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We here investigate the entanglement structure of the ground state of a (3+1)-dimensional U(1)
quantum spin liquid, which is described by the deconfined phase of a compact U(1) gauge theory.
A gapless photon is the only low-energy excitation, with matter existing as deconfined but gapped
excitations of the system. It is found that, for a given bipartition of the system, the elements of
the entanglement spectrum can be grouped according to the electric flux between the two regions,
leading to a useful interpretation of the entanglement spectrum in terms of electric charges living
on the boundary. The entanglement spectrum is also given additional structure due to the presence
of the gapless photon. Making use of the Bisognano-Wichmann theorem and a local thermal ap-
proximation, these two contributions to the entanglement (particle and photon) are recast in terms
of boundary and bulk contributions, respectively. Both pieces of the entanglement structure give
rise to universal subleading terms (relative to the area law) in the entanglement entropy, which are
logarithmic in the system size (logL), as opposed to the subleading constant term in gapped topo-
logically ordered systems. The photon subleading logarithm arises from the low-energy conformal
field theory and is essentially local in character. The particle subleading logarithm arises due to the
constraint of closed electric loops in the wavefunction and is shown to be the natural generalization
of topological entanglement entropy to the U(1) spin liquid. This contribution to the entanglement
entropy can be isolated by means of the Grover-Turner-Vishwanath construction (which generalizes
the Kitaev-Preskill scheme to three dimensions).

I. INTRODUCTION

In recent years it has become clear that some universal
aspects of the ground states of interacting many particle
systems can be fruitfully understood in terms of quan-
tum entanglement in the corresponding wave function.
For instance under a spatial bipartition fractional quan-
tum Hall states have a universal negative constant term
in their entanglement entropy (subleading to the ubiqui-
tous area law term). This universal piece - known as the
topological entanglement entropy - also appears in other
phases of matter that have topological order1,2. Exam-
ples are gapped quantum spin liquid phases of interact-
ing quantum spins on a lattice. Quantum spin liquids
are fascinating states of matter which exhibit some of
the most exotic phenomena of modern condensed mat-
ter physics. They occur when there are large quantum
fluctuations of the spins which could possibly prevent
ordering into a symmetry broken magnetic state even at
zero temperature. These large fluctuations prevent us
from usefully describing the system in terms of semiclas-
sical fluctuations of the original spin variables.

Quantum spin liquids come in many different varieties.
In a gapped quantum spin liquid, the bulk excitation
spectrum has an energy gap. The low energy effective
theory of a wide class of such gapped spin liquid phases
are discrete gauge theories in their deconfined phase. In
this case the topological entanglement entropy may be
viewed as a partial but universal characterization of such
deconfined discrete gauge theories.

In this paper we are concerned with the entanglement
properties of a class of gapless quantum spin liquids. In
contrast to their gapped cousins, theoretical understand-
ing of gapless quantum spin liquids is much less devel-

oped. Our focus in this paper is on a rather simple gap-
less quantum spin liquid state whose low energy effective
theory is described by a deconfined U(1) gauge theory.
These states of matter are known as U(1) quantum spin
liquids. The excitation spectrum consists of one gapless
quasiparticle - identified with the photon of the gauge
theory - and other quasiparticle excitations that may
be identified with electric and magnetic charges of the
gauge theory. We will here focus on spin liquids where
the electric and magnetic charges are gapped, leaving
the photon as the only gapless excitation.

In 2+1 dimensions, such a state with a gapless photon
and gapped matter is unstable to confinement, as first
demonstrated by Polyakov3. However, in three or higher
spatial dimensions, the U(1) spin liquid can exist as a
stable phase of matter. We shall focus on the case of 3+1
dimensions, since that is the case of physical interest,
though we shall also be able to make some statements
about general dimensions.

These U(1) quantum spin liquids are amongst the sim-
plest examples of gapless spin liquids, and many of their
physical properties are well understood. Amazingly the
gaplessness of the photon is completely protected against
small perturbations to the microscopic Hamiltonian in-
cluding ones that break any global symmetry. This pro-
tection is a consequence of the non-local quantum corre-
lations built into the ground state wave function of this
spin liquid. These correlations enable the emergence of
the deconfined U(1) gauge theory and consequently the
gapless photon. It is natural then to study the entan-
glement structure of the ground state wave function to
characterize these quantum correlations. Our goal is to
show how this entanglement structure is manifested in
the entanglement entropy. For such a gapless spin liq-
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uid is there an analogue of the topological entanglement
entropy that characterizes a gapped spin liquid?

Before stating our main result we briefly recall de-
tails of how the topological entanglement entropy ap-
pears in a topologically ordered state. Consider the en-
tanglement entropy between two macroscopic regions of
the system1,2. The leading behavior of the entanglement
entropy is proportional to the area of the boundary be-
tween the regions. The topological order then manifests
itself (in two or three spatial dimensions) in the form of
topological entanglement entropy, a negative subleading
constant term:

S = αLd−1 − γ + · · · (1)

for some nonuniversal constant α4. (In general, the “· · ·”
can contain other subleading constant terms, not neces-
sarily smaller than γ, particularly in three dimensions.
The topological γ needs to be isolated by a special con-
struction, to be described in Section 5.3, so care must
be exercised in using Equation 1). As we shall discuss
later, this subleading constant arises since the theory is
one of closed loops. The information that loops do not
end in a region leads directly to a decrease in entropy.

We show in this paper that indeed the U(1) spin liq-
uid has an analogous universal signature of long-range
entanglement in its subleading entanglement entropy
behavior. Unlike the subleading constant present in
gapped phases, the subleading behavior in the (3 + 1)-
dimensional U(1) spin liquid takes the form of a loga-
rithm:

S = αL2 − (γtop + γph) logL (2)

The leading area law term is non-universal while the co-
efficient of the logarithm is universal. We will actually
identify two universal subleading logarithms in the en-
tanglement entropy which we have separated out as the
two contributions γtop and γph. The γph term originates
from the gapless photon excitation and though univer-
sal is essentially local in character. It can be separated
from the other contribution via a construction to be de-
scribed in section 5.3. The other subleading logarithm
(the γtop term) on the other hand, survives this pro-
cedure and is the natural generalization of topological
entanglement entropy to this gapless phase. For a con-
nected entangling surface this “topological” piece of the
entanglement entropy, signifying the long-range entan-
glement of the system, simply has5:

γtop = 1 (3)

On the other hand, γph depends on the shape of the
entangling surface. But if we consider as an example a
simple spherical entangling surface, we have γph = 1

45 so

that the net coefficient of the logarithm is 46
45 .

The low energy deconfined U(1) gauge theory arises as
an emergent property6,7 of one possible phase of a micro-
scopic spin (or boson) system. In particular the micro-
scopic Hilbert space is simply that of a tensor product

of spin states (or boson states) at various lattice sites.
It is important to emphasize that concrete microscopic
model Hamiltonians in a variety of lattice spin systems
(or closely related models of interacting bosons) have
been demonstrated to be in such liquid phases where a
deconfined U(1) gauge theory emerges8–13. Future nu-
merical studies of these models could possibly detect the
universal structure in the entanglement entropy we find.

Besides being of theoretical interest as a natural set-
ting for studying gapless long-range entanglement, the
U(1) spin liquid is also a candidate to describe physi-
cal spin liquids in “quantum spin ice” materials14. And
for high-energy physicists, we remark that, depending on
one’s biases about the fundamental Hilbert space lead-
ing to the Standard Model, the calculation in this paper
could be applicable to understanding the entanglement
structure of our universe. After all, if we ignore gravity
for the moment, the low energy theory of our universe
is a deconfined U(1) gauge theory, and all known mat-
ter fields have a nonzero mass. This requires some ac-
ceptance of a picture of emergence from a local tensor
product Hilbert space, but the possibility seems worth
considering.

Previously15,16 the entanglement entropy of gapless
quantum spin liquid systems described as deconfined dis-
crete gauge theories with gapless matter fields in two di-
mensions was computed. A separation between a gapless
contribution and topological contribution to the entan-
glement entropy was argued on general grounds. Our re-
sult in the present paper bears some resemblance though
the details are different.

The present work will also provide a more physical
perspective on some of the issues plaguing the concept
of entanglement in gauge theories. The central problem
is that the set of gauge-invariant states does not possess
a tensor product Hilbert space structure, which seems to
be a prerequisite for a sensible notion of entanglement.
Thus, even providing a definition of entanglement (let
alone its calculation) has been a source of headaches
for the high-energy community. One common line of
thought is that we must resort to complex algebraic pro-
cedures to define entanglement17. More recently, Ref-
erences 18 and 19 have proposed adding in non-gauge-
invariant degrees of freedom as a minimal way to embed
the system in a tensor product Hilbert space. While such
a procedure may at first seem a little ad hoc in a high-
energy context, the condensed matter perspective on the
problem makes it quite natural. As we shall discuss be-
low, these “non-gauge-invariant” degrees of freedom sim-
ply represent particles coupled to the gauge field. For a
gauge theory emerging from a local boson system, such
as would occur in a solid, gauge fields and particles al-
ways emerge jointly in this fashion, so it would be un-
physical to consider entanglement in the gauge theory
without taking the particles into account. Thus, from
our condensed matter perspective, these additional de-
grees of freedom are inevitable, and the issues plaguing
the high energy community are not a concern.
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As this draft was being prepared, we became aware
of recent work20 in the high-energy community which
reaches many of the same conclusions, though through
a different methodology. The fact that these two very
different perspectives on the problem yield similar results
for the entanglement structure is encouraging.

II. DEFINITION OF THE PROBLEM

We consider a system whose low-energy spectrum is
described by the deconfined phase of a compact U(1)
gauge theory, so that its only low-energy excitation is
the gapless photon, with all matter fields gapped. We
will mainly work on a spatial lattice, since the study of
entanglement requires proper short-distance regulariza-
tion, but none of the general conclusions will depend on
a particular choice of lattice structure, and connection
with the continuum theory will be made. Since entan-
glement is most naturally defined on constant time slices
of spacetime, we will not need to make any use of the
time coordinate in the analysis.

