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Spin-polarized current through helimagnets and the conductance modulation due to the chirality
mismatch is studied numerically. The one-dimensional spiral magnet structure is obtained by taking
into account the Dzyaloshinskii-Moriya Interaction (DMI) and the Ferromagnetic (FM) interaction.
Although the spiral magnetic structure consists of the y-z components of the magnetization, the
conduction electron through the spiral magnet is polarized in the x direction and its sign depends on
the chirality of the spiral structure. We also investigate the charge transport through the junction
system consists of two helimagnets. Similar to the giant magnetoresistance in the uniform ferromag-
net, the conductance is significantly reduced by attaching the helimagnets with different chiralities.
Our proposed mechanism has a possibility of the chirality measuring method by using an electron
transport and new type of magnetoresistance using a topological property.

I. INTRODUCTION

Recent developments of spintronics field has revealed
that the topological aspect of the local spin configura-
tion induces the nontrivial dynamics of the conduction
electrons.1–6 It is shown that the one-dimensional do-
main wall is moved by the charge current, so-called spin
transfer torque.7–9 This torque is originated from the
additional spin polarization of the conduction electrons
which is polarized to the magnetization direction without
currents. The inverse effect, i.e., the spin dynamics in-
duced charge current, have also been reported in several
magnetic systems with spatial modulations. This spin-
motive force is induced by the dynamics of the magne-
tization chirality.10–19 It has been pointed out that the
nanomagnet with the Dzyaloshinskii-Moriya Interaction
(DMI) shows a microscopic magnetic structure with a
spin chirality. Not only the one dimensional spiral mag-
net but also the two dimensional Skyrmion configuration
are reported experimentally.6,20–24 For one dimensional
helimagnet system, the chirality is distinguished by the
right- and left- handed system which is determined by
the sign of the DMI. The spatial configuration of the
magnetic component is measured by the well-equipped
optical setup.6 The topological aspect of the nanomag-
net is quite useful for developing the spintronics device.

In this paper, we investigate the spin transport through
the helimagnet which forms one dimensional spiral struc-
ture due to the Dzyaloshinskii-Moriya Interaction (DMI).
We obtained the magnetic spiral structure by solving the
Landau-Lifshitz-Gilbert equation numerically. Two dis-
tinguishable state, the Right-handed system(RHS) and
the Left-handed system(LHS) are obtained by choosing

the sign of the DMI. The chirality λ = ( ~M(~r)× ~M(~r+~x))x
is a positive (negative) value for RHS (LHS). By using
the obtained magnetic configuration, we calculate the
conductance and its polarization in the presence of the
exchange interaction between the conduction electrons
and the local magnetic moment. The conduction elec-
tron is almost polarized in the magnetization direction
due to the s-d coupling. Although the spiral structure

is formed in the y-z plane, we found that the spin po-
larization of the conduction electrons has the x compo-
nent. The sign of this additional spin polarization is de-
termined by the chirality of the helimagnet. The spin
polarization becomes larger by increasing the strength
of the DMI. Furthermore, we investigate the transport
properties of the junction system consists of two heli-
magnets. Analogous to the giant magneto resistance of
the uniform ferromagnet,26,27 in which the conductance
decreases by changing the magnetic configuration from
the parallel to the anti-parallel for the magnetic junction
system, one can expect that the conductance decreases
by attaching the different chirality. Our results shows
that the conductance decreases significantly by changing
the chirality of the adjacent helimagnet. We found that
the decreasing of the conductance is enhanced by control-
ling the magnetization angle at the interface. Proposed
system has a possibility of a chirality measurement with-
out optical setup. The conductance modulation of the
chirality mismatch may open the new type of the mag-
netoresistance in the spintronics field.
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FIG. 1: (color online) Schematic view of the helimagnet. (a)

Left-handed system. The chirality (λ = ( ~M(~r)× ~M(~r+ ~x))x)
is negative. (b) Right-handed system (λ > 0). The spatial pe-
riod of the spiral structure is determined by the ratio between
the strength of DMI and the strength of the FM. For calculat-
ing transport properties, the conduction electrons propagates
in the x-direction.
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II. MODEL AND METHOD

A. Magnetic configuration

To calculate the electron transport and the spin po-
larization through the helimagnet, we first solve the
Landau-Lifshitz-Gilbert (LLG) equation for obtaining
the realistic magnetic configuration. The LLG equation
is represented by

∂ ~M(r, t)

∂t
= −γ ~M(r, t) × ~Heff +

α

Ms

~M(r, t) × ∂ ~M(r, t)

∂t
,(1)

where γ = 1.76× 1011 T−1s−1 is the gyromagnetic ratio
and α is the Gilbert damping coefficient. The effective

magnetic field ~Heff = −∂H/∂ ~M is calculated from the
classical Heisenberg model,

