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We present a microscopic theory of the chiral one-dimensional electron gas system localized on
the sidewalls of magnetically-doped Bi2Se3-family topological insulator nanoribbons in the quantum
anomalous Hall effect (QAHE) regime. Our theory is based on a simple continuum model of sidewall
states whose parameters are extracted from detailed ribbon and film geometry tight-binding model
calculations. In contrast to the familiar case of the quantum Hall effect in semiconductor quantum
wells, the number of microscopic chiral channels depends simply and systematically on the ribbon
thickness and on the position of the Fermi level within the surface state gap. We use our theory to
interpret recent transport experiments that exhibit non-zero longitudinal resistance in samples with
accurately quantized Hall conductances.
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The quantum Hall effect [1] is a transport anomaly that
occurs when [2] a two-dimensional (2D) electron system
has a charge gap, i.e. a jump in chemical potential, at
a density that depends on magnetic field. It is char-
acterized by the absence of longitudinal resistance and
quantized Hall resistance. Both properties can be un-
derstood in terms of the chiral one-dimensional electron
systems [3] (C1DESs) always present at quantum Hall
sample edges. Although the rate at which their non-zero
equilibrium currents change as chemical potential is var-
ied is fixed by the magnetic field dependence of the gap
density, other properties of C1DESs are dependent on
microscopic details. In the case of GaAlAs 2D electron
gas systems, for example, it has in fact been difficult to
achieve a fully satisfactory understanding of chiral edge
state properties because of electrostatic imperatives that
force edge reconstructions [4] and cause the number of
microscopic edge channels to proliferate [5]. Accurate
quantization of the Hall conductance then requires [2]
only that local equilibrium be established at decoupled
edges of the sample.
In this Letter we address the properties of the C1DES

associated with the quantum anomalous Hall effect
(QAHE) [6–16] in magnetically doped topological insu-
lator (TI) [17, 18] thin films. The appearance of a quan-
tum Hall effect in these systems is a direct consequence
of spontaneously broken time-reversal symmetry, which
is also manifested by a suite of unusual magnetic [19–
24], and optical [25–27] properties. We show that the
C1DES associated with this quantum Hall effect is local-
ized on the thin film sidewalls and that, in contrast to

∗ Now at: Nordita, KTH Royal Institute of Technology and Stock-

holm University, Roslagstullsbacken 23, SE-106 91 Stockholm,

Sweden; anna.pertsova@su.se

the case of GaAs quantum wells, its microscopic prop-
erties depend rather simply on film thickness, the size
of the surface-state gap induced by broken time-reversal
symmetry, and also on the facet dependence of surface-
state Dirac velocities. Using our theory, we argue that in
the absence of disorder thin films with the characteristics
of samples in which the QAHE has so far been studied
support a C1DES with a single chiral channel. It follows
that the presence of a non-zero longitudinal resistance
in most experiments [9, 24, 28–32] cannot be attributed,
as is common, to the absence of local equilibrium at a
multi-channel edge.

A qualitative understanding of C1DES properties can be
obtained from the simplest possible 2D sidewall model.
(See Refs. 33–44 for related continuum model analysis.)
We assume that the sidewall has infinite extension in the
ŷ direction, thickness T in the ẑ direction [Fig. 1(a)], and
it is described by an anisotropic Dirac Hamiltonian with
a mass term: Ĥ = i~(−vDzσy∂z + vDyσx∂y) + m(z)σz.
Here σ = {σx, σy , σz} is a Pauli-matrix vector that acts
on spin, m(z) captures the influence of exchange inter-
actions between the top, bottom, and sidewall surface
quasiparticles and the ẑ direction of bulk magnetization,
vDz (vDy) is the vertical (horizontal) Dirac velocity. The
mass is zero on the sidewall where the exchange interac-
tion can be absorbed by a gauge change, (m(z) = 0 for
−T/2 < z < T/2) and has a different sign on the top
and bottom surfaces; m(z) = m0 > 0 for z > T/2 and
m(z) = −m0 < 0 for z < −T/2, where m0 is a constant.
We find the eigenfunctions of this Hamiltonian by match-
ing wavefunctions at the z = ±T/2 boundaries [45].

