
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Giant photon gain in large-scale quantum dot-circuit QED
systems

Bijay Kumar Agarwalla, Manas Kulkarni, Shaul Mukamel, and Dvira Segal
Phys. Rev. B 94, 121305 — Published 30 September 2016

DOI: 10.1103/PhysRevB.94.121305

http://dx.doi.org/10.1103/PhysRevB.94.121305


Giant photon gain in large-scale quantum dot circuit-QED systems

Bijay Kumar Agarwalla,1 Manas Kulkarni,2 Shaul Mukamel,3 and Dvira Segal1

1Chemical Physics Theory Group, Department of Chemistry,
and Centre for Quantum Information and Quantum Control,

University of Toronto, 80 Saint George St., Toronto, Ontario, Canada M5S 3H6
2International centre for theoretical sciences, Tata Institute of Fundamental Research, Bangalore - 560012, India

3Department of Chemistry, University of California, Irvine, California 92697, USA
(Dated: September 6, 2016)

Motivated by recent experiments on the generation of coherent light in engineered hybrid quantum
systems, we investigate gain in a microwave photonic cavity coupled to quantum dot structures, and
develop concrete directions for achieving a giant amplification in photon transmission. We propose
two architectures for scaling up the electronic gain medium: (i) N double quantum dot systems
(N-DQD), (ii) M quantum dots arranged in series akin to a quantum cascade laser setup. In
both setups, the fermionic reservoirs are voltage biased, and the quantum dots are coupled to a
single-mode cavity. Optical amplification is explained based on a sum rule for the transmission
function, and it is determined by an intricate competition between two different processes: charge
density response in the gain medium, and cavity losses to input and output ports. The same design
principle is also responsible for the corresponding giant amplification in other photonic observables,
mean photon number and emission spectrum, thereby realizing a quantum device that behaves as a
giant microwave amplifier.

Introduction.- Remarkable progress has been made in
engineering, probing, and controlling hybrid light-matter
systems which sit at the confluence of quantum optics
and condensed matter physics [1–6]. Important exam-
ples include cavity-quantum electrodynamics arrays [7–
9], trapped cold atoms coupled to photon degrees of free-
dom [10–13], interconnected copper waveguide cavities,
each housing a qubit [14–16]. The successful integration
of biased quantum dots (mesocopic electronic systems)
with a transmission line resonator (photonic degrees of
freedom) has been a major step forward in this field [17–
31]. Such quantum dot circuit-quantum-electrodynamics
(QD-cQED) hybrids open up new directions for realz-
ing quantum computing schemes based on localized elec-
tronic spins [32, 33], controlling electronic current via
‘light’ [34–37], and achieving high gain in the cavity
transmission [1, 6]. Fundamentally, QD-cQED systems
serve as a versatile platform for probing non-equilibrium
open many-body quantum systems, by realizing basic
models and phenomena in physics, for e.g., the Anderson-
Holstein Hamiltonian with the fermionic system tuned to
the Coulomb blockade or the Kondo regime [17, 28].

Focusing on the optical properties of the cavity, QD-
cQED devices can be engineered and optimized to in-
crease photon emission, by utilizing the voltage biased
QDs as a gain medium [21, 24]. To significantly enhance
optical signal in the cavity, recent efforts were focused on
scaling up the gain-medium [38, 39]. A major advance in
this regard has been the realization of a microwave laser
(maser) via the fabrication of a double double quantum
dot gain medium. In this setup, only when both elec-
tronic units were properly tuned to the cavity frequency
did a maser action appear [40]. Despite impressive exper-
imental demonstrations, a theoretical understanding of
principles governing amplification of photon emission in
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FIG. 1. (Color online) Schemes of large-scale quantum dot
circuit-QED systems designed for achieving giant optical gain.
A transmission line resonator is coupled via a Holstein-like
interaction to an electronic gain medium with (a) N dou-
ble quantum dots, each DQD tunnel-coupled to external elec-
trodes and driven out-of-equilibrium by the application of a
source-drain bias. (b) M dots in a cascade setup, with the
first and last sites coupled to electronic leads. Tunnelling
rates between the dots and the electron leads (ΓL,ΓR) and
in between the dots (t) are tuned via gate-controlled tunnel-
barriers. Cavity photons are coupled to the input and output
ports with rates κL(R). Arrows represent tunnelling processes
and wavy lines indicate light-matter couplings.

hybrid light-matter devices is missing. Specifically, what
architectures, comprising large scale electronic quantum
dot systems, can act as momentous gain media? How
should we tune together the different couplings and driv-
ing forces to realize a giant microwave amplifier?