H = −Jex
∑

i,j

~Mi · ~Mj +D
∑

i

( ~Mi × ~Mi+x̂ · x̂), (2)

where Jex is the exchange interaction energy between
nearest neighbours site, D is the strength of the DMI.
To obtain the grand state of the magnetic configuration,
we start from the random configuration and solve the
time evolution of the LLG equation with a large damp-
ing coefficient α = 0.1. The forth order Runge-Kutta
method is employed for solving the LLG equation. We
obtain the spiral structure as illustrated in Fig.1. In the
present paper, we fixed the stiffness constant A to 10
pJ/m. The unit cell is 5×5×10 nm3, and the saturation
magnetizationMs is 1 T. The special period of the spiral
magnet is determined by the ratio D/Jex

6,24. By using
the positive (negative) value of the DMI, we obtain the
Right(Left)-handed system.

B. Electron transport through the helimagnet

By using spiral magnetic configuration, we calculate
spin-dependent conductance by employing the recursive
Green’s function method.28 The Hamiltonian of the con-
duction electron is expressed by the tight binding model,

H = −V0
∑

<i,j>,σ

c†iσcjσ − Jsd
∑

i,σ,σ′

c†iσ
~̂σσ,σ′ciσ′ · ~Mi, (3)

where i, j denotes the index of the position. ciσ(c
+
iσ) is

the annihilation (creation) operator of the i cite with

the spin σ. ~Mi is the magnetization of the i cite that
is calculated by the LLG equation. V0(= ~

2/2m∗a) is
the transfer energy of the conduction electrons. a is the
lattice constant and m∗ = 0.067me is the effective mass.
We set the lattice constant to 5 nm so that the transfer
energy is V0 ∼ 23 meV. We employ the 2-dimensional
electron gas system, the conduction electron energy (EF )
exists −4V0 ≤ EF ≤ 4V0. The spin polarization of the
conduction electrons in the ν−direction is defined as

Pν =
Trt̂+σ̂ν t̂

Trt̂+t̂
, (4)

FIG. 2: (color online) The spin polarization of the conduction
electron (Px) through the helimagnet.EF is the Fermi energy
of the conduction electrons. For the positive value of the
DMI, the helimagnet forms the Right-handed system in the
y-z plane. The sign of the Px is determined by the chirality
of the helimagnet.

where t̂ is the transmission matrix represented in the 2×2
spin space.

We also calculate the wave packet dynamics of the con-
duction electrons in the presence of the helimagnet. The
time evolution of wave packet is calculated by using the
kernel polynomial method29–31. The time evolution of
the wave function is given by

|ψ(r, t+ dt)〉 = e−iHdt |ψ(r, t)〉 , (5)

where e−iHdt is the time evolution operator. The time
evolution operator e−iHdt can be expanded by the Cheby-
shev polynomials Tk(H) as

e−iHdt =

∞
∑

k=0

(2 − δk0)(−i)kJk(dt)Tk(H) (6)

where Jk is the k-th order Bessel function of the first
kind. The Chebyshev polynomials Tk(H) is given by

Tk(H) = cos(k arccosH). (7)

|ψk〉 ≡ Tk(H) |ψ0〉 is calculated recursively as

|ψk〉 = 2H |ψk−1〉 − |ψk−2〉 . (8)

For calculating the first time evolution, one set the ψ0 as
a given initial state and ψ1 is given by

|ψ1〉 = H |ψ0〉 . (9)

We take the summation up tp k = 30 in eq.(6) for satis-
fying the unitarity of the wave function.
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III. RESULTS AND DISUCUSSIONS

A. Spin polarized current through the helimagnet

In this section, we discuss the spin polarization of the
conduction electrons through the helimagnet. We show
the spin polarization Px of the conduction electrons as
a function of the Fermi energy of the conduction elec-
trons EF and the strength of the DMI in Fig. 2. The
size of the 2-dimensional system is 300 × 150 nm2 and
the s-d coupling energy Jsd is set to 0.5V0. The spiral
structure forms in the y-z plane and the sign of the chi-
rality λ is determined by the sign of the DMI strength.
In the present calculation, we obtained the Right-Handed
System (RHS) for the positive DMI strength. The con-
duction electron propagates in the x direction. Figure
2 shows that the conduction electrons spin is polarized
in the x direction, and the sign of the spin polarization
is determined by the chirality of the helimagnet. For
the static system without a charge current, the conduc-
tion electrons polarizes parallel to the local magnetiza-
tion. Therefore, this additional spin polarization is due
to the non-equilibrium effect driven by the charge cur-
rent. This additional spin polarization in helimagnets is
known as a spin-transfer torque that induces the magne-
tization dynamics.9 To understand this additional spin
polarization due to the helimagnet, we consider the sim-
ple analytical model of the helimagnet structure as