A compact U(1) gauge theory on the lattice can be de-
scribed by a U(1) variable eiaij (essentially a quantum
rotor) living on each link of the lattice, where i and j
denote the two endpoints of the link. Since the angular
variable aij representing the spatial components of the
vector potential is compact (i.e. only values between 0
and 2π are distinct), the conjugate (momentum) vari-
able corresponding to aij has integer eigenvalues, as is
usual for an angular momentum variable. For the case of
the vector potential in the U(1) gauge theory, the conju-
gate variable corresponds to the electric field E living on
each link. Thus, for a compact U(1) gauge theory, the
electric field on each link is quantized to integer multi-
ples of some specific value, taken to be 1 for convenience.
This quantum rotor language is essentially equivalent to
working with large S spins. However, this is just a high-
energy detail, and even a simple spin-1/2 system can flow
towards this rotor description under the renormalization
group.9

At the field theory level, one usually also has a time-
like component a0 of the vector potential. However, this
variable does not represent an independent degree of
freedom, but rather a sort of “Lagrange multiplier” vari-
able enforcing the Gauss’s law constraint (∇ ·E = 0) on
our low-energy Hilbert space, and a proper treatment of
entanglement should start from the Hamiltonian formu-
lation of lattice gauge theory, where a0 is integrated out
in favor of the Gauss’s law constraint. The procedure is
standard and is reviewed in Appendix A. Furthermore,
this perspective on the Hilbert space is very natural for
the case of gauge fields emerging from bosonic models,
as happens with spin liquids. After integrating out a0,
the continuum low-energy effective Hamiltonian for the
U(1) spin liquid phase becomes:

H =

∫
d3x

[
1

2
(E2 +B2) + U(∇ · E)2

]
(4)

where the first two terms represent the standard Hamil-
tonian for electromagnetism, with B representing the
curl of a. (On the lattice, E naturally lives on the links
and B will naturally live on the plaquettes.) The last
term serves to enforce the gauge constraint on the low-
energy subspace, effectively serving as an energy penalty
for non-gauge-invariant states. This last term is usually
not written explicitly in a Maxwell theory, but we retain
it here, since we will see shortly that it represents the
energy gap to particle states.

Thus, we take our underlying Hilbert space to be that
of quantum rotors eiaij living on all the spatial links of
our lattice. We can label the states of a Hilbert space
for each link by the set of integers, corresponding to the
quantized electric field values, |E = n〉. We then take the
Hilbert space of the whole system to be the tensor prod-
uct of the Hilbert spaces for the individual links. As a
convenient pictorial representation, we can equivalently
think of this as the Hilbert space of directed strings on
the lattice, representing electric field lines. For each link,
we regard the state |0〉 as the absence of a string on that
link. We can visualize the state |1〉 as a directed string
running along the link in a specified direction. (This
direction should be specified consistently for all links of
the lattice with the same orientation.) The state | − 1〉
then corresponds to a directed string in the opposite di-
rection. All of the other states | ± n〉 for n > 1 can be
regarded as n strings overlapping on the same link, all
pointing in the same direction. The ground state of our
theory, which has all matter fields gapped, will be made
up of states which satisfy the source-free Gauss’s law,
∇·E = 0, meaning that no net flux flows into or out of a
specific site of the lattice, so the electric field lines must
form closed loops (bearing in mind that loops may over-
lap). The total Hilbert space of our system corresponds
to that of open and closed strings on the lattice, while the
ground state occupies the sector of Hilbert space made
up only of closed-loop configurations.

FIG. 1. A typical closed-loop configuration. The ground
state of the U(1) spin liquid will be a superposition of such
configurations.
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FIG. 2. A typical configuration with open strings. The end-
points of the strings represent matter fields. States composed
of open strings are taken to be gapped in the U(1) spin liquid
phase.

Some may regard this Hilbert space as too big. The
gauge-invariant states, including the ground state of the
U(1) spin liquid, correspond to closed loops of strings.
Indeed, there is no way to endow the Hilbert space of
only closed loops with a local tensor product structure.
This leads to the conventional wisdom that gauge the-
ories do not have a natural tensor product structure,
and one must resort to more detailed mathematical pro-
cedures to define entanglement17. However, the tensor
product issue is easily solved by simply working in the
Hilbert space of both open and closed strings, which does
have a local tensor product structure, as described above
and in previous works18,19. The “non-gauge-invariant”
states, corresponding to open strings, can simply be re-
garded as states with matter present at the endpoints,
defining matter as the endpoints of strings, as is com-
mon in string-net models21, and more generally in the
context of emergent gauge theories in spin liquids and
other bosonic models. In field theoretic contexts, one
usually introduces a separate matter field coupled to the
gauge field, and then enforces gauge invariance by requir-
ing that the strings only end on particles of the matter
field. If we did this, we would then have a matter field
Hilbert space, a gauge-field Hilbert space, and an un-
sightly constraint between the two which prevents the
system from having a tensor product structure. How-
ever, we can eliminate the need for such a constraint and
restore the local tensor product nature by interpreting
open strings as pairs of particles. The redundancy im-
plied by gauge invariance is then simply the redundancy
of the matter field itself. For field theoretic calculations,
representing matter by independent fields is quite useful,
but in principle it is unnecessary to have a description of
matter independent of the strings. For the purposes of
investigating entanglement, it is simpler to do away with
separate matter fields, regarding a gauge theory simply
as a theory of both open and closed strings.22 This per-
spective on gauge theory should seem natural to those
familiar with lattice models for discrete gauge theories,

such as the toric code (a Z2 gauge theory). It has even
been shown that the Hilbert space of non-abelian gauge
theories can be thought of in the same fashion23 (though
of course these theories are much more susceptible to
confinement).

It should be noted that one will run into situations of
trying to define entanglement for gauge theories where
the number of matter species is greater than the number
of endpoints of strings. This corresponds to the mat-
ter particles having some extra internal structure, such
as spin, or having different “flavors” (such as electron,
muon, etc., in the Standard Model). Such internal struc-
ture to matter requires either additional structure to the
theory beyond the U(1) framework, such as the elec-
troweak structure of the Standard Model, or some dy-
namically generated extra structure to the theory. For
example, the dynamics of the electric strings could be
such that they tend to form binary bound states (“rib-
bons”), providing an extra orientational degree of free-
dom in the low-energy Hilbert space24. However, such
extra structure should not lead to any significant alter-
ation of the conclusions found here, as we shall see that
the important piece of the entanglement entropy is dic-
tated purely by the closed loop constraint of the ground
state, a fact which is not changed when the loops carry
extra structure.

The above prescription gives us a way to describe the
local tensor product structure of the Hilbert space of the
compact U(1) gauge theory in any phase, whether the
matter fields (string endpoints) are gapless, gapped, or
even confined. We will now, however, focus our atten-
tion on a U(1) spin liquid which has its matter fields
deconfined, but gapped out to high energies. In other
words, large loops have proliferated, but there is a large
energy penalty for open strings, so the ground state is
simply a superposition of configurations of closed loops
(not necessarily with equal weight). The restriction to
closed loops usually has interesting manifestations in the
entanglement structure of a theory. For example, the de-
confined phase of a Z2 gauge theory, which has a ground
state in which closed loops have proliferated, has a topo-
logical entanglement entropy of − log 2, essentially aris-
ing from the restriction of the Hilbert space to closed
loops1,2. We will here investigate the possibility of anal-
ogous entanglement effects in the deconfined phase of
a U(1) gauge theory, where closed loops have similarly
proliferated.

However, the U(1) case has an important difference
from the Z2 (or any discrete) gauge theory. In a discrete
gauge theory, there are a finite number of values that can
be taken on each link. In a Zn gauge theory for example,
n loops sitting on top of each other is equivalent to the
trivial configuration. This is closely related to the fact
that charge is only conserved mod n in such a theory.
In the U(1) gauge theory, on the other hand, charge
is conserved absolutely, and each link has an infinite-
dimensional Hilbert space, corresponding to arbitrarily
high values of the electric field, though large values of
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the electric field will generally be energetically unfavor-
able and therefore suppressed in the wavefunction. This
corresponds to a repulsion between loops running in the
same direction.

In the end, we will find that, while a gapped topo-
logically ordered phase is characterized by a universal
subleading constant in the ground state entanglement
entropy, the deconfined U(1) phase is characterized by
two separate universal subleading logarithmic terms in
the ground state entanglement entropy. One contribu-
tion will come from the low energy conformal field the-
ory of the photon and will be essentially local in charac-
ter. The other will come from the closed loop constraint
and can be associated with the particle structure of the
theory. It corresponds to the constraint of zero elec-
tric flux through any closed surface, in agreement with
logic put forward in a previous construction of a gapless
spin liquid state25. This “particle” contribution will be
seen to be the natural generalization of topological en-
tanglement entropy to the U(1) spin liquid. There is a
clean separation between the “topological” piece, coming
from the gapped particles, and the conformal piece, com-
ing from the gapless photon. Such separation between
a gapless contribution and a topological contribution to
the entanglement entropy is reminiscent of that observed
before15,16 for emergent discrete gauge theories coupled
to gapless matter fields. However, counter-examples are
known which do not possess this separability property26.
The differences between these models are discussed fur-
ther in Appendix E.

III. ENTANGLEMENT SPECTRUM
CLASSIFIED BY BOUNDARY CONDITIONS

We now partition our system into two macroscopic re-
gions, and we investigate the entanglement between the
two regions. For a given wavefunction on a system with
specified partition, finding the entanglement spectrum is
equivalent to finding the Schmidt decomposition of the
wavefunction between the two regions:

|Ψ〉 =
∑
n

e−λn/2|ψn〉A|φn〉B (5)

where {ψn} and {φn} are bases for systems A and B re-
spectively, and the values λn make up the entanglement
spectrum. While the closed loop constraint might at
first seem like it would be an additional complication, it
is actually a drastic simplification when it comes to find-
ing the Schmidt decomposition. While the state of the
whole system is made up of closed loops, a state |ψn〉A
defined on A can have loops seemingly end on the bound-
ary, so long as the partnered state |φn〉B defined on B
picks up where A leaves off and continues the strings
running in the same direction. In other words, for any
closed loop wavefunction, if we know that a state on sys-
tem A has a specified flux configuration passing through
the boundary, then the state on B must have those same

boundary conditions. Furthermore, the states |ψn〉A and
|φn〉B cannot have a superposition of different boundary
conditions without leading to a mismatch of boundary
conditions between the two sides.

To phrase this more rigorously, consider a general
wavefunction in this Hilbert space, which can be written
as:

|Ψ〉 =
∑
nm

Cnm|ψn〉A|φm〉B (6)

for some matrix of coefficients Cnm. By performing a
singular value decomposition on Cnm, one obtains the
Schmidt decomposition in Equation 5. Now let the basis
elements {|ψn〉} and {|φm〉} be specified by their elec-
tric field eigenvalues on each link (which are restricted
to be integers). Thus, each basis element has a speci-
fied electric flux through the boundary. Because we take
our ground state wavefunction to be a superposition of
closed loops, Cnm is only nonzero when |ψn〉A and |φm〉B
have matching boundary conditions, in the sense that a
unit of flux leaving A corresponds to a unit of flux en-
tering B at the corresponding point on the boundary.
Thus, we see that Cnm has a block diagonal form, with
blocks corresponding to different electric boundary con-
ditions between the two systems. The Gauss’s law con-
straint of closed loops ensures that there is no mixing
between blocks. Then, in order to obtain the Schmidt
decomposition, we can perform a singular value decom-
position separately on each of the boundary condition
blocks. The squared magnitude of the diagonal elements
in this decomposition then immediately yield the eigen-
values of the reduced density matrix for one of the sub-
systems, i.e. the entanglement spectrum. Due to the

FIG. 3. When we partition the system into two regions, each
configuration has a corresponding configuration of flux points
between the two regions. The closed loop constraint ensures
that the boundary conditions must match on the two sides.
We define a partition of the system as a partition of the links,
and the links on the partitioning line above have been taken
as part of the left subsystem to avoid ambiguity in defining
the location of the flux points.
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block diagonal form, each element of the entanglement
spectrum corresponds to a specific set of boundary con-
ditions between the two regions, which will shortly allow
us to match up part of the entanglement spectrum with
a thermal spectrum of particles living on the boundary.