In this Letter, we describe from microscopic princi-
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ples directions for enhancing photon emission, eventually
reaching the lasing threshold—from below. We achieve
a giant amplification of photonic observables (transmis-
sion, mean photon number, emission spectrum) by em-
ploying different large-scale gain media, (i) an N double
quantum dot system (N-DQD) with each DQD main-
tained at a finite dc bias, see Fig 1(a), (ii) M dc-biased
quantum dots arranged in series, see Fig 1(b). The sec-
ond scenario is similar in spirit to the quantum cascade
laser setup, and we refer to it as the Quantum Cascade
(QC) model [41]. In both cases the electronic systems are
coupled to the cavity with a Holstein-like light-matter in-
teraction model. For the N-DQD system, a simple scal-
ing law for the gain medium is identified, to reach giant
amplification of photonic properties, significantly larger
than a naive sum of individual gains for each DQD. In
contrast, the QC device is missing such scalibility, yet we
can identify cases beneficial for gain.

N-DQD Gain Medium.- We begin with the model dis-
played in Fig. 1(a) to explain the mechanism of photon
amplification in the cavity. The electronic gain medium
consists of N DQDs coupled to the same microwave cav-
ity. Each DQD is further coupled to electronic leads at
finite bias, denoted by ∆µ = µL−µR. The total Hamilto-
nian consists the N fermionic replicas, Ĥ =

∑N
i=1 Ĥ

i
el +∑N

i=1 Ĥ
i
el−ph+Ĥph, with Ĥi

el = Ĥi
QD+Ĥi

lead+Ĥi
T . Here

Ĥi
QD = ε (n̂i1 − n̂i2)/2 + t(d̂†i1d̂i2 + h.c.) is the i-th DQD

hamiltonian with ε as the detuning energy, t the hopping
parameter, and n̂i1,i2 = d̂†i1,i2d̂i1,i2 are the number oper-
ator for dots 1,2 respectively. Each DQD is connected to
two electronic leads α = L,R, Ĥi

lead =
∑
k,α εkαĉ

†
ikαĉikα,

where k is the index for momentum, with the stan-
dard tunnelling Hamiltonian Ĥi

T =
∑
k vikLd̂

†
i1ĉikL +∑

k vikRd̂
†
i2ĉikR + h.c. d̂ and ĉ are fermionic annihila-

tion operators, h.c denotes Hermitian conjugate. We
define the spectral density for the electronic leads as
Γiα(ω) = 2π

∑
k |vikα|2δ(ω−εkα). The photonic (bosonic)

hamiltonian Ĥph consists of the cavity mode of fre-
quency ωc, and two long transmission lines, left and
right, (K = L,R) with coupling νj to the cavity mode,

Ĥph = ωcâ
†â+

∑
j∈K ωjK â

†
jK âjK +

∑
j∈K νj â

†
jK â+h.c.

The interaction between the microwave photon and the
dipole moment of excess electrons in the DQDs is given
by Ĥi

el−ph = gi (n̂i1− n̂i2)(â†+ â), with gi as the coupling
strength between the i-th DQD and the cavity. In what
follows we assume that the DQDs replicas are identical,
thus ignore the index i when appropriate.

We investigate the cavity response by focusing on the
transmission function. Experimentally, such measure-
ments are performed via heterodyne detection which can
be realized here by interpreting the bosonic modes of the
left and the right transmission lines as the input and out-
put microwave signals, respectively. Following the input-
output theory [42–44], the transmission function t(ω) (ra-
tio of output vs input signal) for a single DQD (N = 1)

can be expressed in terms of the response function of the
cavity mode as

t(ω)=
iκ

(ω − ωc) + iκ− F rel(ω)
= i κDr(ω), (1)

where Dr(t) = −i θ(t) 〈[â(t), â†(0)]〉 is the response func-
tion with the average performed over the combined elec-
tronic and photonic degrees of freedom. We further iden-
tify the electronic charge susceptibility in the time do-
main by F rel(t − t′) = g2

∑
l,j=1,2(2 δlj − 1) Λellj(t − t′).

Here

Λellj(t− t′) = −i θ(t− t′)
〈[
n̂l(t), n̂j(t

′)
]〉
el(g=0)

(2)

is the electron density response function, with the average
performed over the electronic medium (dots and leads).
In Eq. (1), κ = κL = κR is the decay rate of the cavity
mode per port [45]. Experimentally, it is large compared
to |F rel(ω)| [21, 40].

