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We present calculations of the lattice constants, structural parameters, bulk moduli, energies
of formation and band structures of Mg-IV-N2 compounds with IV=Si, Ge, Sn using the full-
potential linearized muffin-tin orbital method and the quasiparticle self-consistent GW approach for
the wurtzite based Pna21 crystal structure. The lattice parameters calculated with the generalized
gradient approximation (GGA) are found to be in good agreement (within 1 %) with experiment for
the cases of MgSiN2 and MgGeN2, where data are available. Similar to the Zn-IV-N2 compounds,
MgSiN2 is found to have an indirect gap slightly lower than the lowest direct gap, while the other
materials have direct gaps. The direct gaps, calculated at the GGA lattice constant, range from
3.43 eV for MgSnN2 to 5.14 eV for MgGeN2 and 6.28 eV for MgSiN2 in the 0.8Σ approximation, i.e.
reducing the QSGW Σ by a factor 0.8 and including an estimated zero-point motion correction. The
symmetry character of the valence band maximum states and their splittings and effective masses
are determined. The conduction band minima are found to have slightly higher Mg-s than Si−s like
character in MgSiN2 but in MgGeN2 and MgSnN2, the group-IV-s character becomes increasingly
dominant.

PACS numbers: 71.20.Nr,71.15.Nc

I. INTRODUCTION

The heterovalent ternary nitride materials of formula
II-IV-N2 are of considerable interest to complement the
family of binary group-III nitrides. They are formally
derived from them by replacing the group III element by
alternating group-II and group-IV elements in such a way
as to locally preserve neutrality or the octet bonding rule.
As the III-nitrides occur naturally in the wurtzite struc-
ture, the so-derived compounds are expected to form in
a wurtzite derived ordered superstructure. Several of
these compounds have indeed been found to occur in
the so-called β-NaFeO2 structure, which has the space
group Pna21. Although disordered wurtzite structures,
and a smaller unit cell crystal structure with spacegroup
Pmc21 structure have also been considered,1 the latter
has not yet been observed experimentally. This 16 atom
Pna21 structure is the analog for wurtzite of the ternary
chalcopyrite structure for the zincblende binary. The
chalcopyrite structure is commonly found for other II-
IV-V2 compounds with V other than N. An overview of
the history of these ternary nitride compounds can be
found in Ref. 2.

While some of these materials were already synthesized
in the 1960-70s, for most of them only the crystal struc-
ture was determined at that time and their physical prop-
erties are still largely unknown. In recent years, the Zn-
based compounds, ZnSiN2, ZnGeN2 and ZnSnN2 have
started to be explored as semiconductor materials.3–6

ZnSnN2 was only synthesized in the last few years and
was pursued as a suitable material for photovoltaic appli-

cations because it consists of only sustainable and abun-
dantly available elements and its gap which was initially
estimated to be of order 1.4 eV.7–9 Subsequent work
showed that its gap is actually larger:9 1.7 eV but pos-
sibly disorder can reduce the gap and still make it suit-
able for the intended solar cell applications.10 The band
gap of ZnGeN2 is close to that of GaN and as such suit-
able for opto-electronic and other wide band gap semi-
conductor applications. GaN and related nitrides have
notably found use in light-emitting diodes (LED) and
blue lasers. The importance of the development of white
LEDs for energy conservation was recognized with the
Nobel prize in physics in 2014. The good lattice match
between ZnGeN2 and GaN and similar gaps but with a
sizable band offset11 was shown to be potentially useful
in LED design.12 The defect physics in these materials
is also significantly different from III-nitrides and hence
lends itself possibly to new opportunities for doping.13

Thus, the group II-IV-N2 nitrides add considerable new
flexibility to band gap engineering and defect engineer-
ing. From a fundamental science point of view, the larger
unit cell and lower symmetry leads to a much more com-
plex phonon spectrum14–17 and additional anisotropies
of the near band gap optical properties. The sponta-
neous polarizations and piezo-electric properties of the
Zn-IV-N2 compounds were studied in Ref. 18. The band
structure of the Zn-IV-N2 compounds was calculated us-
ing the quasiparticle self-consistent (QS) GW method by
Punya et al.19.