This decomposition of the entanglement spectrum
into different flux sectors has previously been noticed
by at least three other groups18,19,27. Furthermore,
others have already found evidence of this “boundary
theory” in the entanglement spectrum, both through
formal arguments27,28 and through analysis of specific
wavefunctions29. Also, some work has been done on ex-
tracting universal logarithmic terms in the entanglement
entropy30–32. In the present work, we shall go two steps
further. First, we will use a simple thermodynamic pic-
ture to separate the entanglement entropy into a bound-
ary particle contribution and a bulk photon contribu-
tion. Second, we will make use of a special construc-
tion (see Section 5.3) to separate the universal pieces of
the two contributions, identifying the particle contribu-
tion as the gapless analogue of topological entanglement
entropy, while the photon contribution is essentially lo-
cal in character. Furthermore, the topological piece will
be seen to be a direct consequence of neutrality in the
boundary particle gas, which corresponds to the closed
loop constraint on the ground state wavefunction.

As a very simple example of the decomposition into
boundary sectors, consider a one-dimensional chain of
links, as illustrated in Figure 4. Such a one-dimensional
gauge theory will be trivially confining (the only gauge-
invariant quantity which can appear in the Hamiltonian
is the electric field), so we expect nothing interesting
in the entanglement structure. Nevertheless, the one-
dimensional Hilbert space exhibits the boundary decom-
position in a particularly simple way. Each site touches
precisely two links, so any flux carried into the site by one
link must be carried out in the same amount by the other
link. In other words, the only gauge invariant states are
those with uniform electric field across the whole chain,
|E = n〉 = |n〉A|n〉B , which is a direct product state. A
general gauge invariant wavefunction in one dimension
can then be written as:

|Ψ〉1 =
∑
n

cn|n〉A|n〉B (7)

which is already in Schmidt form, with the elements
of the entanglement spectrum labeled by the integer n,
which is precisely the electric flux through the boundary
between the regions. Thus, in one dimension, any wave-
function has entanglement spectrum in one-to-one corre-
spondence with electric boundary conditions. Of course,
we expect that uniform electric fields throughout the sys-
tem will be energetically costly, so the one-dimensional
gauge theory ought to have |E = 0〉 = |0〉A|0〉B as its
ground state. Thus, in one dimension, the entanglement
entropy of a U(1) gauge theory is zero, a fairly uninter-
esting result, in accordance with the statement that the
one-dimensional gauge theory is confining.

FIG. 4. In a one-dimensional chain, the only states consistent
with Gauss’s law have uniform electric flux throughout the
whole chain. These states can be labeled by integers, rep-
resenting the quantized value of the electric flux. Since the
flux is uniform throughout the whole system, in particular
it represents the flux across the boundary between any two
partitions of the system.

However, our main interest will be deconfined phases,
for which we must go to higher spatial dimensions. In
higher dimensions we must now ask, given a labeling
of the entanglement spectrum by boundary conditions,
have we completely labeled the entanglement spectrum,
as in one dimension? Each element of the entanglement
spectrum corresponds to a specific boundary condition,
but does each boundary condition define a single element
in the entanglement spectrum? In general, the answer is
no. However, we can gain intuition for the general situ-
ation by first examining the class of wavefunctions that
do satisfy this criterion. Consider first a direct product
wavefunction, which has no correlation between the two
sides, |Ψ〉 = |ψ〉A|φ〉B . Such a wavefunction in general
cannot satisfy the Gauss’s law constraint, since there are
no correlations between boundary conditions on the two
sides. Furthermore, such a wavefunction is not guaran-
teed to be free of magnetic monopoles. In order to ob-
tain a wavefunction consistent with our constraints, we
must project into the sector of zero electric and magnetic
charge. As shown in Appendix B, the projection of such
a direct product state onto the zero particle sector results
in a state with entanglement spectrum in one-to-one cor-
respondence with the electric boundary conditions. The
reduced density matrix for one of the regions will then
simply describe a classical probability distribution for
the electric flux on the boundary. Since the electric flux
is quantized, we can think of this as a classical theory of
charged particles on the boundary, associating positive
charge to one orientation of flux and negative charge to
the other. (One might at first think (as we did) that we
could simultaneously specify both electric and magnetic
boundary conditions between the two regions, ending up
with a boundary theory of both electric and magnetic
charges. But in fact, the electric and magnetic perspec-
tives are complementary, rather than additive, and it is
sufficient to consider the electric boundary theory. This
point is discussed further in Appendix C.)

However, the form of the wavefunction chosen above,
the projection of a direct product onto the zero charge
sector, assumes that the only correlations in our sys-
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tem come from the local neutrality constraint. Such a
wavefunction is often appropriate for gapped topological
phases. For example, in a two-dimensional toric code
model, which characterizes the deconfined phase of a
Z2 gauge theory, the wavefunction is given by an equal
weight superposition of all closed loop configurations33.
This is equivalent to the projection of the superposition
of all open and closed string configurations (a direct
product state) into the closed loop sector. Thus, the
deconfined Z2 gauge theory will be well described by a
projected direct product state. But while such states are
appropriate for dealing with gapped topological order, in
the case at hand of a deconfined U(1) gauge theory, we
know that there is also a gapless photon, which will lead
to long-range correlations in the system independent of
the local neutrality constraint. We therefore expect that,
in the presence of gapless modes, there is no reason that
the entanglement spectrum should be in one-to-one cor-
respondence with boundary conditions.

Despite the labeling no longer being one-to-one, the
decomposition into boundary sectors still holds and is
still quite useful. One can still think of this as a the-
ory of boundary particles, except that now each parti-
cle configuration is carrying extra internal entropy due
to the gapless photon. Let us denote the eigenvalues
of our reduced density matrix as pbc,i, where bc labels
the boundary condition sector and i runs over all val-
ues within that boundary sector. We further denote
Pbc =

∑
i pbc,i, which essentially represents the probabil-

ity of a specific configuration of particles in the bound-
ary theory. We can further define p′bc,i = pbc,i/Pbc, which

satisfies
∑
i p
′
bc,i = 1. Thus, p′bc,i represents the probabil-

ity distribution of internal configurations, given a fixed
boundary condition. The entanglement entropy of the
system can now be written as:

S = −
∑
bc,i

pbc,i log pbc,i =−
∑
bc,i

Pbcp
′
bc,i log(Pbcp

′
bc,i)

= −
∑
bc

Pbc logPbc −
∑
bc

Pbc
∑
i

p′bc,i log p′bc,i

≡ Sbc+
∑
bc

PbcSint,bc

(8)

The first term is simply the entropy of the distribution of
boundary conditions, corresponding to the entropy of a
theory of charged particles. The second term represents
the average internal entropy carried by each particle con-
figuration. Provided that the internal entropy does not
depend strongly on the choice of boundary conditions
(i.e. Sint,bc are all close to some mean value Sint for
most boundary conditions), we can simply write:

S = Sbc + Sint (9)

where the first term comes from the entropy of the par-
ticle distribution, and the second is the internal entropy.
The nature of this internal entropy, and the justification

for Sint,bc having small fluctuations about its mean, re-
quires a different perspective on the problem, which we
shall explore in the next section.

IV. THE BISOGNANO-WICHMANN
THEOREM

In searching for the correct description of entangle-
ment in the U(1) spin liquid, we are greatly aided by the
fact that the deconfined U(1) gauge theory has an emer-
gent relativistic symmetry, since its low-energy effective
theory is described by standard noncompact electrody-
namics in d+ 1 dimensions:

S =
1

2e2

∫
dd+1xFµνFµν (10)

where the field strength as usual is Fµν = ∂µaν − ∂νaµ.
(In three spatial dimensions, our case of primary inter-
est, one should also allow for the possibility of a θ term in
the action, θεµνλσFµνFλσ. This possibility is discussed
further in Appendix D, where it will be seen that, ex-
cept for minor subtleties, its presence will not alter the
conclusions reached here by taking θ = 0.) For a the-
ory with such relativistic invariance, the entanglement
spectrum can be calculated exactly for the simple geom-
etry of a planar partitioning surface. Consider a system
described by a local Hamiltonian density, such that the
Hamiltonian is given by H =

∫
ddxH. The Bisognano-

Wichmann result34,35 states that in a relativistic system
(with units chosen such that the speed of light is 1),
for a planar partitioning surface at x1 = 0, the reduced
density matrix describing x1 > 0 is given by:

ρ ∝ exp

(
−
∫
x1>0

ddx(2πx1)H
)

(11)

The entanglement Hamiltonian density is given by the
real Hamiltonian density, except with an extra position-
dependent weighting factor. How should we interpret
this entanglement spectrum, and how can we extract im-
portant quantities like the entanglement entropy? As
has been discussed elsewhere36,37, this reduced den-
sity matrix essentially describes a local thermal equi-
librium. Note that the density matrix has the form
ρ ∝ exp(−

∫
dxβ(x)H). For constant β, this density

matrix would exactly describe a thermal system at tem-
perature β−1. When β is nonuniform, we can still use-
fully think of this as a thermal distribution, but now
with a locally defined temperature T (x) = 1

2πx1
, regard-

ing the system as being in local thermal equilibrium, in
a somewhat similar manner to a Thomas-Fermi approxi-
mation. The temperature cools off to zero far away from
the edge, but it reaches arbitrarily high values close to
the partition. This makes some intuitive sense, in that it
is degrees of freedom closest to the edge which are most
affected by the tracing out procedure.

To demonstrate the essential correctness of this inter-
pretation, note that it can be used to reproduce exactly a
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well-known formula for 1+1 dimensional conformal field
theories, as first noticed in Reference 36. Consider such a
CFT characterized by central charge c. The thermal en-
tropy density of such a system is given33 by s(T ) = πc

3 T .
Now suppose our partition is into a finite segment of
length L and its exterior. We can get the entanglement
entropy by integrating the local thermal entropy density
over the two edges of the system:

S = 2

∫
x>0

dx
πc

3

1

2πx
=
c

3
log(L/a) (12)

where the factor of two comes from the the two edges of
the system, and we have cut off the long-distance diver-
gence at a distance of order L. The short-distance cut-
off a represents the lattice scale. This formula exactly
reproduces the known result for entanglement entropy
in a 1+1 dimensional CFT33. For any other relativis-
tic theory, the procedure is much the same. We can
simply integrate the local thermal entropy over the in-
terior of the partitioning surface. In dimensions higher
than one, the factor of two in Equation 12 is general-
ized to a factor of the surface area of the partitioning
surface, leading to a natural understanding of the area
law (with area law violations stemming from divergences
in the x1 integral, as above). Even for certain non-
relativistic systems this procedure is useful. For exam-
ple, the Bisognano-Wichmann result and local thermal
approximation can be used in the context of Fermi sur-
face systems to yield the Widom formula for Fermi sur-
face entanglement entropy37. In general, for any model,
there should be corrections due to the fact that one’s
choice of partitioning surface is usually not strictly pla-
nar and also due to the temperature gradient, but the
essential physical picture of local thermodynamics seems
to be a valid one.