Inspecting Eq. (1), we immediately identify a simple-
fundamental principle for achieving gain, |t(ω)|2 > 1: We
need to counteract the two different sources of response,
the imaginary component of the gain medium-induced
self-energy F

′′

el(ω) ≡ Im[F rel(ω)], and the cavity decay

rate to the ports. In other words, F
′′

el(ω) should approach
κ for achieving maximum gain. This objective cannot be
accomplished at equilibrium, as F

′′

el(ω) < 0 [44]. There-
fore, driving the electronic system out-of-equilibrium is
a necessary condition for gain. Most significantly, from
the causality condition of the retarded Green’s function
we receive the sum rule∫ ∞

−∞

dω

2π
t(ω) =

κ

2
, (3)

valid for κ > F
′′

el(ω). It tells us that an enhancement
in maximum gain must be accompanied with the reduc-
tion in the width of the emission spectrum, thereby in-
creasing the coherence time significantly, a critical re-
quirement to eventually realize a maser [40]. Explicitly,∫∞
−∞

dω
2π Re[t(ω)]=κ/2 and

∫∞
−∞

dω
2π Im[t(ω)]=0.

Our objective is to enhance the electronic response
F

′′

el(ω) to reach high gain even for a poor (lossy) cavity
with high rate κ. It can be optimized to a certain extent
in a single DQD by tuning the metal-dot hybridization Γ
and the bias voltage. We suggest an alternative, simple
yet powerful, scalable approach: include N replicas of
the DQD system to extensively-linearly increase the self-
energy F rel(ω) [46]. For the case of N DQDs, the absolute
value of the transmission, defined via t(ω) = |t(ω)|eiφ(ω),
is now given as

|t(ω)|2 =
κ2[

ω−ωc−N F
′
el(ω)

]2
+
[
κ−N F

′′
el(ω)

]2 , (4)

with the area law
∫∞
−∞

dω
2π |t(ω)|2 = κ2

2
[
κ−N F

′′
el(ωc)

] . Here,

F
′

el (F
′′

el) stands for real (imaginary) component of F rel(ω).
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FIG. 2. (Color online) (a) Gain |t(ω)|2 and (b) emission spec-
trum S(ω) as a function of incoming frequencies ω for differ-
ent number of DQDs. Parameters are g = 50 MHz, κ = 3.15
MHz, ωc = 7880.5 MHz, Γ = 2.6, ε = 7.0, t = 16.4,∆µ = 250,
kBT = 0.69, all in µeV.

It is clear that the transmission peak shifts from ωc by
NF

′

el(ωc), and the peak value is determined by the the
difference between the electronic response and photon
loss, κ − N F

′′

el(ωc). Fig. 2 demonstrates this enhance-
ment mechanism for a fixed detuning ε. Note that here
and below we used parameters close to those employed
in our previous investigations, Refs. [26] and [48]. With
increasing number of DQDs, the transmission shows sig-
nificant gain, as well as a reduction in width—close to
the cavity frequency ωc. In our parameters, F

′′

el(ωc) ap-
proaches κ for Nc = 4, materializing giant gain. The
detuning ε was chosen to satisfy a resonant condition,
ωc ∼

√
ε2 + 4t2. We later show that by searching for

an optimal ε one can enhance the maximum gain by five
orders of magnitude relative to the N=1 case.

Another relevant measure for the cavity response is
the emission spectrum, induced by the electronic current,
defined as S(ω) =

∫∞
−∞ dt〈â†(0)â(t)〉eiωt = iD<(ω). It

takes a structure similar to Eq. (4),

S(ω) = i
N F<el (ω)[

ω−ωc−N F
′
el(ω)

]2
+
[
κ−N F

′′
el(ω)

]2 , (5)

and hence it can be similarly amplified, see Fig. 2(b). It
immediately follows that

∫∞
−∞

dω
2πS(ω) = 〈â†â〉 ≡ 〈n̂c〉.

Explicit expressions for the different components of

the self energy, F
′,′′,<,>
el (ω), can be derived by employ-

ing a scheme based on the random-phase approximation,
which is correct up to the second order of light-matter
coupling but non-perturbative in the dot-lead coupling.
With the help of Keldysh NEGF technique and the Lan-
greth formulae [47], we receive the real and imaginary

-200 -100 0 100 200
∆µ(µeV )

-10

-5

0

5

F
′ el
(ω

c)
(M

H
z) (a)

N=1
N=2
N=3
N=4

-200 -100 0 100 200
∆µ(µeV )

-20

-10

0

10

F
′′ el
(ω

c)
(M

H
z) (b)

κ=3.15 MHz

N=1
N=2
N=3
N=4

0 2 4 6
Γ (µeV )

0

5

10

ϵ
(µ
eV

)