As these materials contain two cations of different va-
lence, there is more room to explore in chemical param-
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eter space. It is thus of interest to study other group II-
IV-N2 semiconductors. For example, it was already pre-
dicted that CdGeN2 would have a band gap correspond-
ing to the green portion of the visible spectrum.20 On the
other hand, replacing Zn by Mg may be expected to lead
to larger band gaps in the UV region and could thus
possibly be useful to extend the opto-electronic prop-
erties of nitrides into the deeper UV region. While of
course, AlN already has a gap of 6.2 eV it has been found
difficult to dope such a wide gap material and pushing
AlxGa1−xN alloys to deeper UV is hindered by the lattice
mismatch for higher Al concentrations. This forms the
motivation of the present study of Mg-IV-N2 compounds.
Among these materials, MgSiN2 and MgGeN2 have al-
ready been grown21 but as noted before, not much is
known about their physical properties besides their crys-
tal structure. MgSnN2 has to the best of our knowledge
not been synthesized yet. Since the pioneering work of
David et al.,21 MgSiN2 ceramic samples were synthesized
by Bruls et al.22–24 and studied mainly in terms of their
thermal properties as possible substrates for integrated
circuits as a replacement for AlN. Work on ceramic sam-
ples of MgSiN2 was also reported by Lenčèš et al.25 Sev-
eral previous computational studies were performed26–31

but most of these studies used density functional theory
in the local density approximation which is not reliable
for band gaps. The purpose of this study is to start fill-
ing this lack of knowledge by calculating their electronic
band structure with a reliable predictive approach. To
this end we use the so-called quasiparticle self-consistent
GW method.32

II. METHODS

Density functional theory in the local density approx-
imation (LDA) as well as the generalized gradient ap-
proximation (GGA) are used to optimize the lattice con-
stants and atomic positions inside the unit cell. These
calculations are carried out using ABINIT code33. A
plane wave cut-off energy of 80 Hartree and a 4×4×4 k-
point mesh was used. LDA and GGA pseudopotential are
generated from the fhi98PP code (LDA Ceperley-Alder-
Perdew-Wang (1992)34 and GGA-PBE Perdew-Burke-
Ernzerhof (1996)35). The pseudopotentials used were of
the Trouiller-Martins type and generated by the Fuchs
and Scheffler.36

In the self-consistent PBE-GGA band structure cal-
culations, we used a full-potential linearized muffin-tin
orbital (FP-LMTO) method37,38. The Brillouin zone in-
tegration was sampled on a 4× 4× 4 k-point mesh. The
basis set contains two sets of smoothed Hankel function,
decay parameters κ and smoothing radii Rsm. For Mg,
the basis set used consists of s and p functions for the
first κ,Rsm and only s for the second set. In addition
the Mg-2p states were treated as local orbitals. For Si,
Ge and Sn, and N we used an spd-sp set. Adding Mg-d
basis functions had negligible effect on the band gaps and

total energies. The augmentation of the basis functions
inside the muffin-tin spheres, i.e. matching combinations
of radial functions φRl and its energy derivative φ̇Rl at
the linearization energy to the basis envelope function, is
carried out to an lmax = 4.

The quasi-particle band structure is calculated using
the quasi-particle self-consistent GW or (QSGW ) ap-
proach implemented in the same FP-LMTO method as
described in Refs.32, 39, and 40. In this method, the self-
energy Σ(k, ω) calculated from the Green’s function G0

and screened Coulomb interaction W0 corresponding to
a starting Hamiltonian H0 is used to extract a Hermitian
quasiparticle exchange-correlation potential,

V xc−QSGW
ij =

1

2
<[Σij(εi) + Σij(εj)] (1)

in the basis of the eigenstates of H0, which is then added
back to H0 and iterated till convergence. The result is
thus independent of the starting H0 (for which we choose
either LDA or GGA-PBE). A 3× 3× 3 k-mesh was used
for calculating the self-energy, Σij(k, ω). The maximum
energy used for calculating Σij (Ecut) = 2.5 Ryd, above
which it is approximated by a diagonal approximation
and to depend linearly vs. the H0 eigenvalues. The rea-

son for this is explained in Ref. 40. The V xc−QSGW
ij (k)

can then be expanded in the muffin-tin orbital basis set
and Fourier transformed to real space and then inverse
Fourier transformed back to any k-point, either to a finer
mesh or to points along symmetry lines. This allows for
an accurate interpolation of the full QSGW bands and
also to obtain accurate effective masses.