It should be noted that there is a subtlety in applying
this procedure to a lattice system, which is our case of
physical interest. Our system is only truly relativistic
at low energies. At high energies, obviously the pres-
ence of a spatial lattice breaks the relativistic invari-
ance. Since entanglement metrics, such as entanglement
entropy, are often sensitive to short-distance physics, it
is questionable to apply the result directly to the lat-
tice. Furthermore, the local thermal picture is sensitive
to excitations at arbitrarily high temperatures, so one
should really have well-defined relativistic excitations at
all scales in order to apply this procedure. The trick
is to apply the Bisognano-Wichmann theorem and the
local thermal approximation not to the lattice system
directly, but rather to a UV complete relativistic theory
which reduces to Maxwell theory at low energies. This
is easily accompished by regarding the U(1) gauge the-
ory as descending from a non-abelian gauge theory via
symmetry breaking. This change of the UV behavior of
our theory can affect non-universal physics, such as the
coefficient of the area law. However, the important point
is that the universal physics is independent of the short-
distance regularization (by definition). In this work, we

will only focus on universal quantities, which do not de-
pend on short-distance physics, so this change of the UV
will not be important. More detailed discussion of the
embedding into a UV complete theory can be found in
Appendix C. This procedure is very important concep-
tually, but for most practical purposes, we can simply
proceed with the low-energy Maxwell theory.

In order to calculate the entanglement entropy for the
U(1) spin liquid via the local thermal method, we must
consider what degrees of freedom we have which will con-
tribute to the thermal entropy density. Obviously we
have the gapless photon, representing the fluctuations
of closed strings. By dimensional analysis, this contri-
bution to the entropy density must scale as T 3, so its
contribution to the entanglement entropy falls off as x−3

as we move away from the partitioning surface. This is a
slow power-law decay, so thermal excitations of photons
exist well into the bulk of the region.

However, there is an additional set of degrees of free-
dom which we must consider. For a gauge theory “with-
out matter fields,” as described by Equation 10, the
traditional Hilbert space considered is that of gauge-
invariant (closed loop) states. However, as we have ar-
gued at the beginning of the present work, a natural
definition of entanglement leads us to also include the
“non-gauge-invariant” open string states, which can be
simply interpreted as electric particles, which we take to
be gapped. By universality, the details of the gapped
charged sector should not be important. It is therefore
convenient to incorporate these gapped electric charges
into a relativistic quantum field theory so that we can
continue to use the BW theorem. To that end, we con-
sider a theory with a relativistic Lagrangian

L = L[ψ, aµ] +
1

2e2
FµνF

µν (13)

Here ψ is the massive field describing electric charges
that couple minimally with the U(1) gauge field aµ. We
may take aµ to be non-compact as befits the low energy
effective theory of the U(1) spin liquid. However the
emergence of this spin liquid from an underlying lattice
spin system means that there will inevitably be magnetic
monopoles in the spectrum. The above non-compact
theory should be regarded as an effective theory obtained
by integrating out the monopoles. Equivalently, since we
are interested in universal aspects of the physics, we may
consider a model where the monopole gap has been taken
to infinity. In either case even though monopoles do
not explicitly appear in the effective action above their
existence is manifested in the low energy theory through
the quantization of the electric charge.

Applying the BW theorem to the Lagrangian in Equa-
tion 13 above, in addition to the thermal excitations of
the gapless photon modes, we must also consider ther-
mally excited charged particles. Denote the gap scale
of these particles by m. Then the entropy density will
be exponentially suppressed with a factor of e−m/T , so
that the contribution to entanglement entropy falls off
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as e−mx away from the surface. We therefore see that,
while thermal photon excitations exist far into the bulk,
thermal particle excitations are only significant within a
boundary layer of size m−1 away from the surface. In
the limit of the particle gap going to infinity, particle ex-
citations can only occur right at the surface itself. Thus,
we have a picture of the entanglement spectrum as a
combination of a thermal spectrum of particles living at
the boundary and a local thermal spectrum of photons
living throughout the bulk. One might naively think
that we should also include thermally excited magnetic
monopoles in our treatment, since these too are gapped
excitations of our physical system. However, these end
up not contributing to the entropy. This is a slightly
subtle point which requires the previously mentioned
embedding of the theory into a UV complete relativis-
tic description. More details on this procedure and on
the absence of a monopole contribution can be found
in Appendix C. The electric and magnetic perspectives
are complementary, rather than additive, and we may
proceed considering only the electric contribution.

The two pieces of the entropy identified earlier are
much clearer within this framework. In Equation 8, we
broke up the entanglement entropy into Sbc and Sint.
Within the current local thermal picture, the first term is
clearly identifiable as the thermal entropy of the bound-
ary gas of electric particles. The internal entropy then
corresponds to the fluctuations of the strings which end
at these particles on the boundary, or in other words,
thermal photon excitations in the bulk. We can also jus-
tify the earlier replacement of Sint,bc by its average. This
entropy represents the entropy of fluctuations of strings,
given the restriction that they must end on a specific par-
ticle configuration on the boundary. But this is no sig-
nificant restriction, since the temperature is arbitrarily
high near the boundary, causing the strings to fluctuate
wildly right near the boundary. If we followed along a
string starting from a specific point on the boundary, the
wild fluctuations at the start will cause the string to al-
most immediately forget its starting position, so that all
choices of boundary conditions are essentially equivalent
for determining the photon entropy. Thus, the entan-
glement entropy separates cleanly into two pieces, which
we now denote as:

S = Spart + Sphot (14)

to represent the particle and photon contributions to the
entanglement entropy, respectively.

V. UNIVERSAL LOGARITHMS IN THE
ENTANGLEMENT ENTROPY

A. Particle Entropy

We now wish to actually evaluate these two contribu-
tions to the entanglement entropy and see if they have
any universal features which characterize the phase. We

shall first treat the particle contribution to the entan-
glement entropy, since it will be seen that its universal
portion is the natural generalization of topological en-
tanglement entropy (which usually characterizes gapped
phases) to the present gapless case. The universal pho-
ton contribution, on the other hand, will be essentially
local in character.

To do this, we shall consider a case where the particle
of minimum electric charge exists as an independent ex-
citation. This accounts for many U(1) phases, but would
seem at first to not describe the physics of phases such
as the θ = π phase38, which has dyons as the funda-
mental charge units. However, as discussed in Appendix
D, there is little essential difference in this case. The
universal contributions to the entanglement entropy will
be exactly the same (though the precise structure of the
entanglement spectrum will likely be different). Thus,
for now, we shall speak in terms appropriate to the case
of an independent minimum electric charge.

We now wish to evaluate the thermal entropy of a
gas of such electric charges. While these particles in
general interact through their corresponding electromag-
netic fields, we are greatly aided in our quest by the fact
that we are considering a deconfined phase, where the ex-
citations of the theory are independent particles interact-
ing through a Coulomb interaction. Based on our local
thermal perspective, these charged particles are only ex-
cited in a thin two-dimensional boundary layer near the
partition. Nevertheless, these thermally excited parti-
cles interact through the full three-dimensional Coulomb
interaction (V ∼ 1

r ) of the theory. (Note that, while
particles are excited only near the boundary, the corre-
sponding electric field lines ending on those particles can
extend into the bulk, allowing the particles to maintain
their three-dimensional interactions. Furthermore, the
particles are gapped, preventing them from qualitatively
modifying the long-range behavior of the gauge field.)
Now we take advantage of the fact that a thermal gas
with 1

r interactions is always screened (entropic consid-
erations causes large particle-antiparticle pairs to have
favorable free energy). Thus, when the ground state of
our theory corresponds to a deconfined phase, the corre-
sponding statement in the thermal boundary gas is that
it is in a screened phase. (A confining phase would cor-
respond to a dipolar phase in the boundary gas, where
we have tightly bound particle-antiparticle pairs.) The
particle interactions are screened, allowing us to essen-
tially consider only a short-ranged interaction, instead of
the original long-ranged Coulomb interaction. We work
deep in the screened phase, so that we can consider a
contact interaction between particles on the same site as
the dominant interaction.

Despite the simplicity of the model, the physics is not
totally trivial. We are still enforcing the closed loop con-
straint in the wavefunction. Since no loop can end in the
interior of the region, every unit of flux that goes into
the region must come out at some other point. This
corresponds to the fact that the boundary gas must be
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neutral, having an equal number of positive and neg-
ative charges. Thus, the partition function will be re-
stricted to neutral configurations. Each (unrestricted)
configuration can be labeled by a set of integers ni rep-
resenting the charge on boundary site i. The restricted
configurations in the ground state must then satisfy∑
ni = 0. Furthermore, since we are only assigning

an energy cost to particles occupying the same site (a
contact interaction), there is no correlation between oc-
cupation numbers on different sites, so the probability
distribution for the integers ni factorizes into indepen-
dent probability distributions for the occupation of each
site, f({ni}) =

∏
i fi(ni), only subject to the overall

neutrality constraint.

A simple argument shows the effect of the neutral-
ity constraint. For simplicity let us first assume that
only ni = 0,±1 are allowed for any single i, with equal
probability. Without the neutrality constraint the total
number of allowed configurations of the ni for a lattice of
N sites is 3N . From random walk arguments we expect
that the effect of the neutrality constraint is to reduce
this by a factor 1√

N
. The entropy of this boundary gas

will thus have a subleading correction − 1
2 ln(N) to the

leading term proportional to N . Below we will provide
a more detailed derivation of this result, for generic dis-
tribution f(ni).

Taking the neutrality constraint into account, the
boundary gas has a partition function as follows:

Z =
∑
{ni}

δ∑ni

∏
i

fi(ni) (15)

where the delta function imposes neutrality. We now
represent the delta function via its Fourier transform,

δn = 1
2π

∫ 2π

0
dbeibn, which gives us:

Z =

∫ 2π

0

db

2π

∑
{ni}

eib
∑
i ni
∏
i

fi(ni) =

∫ 2π

0

db

2π

∏
i

∑
ni

eibnifi(ni) =

∫ 2π

0

db

2π

∏
i

f̃i(b) =

∫ 2π

0

db

2π
(f̃(b))N

(16)

where f̃i is the Fourier transform of fi, and in the last
step we have assumed that all sites are equivalent, so that
f̃i = f̃ for all i. N denotes the total number of bound-
ary sites, which will scale as the area of the boundary.
As a concrete example, suppose we imposed a hard-core
constraint on our loops, such that only values ±1 and
0 are allowed on each site, but each of these is equally
likely. Such a wavefunction could serve as a useful trial
wavefunction for a spin-1 system. In this case, we would

have:

Zh.c. ∝
∫ 2π

0

db

2π

∏
i

1∑
ni=−1

eibni =

∫ 2π

0

db

2π
(1 + 2 cos b)N = 2F1

(
− N − 1

2
,−N

2
, 1; 4

)
(17)

where the integral can miraculously be done exactly in
terms of a not-so-useful hypergeometric function.