~M(~r) =M(0, cosλx, sin λx), (10)

where chirality λ represents the winding period of the
spiral structure. The Hamiltonian of the conduction elec-
trons coupling with local magnetic moments is expressed
as the new frame of the SU(2) spin space by using unitary
transformation U ,4

H ′ = U †HU =
(~p− ~̂

A)2

2m
− Jexσ̂

zM, (11)

where
~̂
A = (iλσ̂x/2, 0, 0) is the effective vector poten-

tial originated from the unitary transformation U =
exp(iλσ̂xx/2). The Hamiltonian H ′ indicates that the
conduction spins polarized in the magnetization direc-
tion (the z direction in the new flame), and the vector

potential
~̂
A induces the spin polarization in the x direc-

tion when the electron propagates in the x direction. The
spin polarization is enhanced by increasing the strength
of the DMI as shown in Fig. 2. Because we set the s-d
coupling energy to Jsd = 0.4V0, the spin polarization de-
creases when the Fermi energy of the conduction electron
exceeds the s-d coupling energy (EF > −3.6V0).
We also calculate the time evolution of the wave packet

of the conduction electrons through the helimagnet. The
initial state is the Gaussian wave packet propagating in
the x direction,

ψσ(r, 0) = A sin(
πy

Ly + 1
) exp(ikxx− δk2xx

2

4
)χx

σ, (12)

where the spinor χx
σ is the eigenspinors of the x direction,

χx
↑ =

1√
2

(

1
1

)

, χx
↓ =

1√
2

(

1
−1

)

. (13)

Ly = 150 nm is the width of the 2-dimensional
gas system. A is normalization constant obtained by
〈ψσ(r, 0)|ψσ(r, 0)〉 = 1 and we set the parameters of the
wave packet as δk2x = 0.2 and kx = 0.5. Figure 3 shows
the time evolution of the wave packet in the presence of
the helimagnet of the Right-Handed System(RHS). The
helimagnet exists 200 nm ≤ x ≤ 400 nm. We plot both
the charge density C(r, t) and spin density of the x di-
rection defined Sx(r, t) as

C(r, t) =
∑

σ

〈ψσ(r, t)ψσ(r, t)〉

Sx(r, t) =
∑

σ

〈ψσ(r, t)| σ̂x |ψσ(r, t)〉 . (14)

From the Fig. 3, the additional spin polarization is ob-
tained when the conduction electron propagates in the
helimagnet. We also obtained negative spin polarization
by using the Left-handed system. These results indicates
that the chirality of the helimagnet can be determined by
measuring the spin polarization of the conduction elec-
tron. However, it requires the optical method or well-
fabricated mesoscopic system for measuring the spin po-
larization of the conduction electrons. To overcome this
difficulty, we propose the new method for determining the
chirality of the helimagnet by using the charge transport
through the junction system in the next section.

B. Conductance modulation due to the chirality

mismatch

In this section, we investigate the transport proper-
ties for the junction system which consists of two he-
limagnets. The junction system with different chirali-
ties is naturally obtained in experiments.25 We consider
the conductance modulation due to the switching of the
chirality from the RHS/RHS to the RHS/LHS junction.
The conductance modulation due to the switching of the
relative orientation of the (uniform) magnetic multilayers
is known as a giant magnetoresistance (GMR).26,27 In the
GMR systems, the conductance mismatch occurs at the
interface due to the spin-dependent chemical potential
in each ferromagnetic layer. The relative orientation of
the ferromagnet plays an important role for determining
the magnetoresistance. It is natural to expect the con-
ductance mismatch also occurs at the interface between
helimagnets with different chirality. Fig.4(a) shows the
proposed system which consists of two helimagnets. Both
helimagnets have the y-z component and we define the
angle θ representing the relative angle of two helimagnets
at the interface. To prevent the conduction scattering
at the interface, we set the magnetization is parallel at
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FIG. 3: (color online) Wave packet dynamics thorough the
helimagnet. (a) Initial state (t = 0) of the wave packet. (b)
The wave packet at t = 100t0, where t0(= ~/V0 ∼ 0.028 ps)
is the unit time of the calculation.

the interface θ = 0. The conductance through the junc-
tion system with same (different) chirality is expressed
as GRR(GRL). Fig. 4 shows the conductance modula-
tion (GRR −GRL) as a function of the Fermi energy and
the strength of the DMI. The conduction modulation is
positive except for the DMI< 10−4 J/m2. This means
that the conductance decrease by changing the chirality
of the adjacent helimagnet. By increasing the strength
of the DMI, the modulation of the conductance becomes
large. We found that the negative modulation for the
DMI< 10−4 J/m2 is due to the resonant level scattering
of the quantum well formed at the center of the junction.
For clarifying this effect, we change the magnetization
angle at the interface θ = π to prevent forming the quan-
tum well at the interface. Figure 4(c) shows the conduc-
tance modulation for the case of θ = π. The conductance
modulation is positive in the whole energy region and the
order is ∼ 10 e2/h that is sufficiently large for measuring
in experiments. We note that the conduction reduction
can be obtained in whole energy region. Therefore, the
proposed mechanism is valid for the wide variety of the
material including magnetic metals and magnetic semi-
conductors. This effect can be measured by the charge
conductance and provides the new method for determin-
ing the chirality of the helimagnet without the optical