III. RESULTS

A. Lattice constants, energies of formation and
bulk moduli

The lattice constants obtained using LDA and GGA-
ABINIT are given in Table I. For MgSiN2, the
GGA(PBE) and LDA(CAPZ) lattice constants31 calcu-
lated with a plane-wave basis set as implemented in the
CASTEP program are given in parentheses. We can
see that LDA underestimates the volume, while GGA
slightly overestimates it as usual. The deviation of the
lattice constants from the experiment by considering the
volume errors shows that GGA results are closer to the
experiments than those of LDA and those from Ref. 31.
The b/a and c/a seem to be slightly overestimated in
GGA and closer in LDA but even in GGA they differ
by less than 1 %. Thus the band structures and related
properties will be calculated using the GGA(PBE) lattice
constants. For MgSnN2, to the best of our knowledge, no
experimental data are available.

Based on X-ray diffraction, MgSiN2 has space group
Pna21. Each of the atoms, Mg, Si, N1 (above Mg)
and N2 (above Si) occur in Wyckoff (4a) positions,
with reduced coordinates, (x, y, z), (−x,−y, z + 1/2),
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TABLE I. Lattice parameters a, b, and c (Å), lattice volume
V (Å3), the average error with respect to experiment ( σ =
[(V/Vexpt) − 1]/3), lattice constant ratio (aw = a/2) in Mg-
IV-N2.

Compound LDA-ABINIT GGA-ABINIT Expt

MgSiN2 a 6.374 (6.416)a 6.468 (6.508) 6.473 b

b 5.209 (5.219) 5.297 (5.291) 5.272
c 4.923 (4.945) 5.012 (5.015) 4.986
V 163.47(165.58) 171.70 (172.68) 170.15
V

Vexpt
0.96 1.01

σ -0.013 0.003
b/aw 1.635 1.638 1.628
c/aw 1.545 1.550 1.541

MgGeN2 a 6.499 6.639 6.610 c

b 5.389 5.540 5.490
c 5.070 5.212 5.170
V 177.55 191.72 187.61
V

Vexpt
0.95 1.02

σ -0.018 0.007
b/aw 1.658 1.669 1.661
c/aw 1.560 1.570 1.564

MgSnN2 a 6.712 6.905
b 5.746 5.932
c 5.313 5.499
V 204.90 225.23
b/aw 1.712 1.718
c/aw 1.583 1.593

a in parentheses obtained from Ref. 31
b MgSiN2 data taken form Ref. 24
c MgGeN2 data taken from Inorganic Crystal Structure Database

(ICSD).41

(x + 1/2,−y + 1/2, z) and (−x + 1/2, y + 1/2, z + 1/2),
where the origin is chosen to lie on the two-fold screw axes
parallel to the c-axis. The z-location of the origin is arbi-
trary and we choose it to make the z-positions of Mg to
be zero. The parameters describing each type of atom’s
reduced coordinates (x, y, z) and obtained by minimiz-
ing the total energy as function of these parameters by
a molecular statics relaxation using a conjugate gradient
method, are given in Table II. This relaxation was car-
ried out within the GGA(PBE) approach using the FP-
LMTO method after a full relaxation of lattice constants
and internal coordinates using the ABINIT method. The
two methods agree closely on the Wyckoff positions once
the lattice constants are fixed. Our calculated atomic
positions of MgSiN2 obtained from GGA(PBE) are com-
pared with those from Ref.31 and with experimental val-
ues from Ref. 24 in parentheses in Table II. For the other
compounds, no other data are available to compare with.

The average bond-lengths and the formation energies
are reported in Table III and are in good agreement with
Arab et al.31 and experimental data for MgSiN2. We
also obtained the equilibrium bulk moduli and their first
pressure derivatives by fitting the total energy versus vol-
ume per formula unit to the Vinet equation of state.42
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FIG. 1. (Color online) QSGW electronic band structure of
MgSiN2, MgGeN2 and MgSnN2.

The formation energies per formula unit calculated here
are defined with respect to Mg in hexagonal close packed
structure, Si, Ge and Sn in diamond structure and N2 as
gas molecule. The cohesive energies per atom based on
GGA calculations corresponding to Mg, Si, Ge, Sn and
the binding energy of a N2 molecules are −1.42, −5.40,
−4.49, −3.74 and −8.45 eV respectively.
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TABLE II. Wyckoff 4(a) positions (reduced coordinates) in the unit cell.