(c)
F ′′
el(ωc)

0

0.5

1

-50 -30 -10 10 30 50
ϵ(µeV )

-4
-2
0
2
4

F
′′ el
(ω

c)
(M

H
z)

→←

(d)

N=4

κ=3.15 MHz

-4

-2

0

2

4

F
′ el
(ω

c)
(M

H
z)

FIG. 3. (Color online) (a) Real (F
′
el(ωc)) and (b) imaginary

components (F
′′
el(ωc)) of F r

el(ω) vs. bias difference ∆µ. (c)

Two dimensional plot of F
′′
el(ωc) as a function of dot-lead

coupling Γ and detuning ε. (d) F
′/′′

el (ωc) vs. ε for N = 4.
Other parameters are same as in Fig. (2).

-50 -30 -10 10 30 50
ϵ(µeV )

0.1

1

10
20

|t(
ω
c,
ϵ)
|2

(a)N=1
N=2
N=3
N=4

-50 -30 -10 10 30 50
ϵ (µeV )

10 -5

10 0

10 3

⟨n̂
c⟩

(b)N=1
N=2
N=3
N=4

FIG. 4. (a) Gain |t(ωc, ε)|2 and (b) average photon number
〈n̂c〉 as a function of energy detuning ε for different number
of DQDs. Other parameters are same as in Fig. 2.

components of the self energy as [48]

F
′

el(ω)=−i
∫ ∞
−∞

dω′

8π

{
Tr
[
g Gk

0(ω+) g
(
Gr

0(ω−)+Ga
0(ω−)

)]
+Tr

[
g Gk

0(ω−) g
(
Gr

0(ω+)+Ga
0(ω+)

)]}
,

F
′′

el(ω) =

∫ ∞
−∞

dω′

8π

{
Tr
[
g Gk

0(ω+) g
(
Gr

0(ω−)−Ga
0(ω−)

)]
− Tr

[
g Gk

0(ω−) g
(
Gr

0(ω+)−Ga
0(ω+)

)]}
, (6)

which depend on the reactive and dissipative parts
of the electronic Green’s functions respectively. Here,
ω± = ω′ ± ω

2 and g = diag(g,−g). The nontrivial
bias dependence enters through the Keldysh component
Gk

0(ω) = G<
0 (ω) + G>

0 (ω). Here Gr,a
0 (ω) =

[
ωI−HQD−

Σr,a(ω)
]−1

and G
</>
0 (ω) = Gr

0(ω)Σ</>(ω)Ga
0(ω) fol-

lows the Keldysh equation. Σr,a,</>(ω) = Σ
r,a,</>
L (ω)+

Σ
r,a,</>
R (ω) are different components of the total self-

energy, additive in the metallic leads, associated with
the transfer of electrons between the metals and dots.
Σr,a
L (ω) = diag(∓ iΓL2 , 0), Σ<

L (ω) = diag
(
ifL(ω)ΓL, 0

)
,
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FIG. 5. Two dimensional plot of |t(ω)|2 as a function of ω and detuning ε for the N-DQD model (left 2 × 2 panels, also note
the log10 scale) and the QC model (right 2× 2 panels). Parameters are same as in Fig. 2.

Σ>
L (ω) = diag

(
−i[1−fL(ω)]ΓL, 0

)
. In writing the compo-

nents Σr,a
L (ω) we ignore the real part responsible for the

renormalization of the DQDs’ energies. Similar expres-
sions hold for the right lead self-energy, with ΓL → ΓR
and fL(ω)→ fR(ω); fα(ω) = [eβ(ω−µα) +1]−1 where β is
the inverse temperature, identical for the photonic baths
(ports) and the fermionic leads. For simplicity, in nu-
merical calculations we assume the wide-band limit for
the electronic leads, and take the metal-dots coupling to
be symmetric (ΓL=ΓR=Γ). The lesser (<) and greater
(>) components of Fel(ω) describe inelastic processes re-
sponsible for the exchange of energy between electrons
and the cavity mode,

F
</>
el (ω)=−i

∫ ∞
−∞

dω′

2π
Tr
[
g G

</>
0 (ω+) g G

>/<
0 (ω−)

]
,(7)

with F<el (−ω) = F>el (ω), satisfying the detailed balance
condition in equilibrium F>el (ω) = eβωF<el (ω).