The Dirac equation solutions include a set of non-chiral
eigenfunctions whose role we focus on in this paper, and
a chiral eigenfunction with velocity vD =

√
vDzvDy, en-

ergy E(k) = ~vDk, and a wavefunction that is constant
inside the sidewall and decays exponentially on the top
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and bottom surfaces [Fig. 1(d)]. The non-chiral eigenval-
ues are conveniently expressed in dimensionless units re-
lated to the sidewall’s size-quantization energy scale: ε =
ET/π~vDz, µ = m0T/π~vDz and χ = k

√

vDy/vDzT/π.
Because the non-chiral band energies are even functions
of χ, non-chiral states always appear in equal-energy,
opposite-velocity, opposite-wavevector pairs [Fig. 1(b)].
The number NNC of non-chiral one-dimensional (1D)
subbands that are occupied at energy ε decreases with di-
mensionless mass µ, as illustrated in Fig. 1(c) where the
energies of non-chiral band minima, located at χ = 0,
are plotted as a function of µ. The wavefunctions of
the non-chiral states have nodes along the ẑ direction,
with the number of nodes increasing with the energy
of the state [Fig. 1(d)]. For thick films, the number of
sidewall channels inside the surface-state gap is NNC ∼
µ = m0T/π~vDz ∼ (m0[meV]T [nm]/)(200 vDz[10

5m/s]).
It follows that for µ . 1, non-chiral states are absent
across most of the surface state gap. Non-chiral chan-
nels are present across a larger fraction of the gap for
thicker films, larger gaps, and smaller vertical Dirac ve-
locities. Below we confirm these predictions of the sim-
plified model, and obtain a numerical estimate for vDz by
performing microscopic tight-binding model calculations.
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FIG. 1. (Color online) (a) A simplified model for states lo-
calized on a y-z plane sidewall. (b) Quasi 1D energy bands
calculated at µ = 8/π with energies in ~πvDz/T units. (c)
Positive non-chiral band energies at χ = 0 as a function of µ.
The non-chiral bands are particle-hole symmetric. For ǫ > µ
all states extend across the top and bottom surfaces. In the
limit µ → ∞ the dimensionless energies of non-chiral states
approach integers. For ǫ < µ, the χ = 0 band energy lines
separate regions labeled by the number of non-chiral channels
NNC that are present. (d) Wavefunctions of the chiral state
(black dashed line) and the first three negative energy non-
chiral states at positive (dimensionless) momentum χ = 5/π.
The eigenvalues associated with the non-chiral wavefunctions
are marked by correspondingly colored dots in (b).

In order to address transport in the QAHE regime, it is

necessary to study the sidewall electronic structure mi-
croscopically [10, 34]. This will allow us: (i) to determine
the velocity parameter vDz; (ii) to examine the position
of the Dirac point relative to the bulk conduction and
valence bands, and (iii) to shed light on relevant features
that are not captured by simple continuum models, such
as the hybridization between top and bottom surfaces.

We find that (i) vDz is smaller than the top and bot-
tom surface-state Dirac velocities, increasing the number
of non-chiral sidewall channels present at a given thick-
ness, but not drastically so in spite of the van der Waals
character of the bonding between quintile layers (QLs),
(ii) exchange coupling on its own does not shift the posi-
tion of the Dirac point within the surface-state gap and
(iii) hybridization between top and bottom surfaces sets
the minimum exchange interaction strength required for
a QAHE at 90 meV for 3QL and at 0.01 meV for 5QL
films. The surprisingly large value of vDz simplifies the
QAHE in TI thin films and improves prospects for ac-
curate quantum Hall effects and for future experimental
studies of sidewall state properties.

We focus on Bi2Se3 TI [46] whose electronic struc-
ture can be described by a sp3 tight-binding model
with parameters obtained by fitting to ab initio calcu-
lations [47, 48]. We assume that a ferromagnetic state
is achieved by magnetic doping. The systems that we
have in mind are Cr or Fe-doped Bi2Se3 or (Bi,Sb)2Te3.
Here substitutional dopants only establish a ferromag-
netic insulating state, with minor modifications of the
host electronic structure, without introducing free car-
riers [8]. We model a homogeneous perpendicular mag-
netization by an exchange field Bex expressed in energy
units and oriented perpendicular to the (111) surface.
In real samples the effective exchange field is certainly
more complicated than the homogeneous field used in our
model. However, short-range exchange fluctuations are
less important for generating a surface-state gap than the
long-range properties of the magnetization, which are ad-
equately captured by a homogeneous field. To test this
hypothesis, we considered an inhomogeneous exchange
field which is distributed predominantly on Bi atoms but
its value is adjusted to produce the same surface-state
gap. We find that the electronic structure of the sidewall
states is mostly unchanged [45].