Compound Atoms x y z

MgSiN2 Mg 0.623 (0.623a, 0.623b) 0.085 (0.084, 0.085) 0.000 (0.000, 0.000)
Si 0.125 (0.125, 0.125) 0.070 (0.070, 0.069) 0.011 (0.012, 0.014)

NSi 0.096 (0.094, 0.096) 0.049 (0.047, 0.049) 0.359 (0.358, 0.362)
NMg 0.655(0.657, 0.655) 0.109 (0.110, 0.109) 0.421 (0.424, 0.425)

MgGeN2 Mg 0.623 0.085 0.000
Ge 0.126 0.074 0.007

NGe 0.108 0.061 0.368
NMg 0.642 0.100 0.404

MgSnN2 Mg 0.624 0.083 0.000
Sn 0.126 0.083 0.003

NSn 0.122 0.079 0.382
NMg 0.627 0.085 0.384

a calculation from Ref. 31
b experiment from Ref.24

TABLE III. Average bond lengths in Å, formation energies ( Ef ) in eV per formula unit, Bulk moduli in GPa and their pressure
derivatives obtained from fitting Vinet equation of state

Compound Mg-N (Å) IV-N (Å) Ef (eV) B(GPa) B’
MgSiN2 2.10 1.76 −7.60 194 4.3

(2.11 [31], 2.09 [23]) (1.75 [31] ,1.75 [23]) (−6.38 [31]) (171 [31]) (3.82 [31])
MgGeN2 2.09 1.88 −4.14 158 4.8
MgSnN2 2.10 2.08 − 3.41 134 4.9

B. Band structures

The band structures of Mg-IV-N2 calculated within the
QSGW method and at the GGA(PBE) lattice constants
are shown in Fig. 1. Their corresponding total and par-
tial wave resolved densities (PDOS) of states are shown in
Fig. 2. The PDOS are summed over all equivalent atoms
in the cell, so over all 4 Mg, all 4 IV and all 8 N atoms.
The reason why they do not add up to the total is that
the total also includes the interstitial contribution. As
expected, they show the upper valence band has mainly
N-2p-bonding character with Mg and group-IV s and p
states. The group-IV s states have their largest contri-
bution to the bonding states in the lower energy region
of the upper valence band, around -8 eV. The density
of states at the bottom of the conduction band is low
because of the large dispersion of the lowest conduction
band (small electron effective mass). It has mostly Mg-s
character in the MgSiN2 case, but also a higher Ge-s and
Sn-s in the corresponding compounds. In fact, inspecting
the actual contribution of the IV-s vs. Mg-s basis func-
tion to the eigenstate of the CBM at Γ, shows that the
ratio of the IV-s contribution to the Mg-s contribution is
0.83 in the case of MgSiN2, 1.48 in the case of MgGeN2

and 2.80 in the case of MgSnN2. This is illustrated for
the case of MgGeN2 in Fig. 3. Please note the different
color scales in both figures which are normalized accord-

ing to the maximum contribution for the Mg-s. Thus
the CBM becomes increasingly more IV-s like as we go
from Si to Ge to Sn, starting out with a a state which is
slightly more Mg-s like.

The band gaps are given in Table IV in various approx-
imations. As mentioned earlier, our band gaps of Mg-
IV-N2 are all calculated at the GGA lattice constants.
The Kohn-Sham DFT-GGA band gaps of MgSiN2 and
MgGeN2 are comparable to those calculated by LDA
and using the PWscf program by Basalaev et al.28 The
QSGW gaps are significantly larger. Because the QSGW
method tends to overestimate the gaps systematically
by its underestimate of the dielectric screening, we re-
port the so-called 0.8Σ result, where the ∆V xc−QSGW =
V xc−QSGW−V xc−GGA is multiplied by a factor 0.8. This
ad-hoc reduction factor has been found to work well to
correct the gaps for most tetrahedrally bonded semicon-
ductors.

We estimate the zero-point motion corrections (∆(0))
using reported values by Cardona and Thewalt43 for the
III-N semiconductors. As pointed out in Punya et al.19

∆(0) is approximately proportional to the band gap it-
self given by ∆(0) = −50 − 31Eg meV in the family of
the III-N compounds. Thus ∆(0) for MgSiN2, MgGeN2

and MgSnN2 are estimated to be −238 (−252), −216 and
−161 meV respectively. We omit the exciton binding en-
ergy since it is only of order 10-20 meV in the related
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FIG. 2. (Color online) Total and partial densities of states :
N-2s, 2p, IV-ns, np, with n = 3, 4, 5 for Si, Ge, Sn, Mg-3s, 3p,
of MgSiN2, MgGeN2 and MgSnN2.