For a generic distribution function f , there would seem
to be little hope of doing the integral exactly. However,
things become very simple in the large N limit. When
N is large, the power of N in the integrand means that
the value of the integral is dominated by the values of
f̃(b) in the vicinity of its maxima. First, assume that

f̃(b) has a unique maximum, as is the case in the above
hard-core example. This, with minor modifications, is
actually a fairly generic situation. The few pathological
cases for which the following procedure will not work
are discussed in Appendix F. For the present situation,
we Taylor expand f̃(b) around its maximum at b0 as

f̃(b) ≈ c(1 − α(b − b0)2) for some constants c and α.
Since the integral is dominated by this behavior near
the maximum, we can well-approximate the integral by
replacing f̃(b) by a function with an equivalent Taylor
expansion near its maximum. A convenient choice is

simply the Gaussian ce−α(b−b0)2 , which is illustrated in
Figure 5. Using this replacement function, the partition
function (for generic factorized distribution function f)
becomes:

Z ≈
∫ 2π

0

db

2π
cNe−αN(b−b0)2 ≈ cN

2
√
παN

(18)

where in the last step we let b run over all real values,
since the integrand is negligible away from b = b0 (we
can always choose the range of integration such that b0
is away from the edge of the range). It should be noted
that charge quantization is actually not crucial to this
argument. If f(ni) were not restricted to integers, but
could run over all real values, we would simply change
to a Fourier transform on the real line, with the variable
b running over all real values. The structure of the final
answer will be exactly the same. We now recall that, in
terms of the partition function Z, the entropy is given
as:

S = β(E − F ) = −β∂β logZ + logZ (19)

Note that, since our original distribution function f
should depend on the inverse temperature β (which will
be determined by the lattice cutoff at the boundary and
the masses of the particles), the numbers c and α in
Equation 18 will depend on β. Restoring this depen-
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FIG. 5. The first figure displays the function f̃(b) = 1 + 2 cos b appropriate to the hard-core example in blue, along with its
Gaussian approximation in yellow. The second figure shows both functions to the fifth power, and the last figure shows them
to the tenth, at which point the functions are essentially indistinguishable, with the error becoming negligible as a fraction of
the maximum.

dence, the entropy is equal to:

S = (1− β∂β)(N log cβ −
1

2
logN − log(2

√
παβ)) =

(log cβ − β
c′β
cβ

)N − 1

2
logN +O(1)

(20)

In a system with d spatial dimensions, the boundary size
N is given by g(La )d−1, where g is some number of order
unity, L is a characteristic linear size of the partitioning
surface, and a is the lattice scale. In terms of the more
commonly used variable L, the entropy is given (up to
O(1) terms) as:

S = G

(
L

a

)d−1

−
(
d− 1

2

)
logL (21)

where G is a relatively unimportant constant (indepen-
dent of L). The first term represents the usual area law
term of entanglement entropy, which has a non-universal
coefficient G due to the presence of the short-distance
cutoff a.

The second term, however, is universal, at least at the
level of independence of lattice scale. We shall see later
that it is indeed a topologically robust characterization
of the phase. This subleading logarithm originates from
the factor of 1√

N
in the partition function. Importantly,

this term in the entropy is negative, representing the re-
duction in entropy due to the closed loop constraint. See-
ing a loop enter the subsystem immediately gives us the
extra piece of information that there is a corresponding
outgoing flux at another point. This extra information
leads to a reduction in entropy. Essentially, this contri-
bution, and topological entanglement entropy more gen-
erally, comes from the reduced size of the Hilbert space,
which reduces the number of allowable boundary condi-
tions between regions. As an example, in the toric code,
which is characteristic of a deconfined Z2 gauge theory,
the ground state is an equal weight superposition of all
possible loops (which are undirected in the Z2 case). In
this model, the boundary values are binary, either 0 or 1.

All boundary conditions are weighted equally, as long as
they are consistent with the closed loop constraint. This
constraint uniquely determines the last boundary value
once we have arbitrarily picked the first N − 1. This
leads to 2N−1 possible boundary conditions, all weighted
equally. The entanglement entropy is then given by:

log(2N−1) = (log 2)N − log 2 (22)

The closed loop constraint restricts us to only half of
the total possible boundary conditions, leading directly
to the − log 2 in the entanglement entropy. Similarly,
the factor of 1√

N
in our partition function represents a

reduction in the effective size of our Hilbert space. (As
an example, one can perform a large N expansion of the
hypergeometric function in Equation 17, with the end
result that the neutral hard-core Hilbert space is smaller
than the total hard-core Hilbert space by a factor of

1√
N

.) It is precisely this Hilbert space reduction factor

of 1√
N

which leads to the subleading logarithm. In this

respect, this subleading logarithm seems to be the gen-
eralization of topological entanglement entropy to the
gapless U(1) spin liquid. Later, we shall make a more
precise statement regarding this analogy with topologi-
cal entanglement entropy.

For completeness, it should also be noted that the
same reduction of boundary conditions is true in the
confined phase. However, when the bulk represents a
confined phase, the boundary gas will be in a dipolar
phase, where each particle must be very close to its an-
tiparticle pair. In essence, this prevents the ground state
wavefunction from fully sampling the space of allowable
boundary conditions. The ground state is restricted to
one particular corner of the Hilbert space and will not
be a good measure of the size of the Hilbert space, so the
effects of the Hilbert space restriction are not apparent.
It is only in the deconfined phase that the Hilbert space
is well-sampled by the wavefunction. Just as the − log 2
is absent in the confined phase of a Z2 gauge theory, the
universal logarithm will not be present in the confined
phase of the U(1) gauge theory. The universal logarithm
shows up in the deconfined phase since each particle in-
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teracts with an average field due to all other particles,
and neutrality can be enforced simply as a global con-
straint. In the confined phase, the partition function
would need to be written in terms of strongly interacting
particle-antiparticle pairs, instead of in terms of indepen-
dent particles, so the neutrality constraint would already
be built into the fundamental degrees of freedom.

For later purposes, we note that, if the boundary
consisted of multiple disconnected components, then we
would have separate boundary gases on each surface,
with separate neutrality constraints. The entanglement
entropy would be the sum of the contributions from
the various connected components. Assuming each con-
nected component to be characterized by a similar length
scale L, this will simply give a factor of the zeroth Betti
number b0, which counts the number of connected com-
ponents of the partitioning surface, in front of the uni-
versal logarithm. Thus, more generally, the particle con-
tribution to the entanglement entropy is given by:

Spart = G

(
L

a

)d−1

− b0
(
d− 1

2

)
logL (23)

for some constant G.

B. Photon Entropy

We also need to evaluate the entropy coming from the
gapless photon excitations of our system. Intuitively,
this is a very simple problem. In the local thermal pic-
ture, the photon contribution to the entropy comes from
the gapless tranverse fluctuations of strings in the bulk.
The transverse fluctuations of these gauge strings give us
d − 1 degrees of freedom at every point (where d is the
spatial dimension, not spacetime), so the problem should
essentially be equivalent to local thermal fluctuations of
d − 1 scalar fields. Indeed, this equivalence has been
noted before39,40. One should start with the low-energy
effective action, describing standard noncompact elec-
trodynamics in d+ 1 dimensions, without matter fields:

S =
1

2e2

∫
dd+1xFµνFµν (24)

(ignoring the θ term, which is treated in Appendix D).
Earlier treatments of this problem have found that the
entanglement structure of this theory is indeed equiva-
lent to that of d − 1 real scalar fields, up to boundary
terms. In many earlier works, the boundary terms have
proven somewhat pesky in attempting to extract entan-
glement entropy. Within the current framework, how-
ever, the boundary terms have a natural interpretation
in terms of the particle entropy considered in the pre-
vious section, while the remaining photon contribution
will be described by a theory of d−1 free massless scalar
fields.

It should be noted that previous treatments of this
problem have had conflicting results regarding the par-

ticle entropy found in the previous section. Some au-
thors choose to disregard the boundary term entirely39.
In other cases, focusing on a strictly planar entangling
surface may be the limiting factor40. Since the parti-
cle contribution is proportional to the number of con-
nected components, a concept only well-defined on a
closed manifold, it is unclear if any such universal par-
ticle contribution can be identified on the infinite plane
without carefully specifying the topology at infinity. An-
other possibility is that the low energy action of Equa-
tion 24 cannot capture the entanglement structure of the
theory without a more careful treatment of the under-
lying Hilbert space. These are all interesting questions
which need to be sorted out at the field theory level. But
since we already have an independent way of extracting
the particle contribution to the entanglement entropy, we
leave these questions as an open challenge for the field
theorists, and we proceed to extract the photon entropy
from the bulk scalar fields.

These scalar fields, being massless, are described by
a conformal field theory. Whereas in 1+1 dimensions a
conformal field theory is characterized by a single cen-
tral charge c, the behavior in higher dimensions is more
complicated. For concreteness, we now focus on the case
of 3+1 dimensions, where a CFT is characterized by two
independent central charges, denoted a and c (see39 for
details). We will here take the normalization scheme
such that a and c are equal to 1 for a real scalar field, as
in41. The problem of entanglement entropy in 3+1 di-
mensional CFTs has been studied before, and the answer
is known to be an area law with a universal subleading
logarithm, S = α(L/a)2 − γ logL39,41,42. The (positive)
coefficient γ of the subleading logarithm is computed via
the replica trick through differential geometric means,
yielding an answer of41:

γ =
a

180

∫
Σ

√
hE +

c

240π

∫
Σ

√
hI (25)

where h is the induced metric on the partitioning surface
Σ, and E (the Euler density) and I are related to the
extrinsic curvature Kab by E = 1

2πK and I = KabK
ab−

1
2K

2. The details of the differential geometry are not
overly important. The most important fact about this
answer is that both terms are given by an integral over
the partitioning surface, a fact which we will return to
soon. For the case at hand of d − 1 scalars in d = 3
dimensions, we have a = c = 2, so:

γU(1) =
1

90

∫
Σ

√
hE +

1

120π

∫
Σ

√
hI (26)

The first term is given by the Gauss-Bonnet theorem as
1
90χ = 1

45 (1− g), where χ and g are the Euler character-
istic and genus of the surface, respectively. The second
term is not given by a topological invariant, but it does
vanish when Σ is a sphere. For the specific case of a
sphere, we have γsphere = 1

45 . Other surfaces deformed
from the sphere will have corrections due to the c term.
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FIG. 6. The Kitaev-Preskill construction allows one
to isolate topological entanglement entropy in two
dimensions1.

FIG. 7. The Grover-Turner-Vishwanath construction
generalizes the Kitaev-Preskill scheme to three dimen-
sions and isolates the analogue of topological entangle-
ment entropy in the U(1) system4.