Figs. 3(a,b) display the generic form of the real and
imaginary components of F rel(ωc) as a function of bias dif-
ference, exposing a fundamental feature: Close to equi-
librium (∆µ < ωc), both components are negative and
the electronic system acts a dissipative bath. In con-
trast, far from equilibrium (∆µ > ωc), F

′′
el(ωc) saturates

to a positive value, a necessary condition for observing
gain. By further increasing the number of DQDs, F

′′

el(ωc)
approaches κ, to yield large gain (see Fig. 2). Note that
even for a single DQD (N=1), a careful tuning of param-
eters allows for an enhancement of F

′′

el(ω), thus photon
emission. This could be achieved by: (i) increasing the
light-matter coupling strength g, as F

′′

el(ω) scales with
g2, (ii) tuning the dot-lead hybridization Γ. For weak Γ,
the dwelling time of tunnelling electrons in the dots is
long (∼ 1/Γ), resulting in an effectively-strong electron-
photon interaction. (iii) As demonstrated in Figs. 3(c-d),
by adjusting both level-detuning ε and Γ we can increase
F

′′

el(ωc) considerably. We exemplify the dependence of

gain on detuning in Fig. 4(a). Both peak and dip in the
transmission, corresponding to photon emission and ab-
sorption events, respectively, are amplified upon increas-
ing the number of replicas N . The corresponding plot

for F
′/′′

el (ωc), for N = 4, is shown in Fig. 3(d).
The mean photon number in the cavity is another rel-

evant observable 〈n̂c〉 = 〈â†â〉 = i
∫∞
−∞

dω
2πD

<(ω). In the
present low-temperature limit, β ωc � 1, it follows

〈n̂c〉=
iN F<el (ωc)

2
[
κ−N F

′′
el(ωc)

] . (8)

Therefore, it is again the competition between the charge
density response and photon losses to the ports which
determines the cavity photon number, see Fig. 4(b). For
N = 4, giant photon number is observed, correlated with
the associated high gain in the transmission function.

Quantum Cascade Model.- We next examine the cas-
cade architecture, see Fig. 1(b). Here, multiple single-
level quantum dots are sandwiched between source and
drain leads. The transmission is determined by Eq.
(1) with the electronic self-energy (6). In this case,
G0 and Σ are M × M matrices made from the cor-
responding non-interacting dot Hamiltonian, and g =
diag(g1, g2, · · · , gM ). In simulations we used g1 = −g2,
and gj>2 = 0, ε = εj+1 − εj , to allow a clear compari-
son with the N-DQD model [49]. It should be empha-
sized that in contrast to the N-DQD construction, the
self-energy F rel(ω) for the cascade model shows a non-
monotonic behavior with M .

Our results are summarized in Fig. 5, presenting sig-
nificant photon amplification in the N-DQD and the QC
models as a function of incoming photon ω and detuning
ε. As expected, the maximum enhancement is observed
at a frequency shifted from the bare value ωc. The N-
DQD setup allows us to consistently enhance transmis-
sion with N , up to five orders of magnitude when N = 4.
Note, we plot here log10|t(ω)|. The QC model shows a
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moderate enhancement, as we explain next. For M = 1,
the QC model includes a single dot connected to metal
leads, resulting in no optical gain |t(ω)|2 ≤ 1, as the sys-
tem lack a resonance condition. This can be proved by
showing that F

′′

el(ω)
∣∣
M=1

< 0 even far-from equilibrium
[50] . We also observe in Fig. 5 that M = 3 operates
better than M = 2, as in the former two resonant tran-
sitions contribute to photon emission around the cavity
frequency. In contrast, M = 4 (and other even-valued
QC setups) do not support degenerate transitions, thus
transmission amplitude drops down to the M = 2 case.
By carefully tuning the QC Hamiltonian one could en-
gineer several resonant transitions, to receive significant
amplification.

Conclusion.- We described a fundamental mechanism
for optical amplification, by using large-scale hybrid
quantum systems. Gain in the cavity transmission is ex-
plained via a sum rule for the transmission function, and
it is achieved by counteracting the cavity decay rate to
the ports with the gain-medium induced self-energy, the
imaginary part of the charge density response function.
This cancellation is in effect only far-from-equilibrium.
We elaborated on this principle by testing two types of
gain media: For an N-DQD setup, the extensive scal-
ing of the electronic self-energy renders a direct route
for realizing giant amplification in photon gain. For the
quantum cascade model gain can be enhanced when the
Hamiltonian supports degenerate transitions. Our theory
approaches the lasing threshold F ′′el = κ from below, as

we are limited to the regime F
′′

el < κ. Including phonons
would affect the form of Fel (depicted in Fig. 3) [51].
However, since Eq. 1 is valid even with phonons, prin-
ciples for giant gain as explored in this work remain in-
tact. Future work will involve investigations of the above-
threshold regime, masing action and photon statistics.
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