Zn-IV-N2 compounds, which is below the remaining un-
certainty at this point coming from the 0.8Σ approxima-
tion.

Since our band gaps are calculated at the GGA lat-
tice constants which slightly overestimate the experi-
mental values, one expects the gaps to be slightly un-
derestimated. To estimate this effect, we calculate the
band gap deformation potentials (in the GGA). The
band gap deformation potential is the change in gap per
percentage change in volume. The deformation poten-
tials for MgSiN2, MgGeN2 and MgSnN2 are -8.7, -7.7
and -4.4 eV respectively. The minus sign shows that
the band gap decreases when the lattice constant in-
creases. So, for MgSiN2 our lattice volume is overes-
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FIG. 3. (Color on-line) Bands of MgGeN2 near the gap col-
ored according to their Ge-s (top) and Mg-s (bottom) LMTO-
basis-function content. The color scale is normalized to 100%
according to the maximum for the Mg-s in both cases.

timated by 0.009 and the gap could thus be underesti-
mated by 0.009× 8.7 ≈ 0.08 eV. For MgGeN2 our lattice
volume is overestimated by by 0.021, so the gap could be
underestimated by 0.16 eV. So, the uncertainty due to
the lattice constants results in an uncertainty in the gaps
of at most 0.2 eV. The band gap deformation potentials
are included in Table IV. At present no experimental
values are available to compare with.

As expected, the band gaps of the Mg-IV-N2 com-
pounds are significantly larger than those of the cor-
responding Zn-compounds. Interestingly, the MgSnN2

compound has a gap close to that of ZnGeN2 or GaN.
This could be of interest from a sustainability point of
view because MgSnN2 is constituted completely from
widely abundant elements. The other compounds have
gaps which extend their usefulness significantly in to the
deeper UV. The direct gaps of ZnGeN2 and ZnSiN2 cor-
respond to 241 nm and 197 nm respectively. The lowest
direct gap of MgSiN2 is found to be very close to that
of wurtzite AlN. But it has a 0.44 eV lower indirect gap.
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This is due to the shift of the VBM to a different k-point,
namely at the point U in the Brillouin zone. A similar
shift of the VBM away from Γ was found in ZnSiN2, al-
though in that case, the VBM occurs near Y .19

C. Valence band splittings and effective masses

-0.8

-0.6

-0.4

-0.2

 0

 X  Γ  Z  U  R  S  Y  Γ 

 E
n

er
g

y
 (

eV
)

                                        

a
2

a
1

b
2

b
2

b
1

-0.5

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 X  Γ   Z  U  R  S  Y  Γ  

 E
n
er

g
y
 (

eV
)

                                        

a
1

b
2

b
1

-0.5

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 X  Γ  Z  U  R  S  Y  Γ

 E
n
er

g
y
 (

eV
)

                                        

a
1

b
2

b
1

FIG. 4. (Color online) Fine structure of the bands near
the valence band maximum with symmetry labeling at Γ for
MgSiN2, MgGeN2 and MgSnN2.

Next, we inspect the band structure in more detail near
the valence band maximum in Fig. 4. The states at Γ

are labeled according to the irreducible representations
of the C2v group. Here a1 corresponds to z, b1 to x and
b2 to y. The a2 corresponds to xy. We can see that for
the MgGeN2 and MgSnN2 cases, the highest VBM has
a1 symmetry. This is similar to AlN, where the highest
valence band maximum has Γ1 symmetry of wurtzite,
which also corresponds to z axis perpendicular to the
basal plane or along the c-axis of the wurtzite structure.
It is related to c/a value which is lower than the ideal

value of
√

8/3. This determines the sign of the crystal
field splitting to be negative. It is usually defined as
∆c = Γ5−Γ1 in wurtzite structures. In the orthorhombic
structure of the present materials, the wurtzite Γ5 further
splits in a b1 and b2 state. We can see that in both
cases, the b2 > b1 but the splitting is small in the Sn
compound and large in the Ge compound so that the
b2 state ends up closer to the a1 state than to the b1
state below it. In MgSiN2, the situation is more complex
because the actual VBM occurs at U . This is different
from ZnSiN2 where also an indirect gap occurs but with
a VBM near Y . Apparently the lower Si states hybridize
stronger with the N-2p bands and several states of other
symmetry occur at Γ with the actual VBM at Γ having
a2 symmetry. The splittings are summarized in Table V.