C. Grover-Turner-Vishwanath Construction

If we add together our two contributions, from parti-
cles and photons, we find the final answer for the entan-
glement entropy associated with partitioning surface Σ
in d = 3 spatial dimensions (with b0 connected compo-
nents) to be:

Sd=3 = α

(
L

a

)2

−
(
b0+

1

90
χ+

1

120π

∫
Σ

√
hI

)
logL (27)

(up to O(1) terms) for some nonuniversal constant α.
For the special case of a sphere, this answer reduces to:

Ssphere = α

(
L

a

)2

− (1 +
1

45
) logL (28)

We therefore see that there are two universal contribu-
tions in the subleading logarithmic behavior of the en-
tanglement entropy, one coming from the closed loop
constraint and one from the presence of a gapless pho-
ton mode. First of all, the magnitude of the photon
contribution is much smaller than the particle contri-
bution, so the particle contribution will set the natural
scale for the subleading logarithm in the entanglement
entropy of a specific region. However, it is important
to note that these contributions can be separated out,
regardless of magnitude, since the photon contribution
is given by an integral over the surface. Methods have
been constructed precisely to eliminate such terms in fa-
vor of the topological contributions, such as b0, which
have no expression as an integral over the surface. In
two dimensions, Kitaev and Preskill developed the con-
struction depicted in Figure 61. If one examines the
quantity:

Stop = SA+SB +SC −SAB−SBC −SAC +SABC (29)

then one finds that all contributions given by integrals
over the surface will cancel out. However, if we had

a contribution proportional to b0 in the entanglement
entropy, it would be present in each term of Stop equally,
since each region is connected. With four positive terms
and three negative, the end result for Stop will isolate
the b0 contribution and eliminate any surface terms.

The Kitaev-Preskill construction was generalized to
three dimensions by Grover, Turner, and Vishwanath,
who developed the construction depicted in Figure 7
(there are other possible geometries)4. Using this geome-
try, one can define the same quantity Stop as in Equation
29. The photon contribution, being equal to an integral
over the partitioning surface, will cancel out of this ex-
pression. The particle contribution, however, is equal to
− logL in every term of Stop. (This assumes the geome-
try is characterized by a single characteristic size L. We
should let both radii of the torus in Figure 7 be of order
L.) Thus, the end result for the topological portion of
the entanglement entropy in a three-dimensional U(1)
spin liquid is:

Stop,3 = − logL (30)

D. A Conjecture on Higher Spatial Dimensions

One final conjecture seems worthy of mention. In
higher spatial dimensions, the particle contribution to
the entanglement entropy is still an area law with a sub-
leading logarithm, and the coefficient of the logarithm
is generalized to d−1

2 . However, the low-energy CFT
contribution can be more drastically altered. In d > 3
spatial dimensions, the entanglement entropy may be-
have as αLd−1 +γLd−3 + ..., so any logarithmic behavior
would be dwarfed by bigger subleading corrections to the
area law. There is no sense in which the topological log-
arithm will represent the dominant subleading behavior
of any one region. Nevertheless, the topological loga-
rithm should still be isolatable via some further higher-
dimensional generalization of the Kitaev-Preskill scheme



14

which eliminates boundary terms. The scalar field the-
ory describing the transverse fluctuations would seem to
be topologically trivial, so its contribution to the entan-
glement entropy should be given in terms of integrals
over the boundary, just as in three dimensions. These
contributions should then be eliminated by the general-
ized Kitaev-Preskill scheme, leaving only the topological
logarithm coming from the particle contribution. In gen-
eral spatial dimension d > 3, we should then have:

Stop = −
(
d− 1

2

)
logL (31)

E. Comparison with Previous Results

In this paper, we have found that the entanglement
entropy of the U(1) spin liquid (equivalently a compact
U(1) gauge theory) has two universal subleading loga-
rithmic contributions. One coefficient, −1, is topologi-
cal, while the other coefficient, −1/45, arises from local
physics, combining for a total of −46/45. We should
take a moment to compare this result with earlier liter-
ature. The most direct calculation of the entanglement
entropy is found in Reference 20, which computes that
the entanglement entropy decomposes into a sum of two
terms, just as we found here. One term corresponds to
the entanglement entropy of (d−1) massless scalar fields,
which corresponds precisely to the photon contribution
identified here, and will give a contribution of −1/45 in
three dimensions (though this is not mentioned explic-
itly in that work). The other term arises from the gauge
constraint on the photon (“lack of a zero mode” in that
author’s language), and is claimed to give a contribution
of d−1

2 to the logarithm coefficient, corresponding to the
topological component identified here. The author also
claims this term to be the generalization of topological
entanglement entropy, just as we have claimed here. The
only discrepancy appears to be in the sign of this topo-
logical term, which seems to be positive in Reference
20, whereas we found a negative contribution here. We
note that this contribution must be negative on physi-
cal grounds, since the gauge constraint gives us an extra
piece of information about the system and therefore de-
creases the entropy. It therefore seems likely that the
topological contribution identified in Reference 20 has
lost a sign somewhere.

A different line of argument is given in Reference 27.
Since the Maxwell Lagrangian is ostensibly scale invari-
ant, one is tempted to use standard results of conformal
field theory, which show that the coefficient of the loga-
rithm is proportional to the central charge a, which for
the case of Maxwell theory gives −31/45. Reference 27
goes on to find that, within their calculational frame-
work, there is a boundary contribution of −1/3. They
interpret this −1/3 as being part of the −31/45, with
the difference of −16/45 being made up by the thermal
calculation of Reference 31. However, we believe that

the correct interpretation is that such a boundary term
is actually supplemental to the central charge result, giv-
ing a total of − 31

45 −
1
3 = −46/45, just as we found here.

The −16/45 result of Reference 31 is also insufficient,
since it only accounts for thermally excited photons, but
not for the boundary particles.

One may logically ask why the final answer for the log-
arithmic coefficient is not simply the result based on the
central charge a, which would give −31/45. Upon exam-
ining the standard derivations for such results (such as in
Section 4.2 of Reference 39), the answer is apparent. The
entanglement entropy given by these conformal field the-
ory derivations always yields a result which is given by
an integral over the partitioning surface. Such a result is
therefore topologically trivial and will be eliminated by
the Grover-Turner-Vishwanath procedure. The standard
CFT analysis is incapable of producing the topological
contribution. This is essentially because these deriva-
tions focus on the local changes in expectation values
caused by local changes in the curvature, but they do
not pay attention to the sensitivity of the theory to the
global topology of the manifold. For most CFTs, this
is not an issue, but Maxwell theory has different topo-
logical sectors on topologically nontrivial manifolds, so
the partition function is highly sensitive to topology.9

It seems likely that the standard CFT results could be
modified to account for such topological effects, but the
current results for CFTs can really only be trusted for
topologically trivial theories.

VI. DISCUSSION

In this work, we have identified two different universal
contributions to the subleading logarithmic behavior of
the entanglement entropy of a U(1) spin liquid. One con-
tribution, coming from the gapless photon, is essentially
local in nature, given by an integral over the partition-
ing surface. The other contribution, which is associated
with particle excitations, serves as the natural general-
ization of topological entanglement entropy to the gap-
less U(1) spin liquid. Furthermore, this quantity seems
to be the more robust characterization of the deconfined
phase. Through some fine tuning, one could possibly
reach a U(1) phase described by a theory with decon-
fined gapped charges and gapless photon, but with an
alternate photon structure, such as a quadratic disper-
sion. In such a theory, the universal photon contribution
would not continue to exist unaltered. The particle con-
tribution, however, would still have the universal − logL
behavior, since its presence is caused simply by the com-
bination of deconfinement and the closed loop constraint.
Thus, this topological logarithm is a robust characteri-
zation of a deconfined U(1) phase. We note that similar
results have recently been arrived at through a different
method than the one applied here20.

We focused on the entanglement entropy of the (3+1)-
dimensional U(1) quantum spin liquid in this paper. In
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the absence of some global symmetry in the the under-
lying microscopic Hamiltonian there is a unique such
phase. The presence of global symmetry will subdivide
this into many symmetry-enriched spin liquid phases38.
The universal terms we found in the entanglement en-
tropy will be the same for all these symmetry enriched
phases. However we expect that the entanglement spec-
trum will be able to distinguish them from each other.
For the future it will thus be interesting to study the
entanglement spectrum of these spin liquid phases.

It would also be interesting to examine the entangle-
ment entropy of other gapless phases to see if universal
“topological” contributions similar to the ones we found
arise. Apart from the example discussed here, where the
universal piece is logarithmic, we also have the exam-
ples of discrete gauge theories coupled to gapless mat-
ter fields, where there is a universal constant contribu-
tion. Perhaps such contributions to the entanglement
entropy could be a useful tool for characterizing long-
range entanglement in gapless phases. Also, the particle
logarithm identified in the present paper is a direct con-
sequence of the existence of deconfined particles. It is
interesting to consider if the result could be phrased in
terms of an effective “quantum dimension” of the decon-
fined particles, just as the topological entanglement en-
tropy in topologically ordered phases is given in terms of
the quantum dimension of particles. However, whether
or not such a concept can be made mathematically pre-
cise remains to be seen.
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APPENDIX A: ELIMINATING a0

In the standard Lagrangian formulation of the low-
energy theory of a deconfined U(1) phase, the variables
used to describe the theory are the components of a (non-
compact) spacetime vector aµ = (a0,~a). However, the
action for the theory only depends on the field strength
tensor Fµν = ∂µaν − ∂νaµ. The first thing to take note
of is the fact that Fµν contains no ∂0a0 term, so the vari-
able a0 has no dynamics whatsoever. This would seem to
hint that a0 is not really a dynamical degree of freedom
at all.

Another hint for this comes from lattice gauge theory
defined on a spacetime lattice, where time is discrete. In
this case, the spatial vector potential ~a is defined on the
spatial links of the lattice, but the timelike component
a0 is actually defined on the timelike links of the lattice.

This would seem to be a very unnatural place for a degree
of freedom to live. In a quantum mechanical system,
we specify the state of the system at a specific moment
of time. The variable a0, however, does not exist on a
specific time slice of our system, but rather on a set of
links connecting two time slices. This would also seem
to indicate that a0 is not really a degree of freedom in
our system, but rather serves as a constraint on the time
dynamics of the system.

In fact, a0 can be integrated out of the low energy field
theory to yield the Gauss’s law constraint, as follows.
For the Lagrangian L = 1

2FµνF
µν (with the normaliza-

tion chosen for later convenience), we write the partition
function for our system as:

Z =

∫
Da0D~a exp

[
1

2
i

∫
dx((∂0~a−∇a0)2 − (∇× ~a)2)

]
(32)

We now introduce an integration over an auxiliary field
~E to make the exponent linear in a0, like so:

Z =

∫
Da0D~aD ~E exp

[
1

2
i

∫
dx(2 ~E · (∂0~a−∇a0)− (E2 +B2))

]
(33)

where we have defined B = ∇×~a. We can now integrate
the ∇a0 term by parts and integrate out a0 to obtain:

Z =

∫
Da0D~aD ~E exp

[
1

2
i

∫
dx(2 ~E · ∂0~a− 2(∇ · ~E)a0 − (E2 +B2))

]
=∫

D~aD ~Eδ∇·~E exp

[
i

∫
dx( ~E · ∂0~a−

1

2
(E2 +B2))

]
(34)

This path integral now represents the Hamiltonian for-
mulation of a theory with canonical conjugate variables

~a and ~E, and with Hamiltonian given by 1
2 (E2 + B2),

plus an infinite energy penalty for a nonzero value of

∇ · ~E. (Many would prefer to regard ∇ · ~E 6= 0 states as
simply nonexistent in the pure gauge theory. However,
as discussed in the main text, it is more convenient to
regard these states as particle states, which are simply
gapped out to high energies.) Thus, we see that we can
equivalently formulate the problem purely in terms of a
spatial vector potential ~a and its conjugate momentum
~E. All of the physically meaningful entanglement prop-
erties will be captured by the Hilbert space of the spatial
gauge degrees of freedom on the spatial links.