To extract the facet-dependent Dirac velocities we first
consider the thin-film geometry. For the Se (111) surface-
layer facet [Fig. 2(c)], we find that the Dirac cone is
isotropic with velocity v0

D
≈ 5.0×105 m/s. For the mixed

Bi/Se (1̄10) sidewall facet [Fig. 2(b)] [49], the Dirac cone
is strongly anisotropic with vDy ≈ 4.7 × 105 m/s and
vDz ≈ 2.3 × 105 m/s. (The values are accurate within
the quoted digits [45]). We then turn to the ribbon ge-
ometry [Fig. 2(a)] in order to identify the sidewall states
active in QAHE transport experiments. The ribbon is
infinite in the ŷ direction, the direction of longitudinal
transport, has a thickness T in the ẑ direction approxi-
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FIG. 2. (Color online) (a) Bi2Se3 nanoribbon with thickness
T and width W . The thick red arrows represent currents car-
ried by ballistic chiral edge states, while the thin blue arrows
represent currents carried by ballistic non-chiral edge states.
The sidewall localization property of chiral states is reflected
by the illustrated |Ψ|2 probability density distribution across
the ribbon cross section. Top views of the (1̄10) sidewall (b)
and the (111) top and bottom surface layers (c), with black
arrows for 2D crystal unit vectors.

mately equal to 1 nm per QL, and a finite width W in
the x̂ direction. Results for ribbons with T = 5QL and
W = 208 nm are presented in Fig. 3.
At Bex = 0 the low-energy states consist of discrete

quasi 1D channels separated in energy by ∼ ~πvD/(T +
W ) [37] as illustrated in Fig. 3(a). Wavefunctions at en-
ergies within the bulk gap (between 0 and 0.4 eV for a
5QL film), are distributed over all four facets of the rib-
bon at k = 0, but because of the Dirac velocity mismatch
tend to localize either on sidewall or on surface facets at
k 6= 0. At Bex = 0.16eV a gap opens and is bridged
by a pair of chiral edge states [Fig. 3(b)]. The size of
the gap is smaller than the exchange coupling energy be-
cause, in contrast to the toy model, the quasiparticles
have mixed spin character even at k = 0 and g-factors
that are smaller than 2. The gap is 70 meV and can
be identified with the gap 2m0 in the toy model. It fol-
lows that Bex = 0.16eV corresponds to m0 = 35 meV,
in agreement with typical experimental estimates. At
a given energy, the negative-velocity (ΣL) and positive-
velocity (ΣR) chiral states are localized on the opposite
sidewalls [see Fig. 3(c) and (d)]. The value of the chiral-
state velocity is ≈ 4.2× 105 m/s [45], which is consistent
with the estimate provided by the toy-model expression
vD =

√
vDzvDy ≈ 3.3 × 105 m/s (evaluated for vDz and

vDy quoted above). Both states are spin-polarized in the
direction of the exchange field.
Non-chiral channels appear only at energies outside of

the surface-state gap. A typical non-chiral state, illus-
trated in Fig. 3(e) (Λ), has weight on both sidewalls and
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FIG. 3. (Color online) Bandstructure of a Bi2Se3 nanoribbon
with T = 5QL and W = 208 nm for Bex = 0 (a) and Bex =
0.16 eV (b). Chiral edge states are shown in red in panel
(b). Spatial distribution of the wavefunction across the ribbon
cross-section for a right-goer state ΣR (c) and a left-goer state
ΣL (d) with energy ≈ 0.11 eV [dashed line in (b)], and a non-
chiral state Λ (e) with energy ≈ 0.23 eV [white circle in (b)].
The dashed lines in (d) mark the positions of the outermost
Se layers in each QL. In (c) and (d) only the ribbon edges are
shown.

on the top and bottom surfaces. The absence of sidewall-
localized non-chiral channels in these calculations can be
understood by comparing with the toy model and using
the microscopically calculated value for vDz to evaluate
the dimensionless gap parameter. We find that for the
thickness and exchange interaction strength of this repre-
sentative microscopic calculation µ ∼ 0.3 [45], consistent
with the NNC = 0 electronic structure of Fig. 3(b). Non-
chiral channels appear at energies inside the surface-state
gap only for thicker films or stronger exchange splitting.