In the MgGeN2 and MgSnN2 case, the VBM splittings
and effective masses can be described in terms of an
extension of the Kohn-Luttinger effective Hamiltonian,
generalized in our previous paper19 for the orthorhom-
bic symmetry. In Table VI we give the effective masses
in x, y, z directions for each split VB state, as well as
those of the CBM. Finally in Table VII we give the KL-
parameters for these two materials using the parameters
described in Ref. 19. For MgSiN2, we provide instead
the valence band masses at the actual VBM at U . The
Kohn-Luttinger Hamiltonian in that case does not make
sense as instead a more complex 5 band Hamiltonian (or
10 band Hamiltonian including spin) would be needed to
describe the valence band manifold at Γ. In fact, this
Hamiltonian is less relevant at the actual VBM occurs
450 meV above the one at Γ. This is much larger than
room temperature so holes will likely stay confined to
the neighborhood of the U point. This band is doubly
degenerate and slightly anisotropic.

IV. CONCLUSIONS

In summary, in this paper, we have calculated the lat-
tice constants and structural parameters of the Mg-IV-
N2 family of compounds. They were found to be in good
agreement with experiments and previous calculations for
the MgSiN2 and MgGeN2 cases and provide a prediction
for the MgSnN2 compound which remains to be synthe-
sized. We have calculated their band structures in the
QSGW approximation which provides accurate predic-
tions for the band gaps of these compounds. They are
found to be potentially useful for UV opto-electronics.
The MgGeN2 and MgSnN2 compounds are found to have
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TABLE IV. Band gaps of Mg-IV-N2 compounds in various approximations and band gap deformation potentials.

Compound LDAa GGA 0.8Σ 0.8Σ + ∆(0)b dEg/d lnV
MgSiN2 indirect 4.32 4.01 6.08 5.84 −8.7

direct 4.56 4.44 6.53 6.28
MgGeN2 direct 3.01 2.67 5.36 5.14 −7.7
MgSnN2 direct 1.16 3.59 3.43 −4.4

a from Ref. 28
b ∆(0) is the estimated zero-point motion renormalization correction (see text).

TABLE V. Valence band splittings (in meV) at Γ point, rel-
ative to actual VBM.

symmetry MgSiN2 MgGeN2 MgSnN2

a2 -450.0
a1 -521.1 0 0
b2 -600.0 -73.5 -102.0
b2 -696.6
b1 -829.8 -234.0 -123.8

TABLE VI. Electron effective masses (in units of free electron
mass me); note that in the VBM they are negative, indicat-
ing positive hole masses. For MgSiN2, we indicate the VBM
masses at the U VBM, for the other ones we indicate the
masses of identified state near the VBM.

MgSiN2 MgGeN2 MgSnN2

mc
x 0.32 0.31 0.26

CBM at Γ mc
y 0.33 0.30 0.26

mc
z 0.34 0.28 0.24

ma1
x −2.34 −2.85

ma1
y −3.34 −3.18

ma1
z −0.25 −0.23

mb1
x −0.34 −0.27

VBM at Γ mb1
y −5.40 −4.78

mb1
z −2.83 −3.14

mb2
x −2.20 −3.71

mb2
y −0.29 −0.26

mb2
z −3.40 −3.33

VBM at U mv
x −1.68

in MgSiN2 mv
y −2.27

mv
z −0.82

direct gaps in the UV region, with that of MgSnN2 close
to that of GaN (3.4 eV) and that of MgGeN2 (5.14 eV)

somewhat lower than that of AlN. MgSiN2 is found to
have a direct gap close to that of AlN, (6.3 eV) but has
a substantially lower indirect gap at 5.84 eV. Details of
the valence band splittings due to the lower symmetry
and effective masses were determined.

TABLE VII. Parameters of Effective Hamiltonian : inverse
mass parameters Ai, Bi, Ci (~2/2me), energy splitting (meV).

parameter MgGeN2 MgSnN2

A1 −4.01 −4.41
A2 3.69 4.10
A3 0.03 0.01
B1 −0.36 −0.33
B2 −1.40 −1.67
B3 −0.18 −0.05
C1 −0.06 −0.02
C2 0.11 0.04
C3 1.44 1.76
D1 2.88 3.53

D2,D3 2.08 2.95
∆1c −153.7 −112.9
∆2c −80.3 −10.9
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