APPENDIX B: PROJECTING DIRECT
PRODUCT STATES

We now demonstrate the assertion, claimed in the
text, that a direct product state, when projected onto the
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zero particle sector, will have an entanglement spectrum
in one-to-one correspondence with the electric boundary
conditions. In order to perform such a projection, we
must remove both electric and magnetic monopole con-
figurations from the wavefunction. It is convenient to
perform the magnetic projection first. In terms of mag-
netic flux, a magnetic monopole represents a point near
which the flux is large, in the sense of large deviations
from its minimum energy values of 2πn, for integer n.
In order to project away magnetic monopoles, we must
project away large values of magnetic flux. One sim-
ple way to insure this is to simply project away large
values of the vector potential itself, keeping only con-
figurations in which the vector potential a has small
fluctuations around a = 0. This may seem to be over-
projecting, since there are many gauge-equivalent con-
figurations of a which have large a but still have small
magnetic flux. However, as we shall see shortly, the pro-
jection onto zero electric charge naturally restores equal
weight to all gauge-equivalent configurations, so we are
free to pick a gauge with small a at this stage. Thus, in
order to project away magnetic monopoles, it is sufficient
to project linkwise onto the subspace with small a. This
can be defined with some arbitrary cutoff amax � π.

Thus, the magnetic projection can be performed
through a product of linkwise projections, Pmag =∏
i Pa,i. Now we write the wavefunction for our system

in direct product form as:

|Ψ〉 = |ψ〉A|φ〉B (35)

for some partition of the links of the system into subsys-
tems A and B. Importantly, all links are either in A or in
B unambiguously. Thus, the magnetic projection oper-
ator factorizes as Pmag =

∏
i∈A Pa,i

∏
i∈B Pa,i ≡ PAPB .

Acting with this projector on our direct product state
gives:

Pmag|Ψ〉 = (PA|ψ〉A)(PB |φ〉B) ≡ |ψ′〉A|φ′〉B (36)

which is still a direct product state between the projected
states |ψ′〉A and |φ′〉B .

With the magnetic monopoles tamed, we must now
project away electric particles. We first demonstrate
that this restores equal weight to all gauge-equivalent
states. Going over to path integral notation for con-
venience, a generic wavefunction can be written in the
electric basis as:

|Ψ〉 =

∫
DEf(E)|E〉 (37)

which can then be Fourier transformed as:

|Ψ〉 =

∫
DEDa f(E)ei

∫
E·a|a〉 (38)

We can project onto the closed loop (no electric par-
ticle) subspace by representing the corresponding delta

function as a Fourier integral:

P |Ψ〉 =

∫
DEδ(∇ · E)f(E)|E〉 ∝∫

DEDbei
∫
b∇·Ef(E)|E〉 =∫

DEDbe−i
∫
E·∇bf(E)|E〉 =∫

DEDbDaf(E)ei
∫
E·(a−∇b)|a〉 =∫

DEDaf(E)ei
∫
E·a
(∫

Db|a+∇b〉
)

(39)

where we have performed an integration by parts in the
second line, and we shifted the a variable by ∇b in the
final line. We see that the end result of the projection
is the same result as the original state, but with the
basis |a〉 replaced by an equal weight superposition of
all gauge-equivalent states,

∫
Db|a + ∇b〉. This estab-

lishes our earlier claim that electric projection restores
equal weight to gauge-equivalent states, justifying our
magnetic projection procedure. Furthermore, project-
ing onto the zero electric charge sector does not yield
any configurations with different magnetic flux from the
original wavefunctions, so this projection respects the
absence of magnetic monopoles.

We now wish to explicitly electrically project the
state in Equation 36, which has already been magnet-
ically projected. To do this, we note that Gauss’s law,
∇ ·E = 0, is defined on the sites of the lattice, meaning
that the links touching each site should in total carry
out as much flux as they bring in. The electric projector
can therefore be written as a superposition of site projec-
tors, Pelec =

∏
i∈sites Pi. Unlike links, not all sites can

be associated with either A or B. There are those sites
totally in A and those totally in B, but there are also
those points on the boundary, which define the partition
between A and B. Our projector can then be written
as Pelec = PAPBP∂ , where PA acts only on region A,
PB acts only on region B, and P∂ acts on the boundary
sites (and all three factors commute). The final pro-
jected states can then be written as:

P |Ψ〉 = PelecPmag|Ψ〉 = P∂(PA|ψ′〉A)(PB |φ′〉B)

≡ P∂(|ψ′′〉A|φ′′〉B)
(40)

In the end, all we are left with is a boundary projection
acting on a direct product state, |ψ′′〉A|φ′′〉B . To perform
the last projection, we first expand the wavefunctions on
each side in a basis of eigenstates of electric flux through
the boundary:

|ψ′′〉A =
∑
bc

cbc|bc〉 (41)

where bc denotes boundary conditions, and a similar ex-
pansion holds for |φ′′〉. Call its expansion coefficients c′bc.
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The final wavefunction becomes:

P |Ψ〉 =P∂
∑
bc,bc′

cbcc
′
bc′ |bc〉A|bc′〉B =

∑
bc

(cbcc
′
bc)|bc〉A|bc〉B

(42)

where the final projection has enforced equality of
boundary conditions. This final wavefunction is al-
ready explicitly in Schmidt form, with Schmidt coeffi-
cients cbcc

′
bc, and each Schmidt coefficient corresponds

to a unique boundary condition. We have therefore
demonstrated that a direct product state, after project-
ing away electric and magnetic monopoles, will yield a
state with entanglement spectrum in one-to-one corre-
spondence with boundary conditions.

APPENDIX C: ON THE NATURE OF
MAGNETIC MONOPOLES

In the main text, we have shown that the entangle-
ment spectrum of the U(1) spin liquid is described by a
photon contribution, and also a contribution which can
be naturally associated with a boundary theory of elec-
tric particles. This conclusion was reached through two
separate perspectives, both at the level of the wavefunc-
tion and at the level of the local thermal picture. Both of
these frameworks might suggest that the magnetic field
ought to be treated on equal footing, and that at the
end of the day we ought to have a separate topological
logarithm coming from magnetic neutrality. In fact, this
is not the case, as we shall now describe for both frame-
works separately, first for the wavefunction picture and
then for the local thermal picture.

Wavefunction Picture

At the level of the wavefunction, we enforced the
Gauss’s law constraint by matching up electric boundary
conditions between the two regions of our bipartition.
Should we not similarly match up magnetic boundary
conditions in order to ensure the absence of magnetic
monopoles? The issue here comes from the fact that
electric and magnetic fields do not commute. Actually,
parallel electric and magnetic fields do commute (recall-
ing that the electric field is defined on links whereas the
magnetic field is defined on plaquettes, or equivalently
dual lattice links). We could therefore simultaneously
specify the normal components of both the electric and
magnetic fields at the boundary. However, this is not suf-
ficient. In order to ensure the absence of electric charge
on a site, it is not enough to simply match up the elec-
tric field on links normal to the surface. One must also
keep track of all the flux being carried by the links run-
ning along the surface. Similarly, matching up magnetic
boundary conditions would require knowledge of both

normal and transverse magnetic flux at the surface. Due
to the non-commuting nature of electric and magnetic
fields, it is not possible to specify all of these quanti-
ties at the same time. In fact, if we examine a piece of
our wavefunction in a fixed flux sector, we note that the
act of fixing a specified electric field E will automati-
cally lead to large fluctuations in the vector potential a,
leading to magnetic monopole configurations. In short,
the decomposition of the wavefunction into its electric
flux sectors does not respect the absence of magnetic
monopoles. Of course, the final wavefunction must still
be monopole free, but this will rely on a cancellation of
monopole configurations between different electric flux
sectors. We therefore see that it is not possible to label
the elements of the entanglement spectrum by both elec-
tric and magnetic boundary conditions. Furthermore, in
the example of a projected direct product state, we have
explicitly shown that the electric boundary condition is
sufficient to label the entanglement spectrum, without
mention of any magnetic boundary conditions (see Ap-
pendix B).

One may be slightly bothered by the seeming asymme-
try between electric and magnetic fields, when the low-
energy physics of the U(1) spin liquid has an emergent
electric-magnetic duality. It would seem that the entan-
glement structure also has a similar dual description. It
is important to remember that we have chosen the links
to represent the fundamental variables of our system.
Any partitioning of these links will automatically end up
breaking up some plaquettes at the boundary, and not
every plaquette will belong uniquely to a specific subsys-
tem. Thus, it is impossible to even describe the magnetic
flux in the vicinity of the boundary as a function of infor-
mation accessible on one side of the partition. However,
one could imagine a dual description, where we take our
fundamental variables to be the plaquettes (or equiva-
lently, links on the dual lattice). If we then partitioned
our system in terms of plaquettes, it would be the links
which are ambiguous at the boundary. If we took this
to be the setup of our system, the natural thing would
be to have an entanglement spectrum in one-to-one cor-
respondence with magnetic boundary conditions, rather
than electric boundary conditions, which would not play
a significant role in the entanglement structure. At the
end of the day, we should get the same topological loga-
rithm as in the present analysis. Thus, we see that the
electric and magnetic perspectives are dual, rather than
additive, and there is only a single topological logarithm
coming from the particle sector of the theory.

Local Thermal Picture

It is also important to understand the absence of a
magnetic contribution at the level of the local thermal
interpretation of the Bisognano-Wichmann theorem. In
section 3, we noted that the low energy effective theory
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of our system:

S =

∫
FµνF

µν (43)

has an emergent relativistic symmetry. We can there-
fore apply the Bisognano-Wichmann result to obtain the
entanglement Hamiltonian for this system, which has
a useful interpretation in terms of a local thermal pic-
ture where the temperature varies as T ∼ 1

x (x being
the distance away from the partitioning surface). How-
ever, to apply the local thermal perspective, we must
decide what states are actually thermally excited within
this picture. The full Hilbert space of our original lat-
tice theory contains gapless photons, gapped (decon-
fined) electric charges, and gapped (deconfined) mag-
netic monopoles. However, the low energy action above
would naively seem to indicate that the only degree of
freedom is the gapless photon. But as we have argued
in the main text, in order to be consistent with emer-
gence from a local tensor product Hilbert space (as in
a spin liquid), we are forced to consider the endpoints
of electric strings in our Hilbert space. In other words,
even when we have taken the mass of the electric parti-
cles to infinity, we still must consider these particles as
existing within the Hilbert space. The action 43 should
really be thought of as a limiting case of a gauge field
coupled to (electrically) charged matter fields, where we
take the mass of the electric particles to be very large.
Since the temperature profile of the local thermal pic-
ture, T ∼ 1

x , grows arbitrarily large near the boundary,
these particles will always be excited in some thin layer
at the boundary.