RHS LHS or RHS

(a)

FIG. 4: (color online) (a) Schematic view of the junction sys-
tem. (b),(c) The conductance modulation GRR − GRL by
changing the chirality of the helimagnet in the junction sys-
tem. The angle at the interface of the junction system is (a)
θ = 0 and (b) θ = π.

technique. We also calculate the wave packet dynamics
for the junction system as shown in Fig. 5. The wave
packet is reflected at the interface of the RHS/LHS junc-
tion system that consists of the conductance calculation.

IV. CONCLUSIONS

We have investigated numerically the spin-polarized
conductance through the one dimensional helimagnet.
The spiral structure of the helimagnet is obtained by
solving the LLG equation with the Dzyaloshinskii-Moriya
Interaction(DMI) and the Ferromagnetic coupling(FM).
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FIG. 5: (color online) Wave packet dynamics thorough the
junction system at t = 100t0. The initial state is the same as
Fig. 3. The wave packet is reflected at the interface of the
junction system RHS/LHS.

We have calculate the spin polarization of the conduc-
tion electrons through the helimagnet. The additional
spin polarization perpendicular to the magnetization di-
rection has obtained and the sign of the polarization is
determined by the chirality of the helimagnet. We have
also investigated the conductance property of the junc-
tion system consists of two helimagnets. We found that
the conductance decreases by changing the the chirality
of the adjacent helimagnet from the RHS/RHS to the
RHS/LHS, where RHS(LHS) is the Right(LHS)-Handed
System. The depression of the conductance becomes
larger by increasing the strength of the DMI. The ef-
fect has been enhanced by changing the magnetization
angle at the interface of the junction system. The wave
packet dynamics also show the spin polarization inside
the helimagnet and the reflection at the interface of differ-
ent chirality. Proposed mechanism opens the possibility
of measuring the magnetic chirality by using the charge
transport and a new type of the magnetoresistance by
using the topological quantity of the non-uniform mag-
net.

Appendix: Spin-dependent transport

The spin-polarization of the conduction electrons
is calculated by the spin-resolved Green’s function
method.28,32,33 The Green’s function including the semi-
inifinite ideal lead that has no magnetic moment is de-
fined as

Ĝ =
1

Ĥ− EÎ− Σ̂
, (A.1)

where Ĥ is the matrix representation of the Hamiltonian
of the system with magnetic moment represented in Eq.
(3), E is the energy of the conduction electrons and Î is

the unit matrix. Σ is the self-energy due to attach the
lead32. We consider the system size as L×W cites, where
L is the system length and W is the system width. The
normal leads are attached at x = 0 and x = L + 1 and
the electron propagates in the +x direction. By using
the amplitude of the wave function Ci = (Ci↑, Ci↓)

T in
the spinor expression at the cite i of the x-coordinate,
the Eq. (A.1) can be rewritten as











C0

C1

...
CN+1











=







Ĝ0,0 · · · Ĝ0,N+1

...
. . .

...

ĜN+1,0 · · · ĜN+1,N+1







×













Û

(

Λ̂− Λ̂
−1

)

Û
†C0 (+)

0
...
0













, (A.2)

where Û is consisted from the eigenmode of the wave-
function in y-direction u1, · · ·uM as

Û = (u1, · · ·uM ) . (A.3)

Λ̂ is the diagonal matrix represented as

Λ̂ =







exp(ik1) · · · 0
...

. . .
...

0 · · · exp(ikM )






, (A.4)

where kj is the wave vector of j-th mode. The transmis-
sion coefficient from the i-th mode of the spin σ to the
j-th mode of the spin σ′ is given by

tjσ′,iσ =

√

vj
vi

(

Û
†
ĜN+1,0Û

(

Λ̂
−1 − Λ̂

))

jσ′,iσ
, (A.5)

where vi is the velocity of the i-th mode. By using these
spin-resolved transmission coefficient, the transmission
matrix is represented as

t̂ij =

(

ti↑,j↑ ti↓,j↑
ti↑,j↓ ti↓,j↓

)

. (A.6)

The conductance from the j-th mode to the i-th mode is

given by G = (e2/h)Trt̂†ij t̂ij , and the poralization of the

conduction electrons is given by Eq.(4).
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