܼۧ|ܤܸ߱

|VB1, 0 െۧ ൌ 1√2 ሾ݅݁ି௜ఏ|ܣସ௩, 12඀ ൅ ,ସ௩ܣ| െ 12඀ሿ ൌ 

ଵ√ଶ ሾඥ1 െ െۧ|2ܤܸ߱ ൅ ݅݁െ݅ܤܸ߱ߠ|ܼۧሿ۪|՛ۧ ൅ ሾ ଵ√ଶ ݅݁െ݅ߠඥ1 െ ൅ۧ|2ܤܸ߱ ൅  ሿ۪|՝ۧ   (A5)ܼۧ|ܤܸ߱
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Using the rotational in-plane coordinate system with tangential, radial direction to present 

the quantum number states |൅ۧ and |െۧ, we have  

ቀ|ାۧ|ିۧቁ ൌ 1√2 ቀെ1 െ݅1 െ݅ቁ ቀ|௣ೣۧ|௣೤ൿቁ ൌ 1√2 ൬ െ݅݁௜ఏ െ݁௜ఏെ݅݁ି௜ఏ ݁ି௜ఏ ൰ ቀݎ݌ݐ݌ቁ   (A6) 

For the spin part, we use |ۧܪܮ and |ܴۧܪ helical spin state to present |՛ۧ and |՝ۧ: 
ቀ|՛ۧ|՝ۧቁ ൌ 1√2 ൬െ݅݁௜ఏ ݅݁௜ఏ1 1 ൰ ቀ|௅ுۧ|ோுۧቁ    (A7) 

Then we can rewrite Eq. (S6) and (S7) as:  

1,0ܤܸ| ൅ۧ ൌ ଵ√ଶ ඥ1 െ ۧܪܮ|௧۪ۧ݌|ଶܤܸ߱ ൅ ሾെ ௜√ଶ ඥ1 െ ௥ۧ݌|ଶܤܸ߱ ൅  (A8)  ۧܪܴ|ሿ۪ܼۧ|ܤܸ߱

2,0ܤܸ| ൅ۧ ൌ െ ଵ√ଶ ඥ1 െ ۧܪܴ|௧۪ۧ݌|ଶܤܸ߱ ൅ ሾ ௜√ଶ ඥ1 െ ௥ۧ݌|ଶܤܸ߱ ൅  (A9)  ۧܪܮ|ሿ۪ܼۧ|ܤܸ߱

These are the zero-order wavefunctions of A states with the azimuth total angular 

momentum mj = ½. Eq. (A8) and (A9) already reveal many observations found by our 

DFT calculation in the main text. For example, the tangential orbital always couples 

opposite spin textures with the radial orbital and s and pz orbitals. Furthermore, at A point 

the tangential and radial orbitals have the same intensity but opposite spin textures 

cancelling each other. Therefore, the spin magnitude at A point is determined by the 

intensity of s and pz orbitals. 

    The first-order wavefunctions at A point involve linear k term, which can be presented 

using k± that have fixed ml = ±1, written as  

,ݒ4ܣ|  12඀ሺଵሻ ൌ ା|ܼۧሿ۪|՝ۧ݇ܤܸܽ ൅ ା|െ۪ۧ|՛ۧ݇ܤܸܾ ൅  ൅۪ۧ|՛ۧ         (A10)|ି݇ܤܸܿ

,ݒ4ܣ| െ 12඀ሺଵሻ ൌ െܸܽି݇ܤ|ܼۧሿ۪|՛ۧ െ ൅۪ۧ|՝ۧ|ି݇ܤܸܾ െ  ା|െ۪ۧ|՝ۧ     (A11)݇ܤܸܿ

where k± = kx ± iky, and ܸܽܤܸܿ ,ܤܸܾ ,ܤ are wavefunction coefficients. Note that we have 

used the conservation of the total angular momentum along the z direction to construct 

the wavefunctions by involving the angular momentum of k± as ±1, while |൅۪ۧ|՛ۧ and  |െ۪ۧ|՝ۧ  themselves are “heavy hole” like components with mj = ±3/2. Similarly, 
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considering the Rashba Hamiltonian the first-order wavefunctions of the valence bands 

are written as 

|VB1, ݇ۧሺଵሻ ൌ 1√2 ሾെ݅݁ି௜ఏ|ܣସ௩, 12඀ ൅ ,ସ௩ܣ| െ 12඀ሿ ൌ 

௜√ଶ ሺܾܸܤ ൅ ۧܪܮ|௧۪ۧ݌|ሻ݇ܤܸܿ ൅ ሾ ଵ√ଶ ሺܾܸܤ െ ௥ۧ݌|ሻ݇ܤܸܿ െ  (A12)    ۧܪܴ|ሿ۪ܼۧ|݇ܤܸܽ݅

|VB2, ݇ۧሺଵሻ ൌ 1√2 ሾ݅݁ି௜ఏ|ܣସ௩, 12඀ ൅ ,ସ௩ܣ| െ 12඀ሿ ൌ 

௜√ଶ ሺܾܸܤ ൅ ۧܪܴ|௧۪ۧ݌|ሻ݇ܤܸܿ ൅ ሾ ଵ√ଶ ሺܾܸܤ െ ௥ۧ݌|ሻ݇ܤܸܿ ൅  (A13)    ۧܪܮ|ሿ۪ܼۧ|݇ܤܸܽ݅

Considering ܤܸߤ ൌ ݅ሺܾܸܤ ൅ ሻܤܸܿ ܤܸݒ , ൌ ܤܸܾ െ ܤܸܿ  and ܤܸߦ ൌ ܤܸܽ݅  and combining zero-

order and first-order wavefunctions Eq. (A8), (A9), (A12) and (A13) together we obtain 

the exact form of Eq. (3) and (4). In addition, only if ܿ௏஻ ൌ 0, i.e., the |൅۪ۧ|՛ۧ and  |െ۪ۧ|՝ۧ  components in Eq. (A10) and (A11) are absent, would avoid the orbital 

switching. Therefore, the origin of the orbital texture switch is attributed to the mixing of 

mj = ±3/2 states.   

 

 

 