We have now established that both photons and elec-
tric particles must be taken into account in the local
thermal perspective. Indeed this motivated the use of
the theory in Equation 13 with a non-compact gauge
field. But what about magnetic monopoles? Naively, one
might think that we have two separate thermal bound-
ary gases, one of electric charges and one of magnetic
charges, leading to two separate logarithms due to the
neutrality constraint in each gas. However, the logic of
the previous section hints that this perspective is some-
how flawed and that the magnetic monopoles should not
contribute separately. This is indeed the case. There
are multiple ways to see this. At a straightforward (but
possibly too naive) level, one could say that, while the
physical theory of our system has magnetic monopoles,
the relativistic low-energy effective action of Equation
43 is that of a noncompact U(1) gauge field. In go-
ing to this low-energy theory, the electric particles are
still kept in the Hilbert space in order to maintain the
tensor product structure. However, the action has ap-
parently “forgotten” the original compactness and done
away with magnetic monopoles. However note that we
took the electric matter to have quantized charge. This
quantization is a low energy manifestation of the exis-
tence of magnetic monopoles in a UV completion of the
theory.

The issue with this argument is that the low-energy
theory of a noncompact U(1) gauge field coupled to
charged matter is not a UV complete theory. At high
energies, the theory flows to strong coupling (the “Lan-
dau pole” issue). The high-energy behavior of this low-
energy field is not really well-defined, so it is not sur-
prising that we are running into ambiguity issues re-
garding monopoles when trying to consider the theory
at arbitrarily high temperatures. We are interested in
theories where the UV completion is achieved through
a lattice model. This of course breaks Lorentz invari-
ance and complicates the use of the BW theorem to
arbitrarily high energies. However since we are inter-
ested in universal properties we are free to choose any
other UV completion. Luckily, there is a very simple
way to get a relativistic UV complete field theory which
reproduces the desired low-energy behavior. We can do
this by regarding the U(1) theory as descending from
some non-abelian gauge theory (say SU(2)) via sym-
metry breaking by the Higgs mechanism. Non-abelian
gauge theories exhibit asymptotic freedom and can be
unambiguously described at high energies. Such a field
theory naturally incorporates the compact nature of the
Hilbert space in a manifestly relativistic manner (in the
form of t’Hooft-Polyakov monopoles). We should then
be able to apply the Bisognano-Wichmann result and the
local thermal picture unambiguously to the symmetry-
broken non-abelian gauge theory. Since the low-energy
theory is the same as in our compact U(1) gauge the-
ory, we expect the universal aspects of the entanglement
entropy to be the same.

We therefore apply the local thermal picture to the
symmetry broken non-abelian gauge theory. This theory
has two important energy scales: the mass m of electric
particles, which is an independently tunable parameter,
and the mass M of magnetic monopoles, which is set by
the Higgs scale of the theory. Above the Higgs scale M ,
the full non-abelian gauge symmetry is restored. Since
the high-energy details of the theory are not important
for extracting universal features, we can take m � M
without loss of generality. We therefore see that there
are three relevant regions in the local thermal analy-
sis of the non-abelian gauge theory. In the bulk of the
system, temperatures are very small, T < m, and only
the gapless photon is thermally excited. Moving closer
to the boundary, in the region corresponding to the in-
termediate temperature scale m < T < M , we have a
screened Coulomb gas of thermally excited electric parti-
cles. Moving even closer to the boundary, we eventually
hit a temperature T > M where magnetic monopoles are
excited. However, at this temperature, the system “for-
gets” about the Higgs symmetry breaking and we are re-
stored to the full non-abelian gauge theory. We will then
be in a high-temperature phase of a non-abelian gauge
theory, which is known to take the form of a quark-gluon
plasma. It is unclear how to extract the entropy of this
quark-gluon plasma, since the non-abelian gauge struc-
ture does not provide us with a simple neutrality con-
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dition. Luckily, there is no need for such a calculation.
This high-T quark gluon plasma in the local thermal de-
scription of the entanglement Hamiltonian is universal
to all phases of the non-abelian gauge theory including
the confined phase. Consequently the contribution from
this region cannot distinguish the Higgs phase we are in-
terested in from trivial phases. Thus this region will only
contribute to the area law term and will not affect the
universal particle logarithm coming from the screened
boundary gas of electric charges of the low energy U(1)
gauge theory.

We thus conclude, in agreement with our previous ar-
guments, that the magnetic monopoles do not lead to
an independent universal logarithm in the entanglement
entropy.

APPENDIX D: θ TERMS IN THE U(1) ACTION

Throughout the bulk of this work, we have taken
the low-energy effective action for the three-dimensional
U(1) spin liquid to be standard noncompact electrody-
namics:

S =

∫
d4x

1

2e2
FµνFµν (44)

However, in general, there is another allowable term, re-
ferred to as the θ term:

S =

∫
d4x

(
1

2e2
FµνFµν +

θ

32π2
εµνλσFµνFλσ

)
(45)

The theta term will arise generically if there is no time
reversal symmetry. It can arise microscopically by a
change of the Hamiltonian describing the electric charge.
It has the effect that the monopoles now acquire frac-
tional electric charge θ

2π . Note that what we call electric
charge and what we call magnetic charge is arbitrary in
the absence of time reversal. With any given convention,
in general, there will be a lattice of electric charge and
magnetic monopole excitations. We can always choose a
basis in this lattice so that there is a pure electric charge.
The monopole excitations will then appear as dyons and
will live in an axis tilted at some angle to the ‘electric’
axis. Thus any theory with a non-zero θ can be viewed
as a theory with gapped pure electric charges, gapped
dyons, and a gapless photon. Now as argued in previous
sections the entanglement entropy is determined by the
theory obtained by integrating out the monopoles. In
the absence of monopoles the θ term is a total derivative
and can be ignored. Thus as far as the entanglement
entropy is concerned the theory with a non-zero θ is not
different from that at θ = 0.

In the presence of time reversal symmetry θ = 0 or
θ = π. The latter is realized if the electric charges
are Kramers fermions and form a topological insulator.
Though the argument above for the entanglement en-
tropy will continue to hold it is clear from this connection
that the entanglement spectrum will distinguish θ = 0
and θ = π.

APPENDIX E: A COMMENT ON
NON-SEPARABLE THEORIES

In the present work, we have considered a U(1) spin
liquid with gapless photon and gapped particles. In this
theory, we have found that entanglement entropy sepa-
rates cleanly into a contribution from the gapless photon
and a topological term which can be associated with the
gapped particles. The separation is particularly clear
in the local thermal picture, where gapless photon ex-
citations occur throughout the bulk, whereas thermally
excited particles exist only at the boundary.

However, there exist other theories where such a clean
separation between the gapless contribution and the
topological contribution do not occur. For example, the
model considered in26 has both a topologically nontrivial
structure and gapless modes. However, it is found that
the universal contribution to the entanglement entropy is
not simply the sum of these two contributions. The dis-
tinguishing feature of models such as this, as compared
to the model considered here, is that it is the particles
which are gapless, whereas we have here considered only
a gapless gauge mode, i.e. the photon. As we have dis-
cussed in this work, the topological part of the entangle-
ment entropy comes from the deconfined particle exci-
tations, which have a global neutrality constraint giving
rise to topological entanglement entropy. The gapless
photon, on the other hand, has no such topologically
nontrivial structure. In models such as in26, the decon-
fined particles themselves are the gapless modes. We
expect these particles to contribute some sort of “topo-
logical” contribution to the entanglement entropy, but
we also expect some extra entanglement structure due
to their gaplessness. It is far from clear that the en-
tanglement contribution of these gapless particles should
be simply a sum of terms due separately to their gap-
lessness and due to their “topologicalness.” In fact, the
work in26 indicates that such a separation does not hold.
It would be highly interesting to attempt to apply a
Kitaev-Preskill sort of scheme to these models to see
what comes out. Or perhaps the Kitaev-Preskill scheme
itself will need modification to correctly extract the inter-
esting physics of such models. There is much to explore.

APPENDIX F: FAILURES OF THE FOURIER
INTEGRAL METHOD

In the main text, we have worked with a distribution
function f̃(b) with a unique maximum, with smooth be-
havior in the vicinity of that maximum. More generally,
we could easily extend this to include functions with a
discrete number of smooth maxima, giving essentially
the same behavior, since cross terms between maxima
would be insignificant in the large N limit. The most
significant exception occurs when f̃(b) has a sharp delta
function peak, as would occur when f(ni) = 1 for all
ni. This represents a state in which there is no energy
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penalty for particle overlap, and all boundary conditions
of arbitrarily high flux are equally weighted. In this case,
the entanglement entropy diverges and there is no sen-
sible notion of topological entanglement entropy. This
wavefunction is not totally irrelevant, since it describes
the ground state of the U(1) Hamiltonian with the elec-
tric field term tuned all the way to zero. However, this
seems to be a singular limit, since any regularization of
f(ni) will give the subleading logarithm.

This is the most significant difference between the
U(1) gauge theory and the discrete case, such as a Zn
gauge theory. In a discrete gauge theory, one can carry
through an analogous analysis in terms of a Fourier
transform on a finite group. The Fourier transform is
discretely defined, preventing us from performing any
sort of Gaussian expansion around the maximum. In
this case, when the electric field term of the Hamiltonian
goes to zero, we end up with a Kronecker delta instead
of a Dirac delta function in f̃(b). This Kronecker delta
will then give us exactly the − log n topological entangle-
ment entropy. Thus, in the discrete case, we can feel free
to let the coefficient of the electric field term be tuned
all the way to zero, giving us essentially a Kitaev model
(a generalization of the toric code). In the U(1) gauge
theory, on the other hand, a correct extraction of the
entanglement entropy requires regularization by retain-
ing an energy cost for large electric fields. Considering
the fact that a Zn gauge theory has − log n topological
entanglement entropy (in any dimension) and the U(1)

gauge theory has a −d−1
2 logL contribution (which we

have argued to be topological), it may have been tempt-
ing to view U(1) gauge theory as a large n limit of Zn
gauge theory, with n cut off at order L(d−1)/2. However,
the use of the Gaussian expansion for the U(1) theory
seems distinctly different from the procedure in the Zn
case, and it is questionable if any such large n identifi-
cation holds.

While a generic regularized function f̃(b) in our U(1)
theory will have quadratic behavior near its maximum,
it is also entertaining to consider the possibility that,
through some fine-tuning, it may be possible to engi-
neer a wavefunction such that the behavior of f̃(b) is
not quadratic near its maximum, but rather a higher
(even) power, as f̃(b) ≈ c(1− α(b− b0)η) ≈ ce−α(b−b0)η .
The factor of 1√

N
in the partition function is replaced by

N−1/η, so the subleading logarithm becomes − 1
η logN =

−d−1
η logL. The generic case of course has η = 2, but it

is possible that a fine-tuned model may have a ground
state with this modified subleading logarithm. Another
less interesting failure of the Fourier integral method is
when f̃(b) has no maxima, but rather is a constant func-
tion. This would correspond to f(ni) being a delta func-
tion at zero charge (other charges could not satisfy the
neutrality constraint), which would only occur in the
wavefunction for a confined phase and is not of concern
to us here.
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