Our sidewall toy model does not account for the hy-
bridization between top and bottom surfaces which, in
very thin films, controls a transition between quantum
Hall and topologically trivial states [8]. The hybridiza-
tion scale is negligible compared to typical exchange en-
ergy scales in 5QL films, but not in 3QL films whose
properties are summarized in Fig. 4. Hybridization opens
a sizable surface-state gap in 3QL films at Bex = 0. This
time-reversed ground state is a 2D TI and supports heli-
cal edge states. The gap decreases in size with increasing
Bex and vanishes at Bex = Bcr

ex. For Bex > Bcr
ex the order

of the lowest 2D subbands is reversed, causing a tran-
sition to the QAHE phase [45], and the gap size then
increases with Bex. We find that Bcr

ex ≈ 90 meV for 3QL
and that Bcr

ex ≈ 0.01 meV for 5QL. Although remnants
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FIG. 4. (Color online) Bandstructure of a Bi2Se3 nanoribbon
with T = 3QL for W = 21 nm and Bex = 0.16 eV (a),
W = 21 nm and Bex = 0.4 eV (b), and W = 125 nm and
Bex = 0.16 eV (c). Chiral edge states are shown in red. (d)
Chiral state avoided crossing gap for T = 3QL (circles) and
T = 5QL (squares) as a function of W for Bex=0.16 eV. The
inset shows the logarithm of the gap for 3QL films over a
larger range of W ’s. (e) Gap as a function of Bex for a fixed
W = 21 nm in the same two cases. The vertical dashed line
marks the critical exchange field (Bcr

ex ≈ 0.09 eV) for 3QL.

of the Bex = 0 helical edge states can complicate the
edge electronic structure when Bex . Bcr

ex, our micro-
scopic calculations demonstrate that no trace is present
for Bex ≫ Bcr

ex where only the chiral edge modes survive.

For finite-width ribbons there is a gap in the spectrum
for Bex > Bcr

ex because of the avoided crossing between
edge states localized on opposite sidewalls. This gap de-
creases in size both with increasing Bex [Fig. 4(b)] or W
[Fig. 4(c)]. For a fixed exchange field Bex > Bcr

ex the
gap decreases exponentially with W [Fig. 4(d)], whereas
for Bex < Bcr

ex, the gap approaches a finite value as
W → ∞. By fitting the W dependence of the gap to
an exponential-decay law we estimate that the localiza-
tion length of the chiral edge state at Bex = 0.16 eV is
≈ 18.6 nm for 3QL and ≈ 8.2 nm for 5QL. Since typ-
ical experimental samples used in QAHE studies have
widths of hundreds of µm, direct coupling between op-
posite edges is negligible in the absence of disorder.

Experimental QAHE measurements have so far been per-
formed mainly on films with thicknesses in the range be-
tween 5 and 10QL. Because the vertical sidewall Dirac
velocity, which characterizes a direction in which elec-
trons hop between Bi and chalcogen layers, is only a few
times smaller than in-plane Dirac velocities, the 10QL
maximum thickness is not sufficient to support non-chiral
edge modes. At the same time, hybridization between

top and bottom surfaces at the minimum 5QL thickness
is very much weaker than typical exchange fields. For
this reason, we conclude that the sidewalls of the typi-
cal samples do not support either helical edge states that
are a remnant of Bex = 0 2D TI states, or the non-chiral
sidewall states [10] expected in thicker films. This is one
of the central results of our study, which accounts for the
nearly perfectly quantized anomalous Hall conductance
found in experiment.

Because the sidewall spectrum consists of a single chi-
ral channel, it is not possible to explain the commonly ob-
served finite longitudinal resistances by assuming a fail-
ure to establish local equilibrium on a multi-channel edge.
A more likely explanation, in our view, is that potential
disorder causes the local Fermi level to sweep across the
surface-state gap. The relatively high-velocity 1D chiral
sidewall states have negligible density of states. They
therefore can do little on their own to screen inevitable
spatial variations in external electric fields that induce
relative shifts in the Dirac cones of top and bottom sur-
faces, or external potentials that induce common shifts
in the Dirac cones of the two surfaces.

Fluctuations that bring the surface states of large-area
top or bottom facets to the Fermi level, provide a mech-
anism for 2D dissipative transport in some parts of the
system. The consequences for transport are similar to
those of non-chiral edge states. In this case however, the
dissipation is not an intrinsic property of the sidewall
states, and should be weakened when potential fluctu-
ations are reduced. This suggests that smaller longitu-
dinal resistances and more accurate quantization can be
achieved in higher quality samples with less uncontrolled
and uncharacterized disorder.

According to our theory, thicker samples will eventu-
ally support non-chiral edge modes, which can lead to
an increased longitudinal dissipation. However, disorder
in this case can also support dissipationless transport by
localizing non-chiral channels and establishing local equi-
librium on spatially separated sidewall segments. Hence
a larger number of channels on the sidewalls can increase
the degree to which disorder is screened and help broaden
the gate voltage range over which nearly pure sidewall
transport can be established.
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