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We address the characterization of molecular nanomagnets at the quantum level and analyze the performance
of local measurements in estimating the physical parameters in their spin Hamiltonians. To this aim, we compute
key quantities in quantum estimation theory, such as the classical and the quantum Fisher information, in the
prototypical case of an heterometallic antiferromagnetic ring. We show that local measurements, performed
only on a portion of the molecule, allow a precise estimate of the parameters related to both magnetic defects
and avoided level crossings.
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I. INTRODUCTION

Molecular nanomagnets are low-dimensional spin systems,
displaying a variety of nonclassical features1–5. The magnetic
properties of these systems can be interpreted in terms of their
spin Hamiltonians, which typically depend on a number of
unknown coupling constants6,7. The number of independent
parameters can be reduced on the basis of symmetry argu-
ments, and their values can in principle be computed from
first-principles8,9. However, these approaches are computa-
tionally demanding and are affected by their own uncertain-
ties. Therefore, the parameters entering the spin Hamiltonians
are generally obtained by fitting experimental curves10,11.

In particular, when experiments are performed at temper-
atures lower than the energy gap between ground and first-
excited states12, the estimation of the physical parameters is
made possible by the dependence on such quantities of the
system ground state13. In fact, any variation in some parame-
ter of interest λ modifies the ground state, and thus the statis-
tics related to the accessible physical observables. Any bound
to the precision in the estimation procedure should thus be
connected to the distance between ground states correspond-
ing to infinitesimally close values of λ14–16.

Such intuition can be made more rigorous and quantitative
upon employing tools from quantum estimation theory17–21.
This allows one to design optimal estimation procedures and
to compute the fundamental limits to precision, as dictated
by quantum mechanics. Indeed, the infinitesimal (Bures) dis-
tance between ground states corresponding to neighboring
values of λ is proportional to the maximum precision in the
estimation of such parameter, achievable by any possible mea-
surement. The connection between the metric structure of the
Hilbert space and quantum estimation theory has in fact been
exploited to characterize several system of interest in quan-
tum technology and to address quantum critical systems as a
resource for quantum estimation22–25.

Here we make use of two key quantities in quantum estima-
tion theory, in order to assess the precision in the estimation of
physical parameters entering the spin Hamiltonian of molec-
ular nanomagnets. These quantities are the classical and the
quantum Fisher information (FI and QFI, respectively). The

FI provides, through the Cramer-Rao inequality26, a lower
bound for the uncertainty in the parameter estimation, based
on the statistics of a given observable. The QFI gives an upper
bound to the FI of any measurement, and thus the best possi-
ble precision in the estimation allowed by quantum mechan-
ics, for a given parametric dependence of the system (ground)
state. In this way, benchmarks for either local or global quan-
tum measurements can be obtained, and exploited to assess
and compare different classes of detection techniques. As a
matter of fact, quantum estimation theory also provides tools
to identify the optimal observable, i.e. the observable whose
FI equals the QFI, thus paving the way for possible practical
implementations.

We address the characterization of molecular nanomagnets
at the quantum level and analyze the performances of local
measurements, realized by addressing a portion of the entire
compound, as opposed to global ones, requiring access to the
molecule as a whole. Our results clearly indicate that fluctu-
ations induced by the total-spin and magnetization tunneling
at a level anticrossing, or by the introduction of a magnetic
defect, can be monitored locally, with nearly the ultimate pre-
cision allowed by quantum mechanics. Overall, we provide
quantitative results on precision bounds that are applicable to
general classes of measurements.

The paper is structured as follows. In Section II we set
notation and introduce the basic tools of quantum estimation
theory. In Section III we analyze estimation problems where
the ground-state dependence at avoided level crossings is rel-
evant, whereas in Section IV we address estimation of param-
eters related to a magnetic defect. Section V closes the paper
with some concluding remarks.

II. THEORETICAL BACKGROUND

We consider a spin Hamiltonian H, which depends on an
unknown parameter λ. The value of λ has to be inferred
by performing quantum-limited measurements on the system
ground state |ψλ〉, and by suitably processing the sample of
experimental data. The inferred value of the unknown param-
eter can thus be expressed as a function of such data, known
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as the estimator, and typically denoted with λ̂. This is said to
be unbiased if its expectation value coincides with the actual
value of the parameter λ. For a given observable, an unbiased
maximum-likelihood estimator λ̂ allows to saturate the clas-
sical Cramer-Rao bound. The fundamental limit to the pre-
cision that can be achieved, through an arbitrary observable,
in the estimate of λ is instead given by the quantum Cramer-
Rao bound: 1/Var(λ̂) ≤ H(λ), where H(λ) is the quantum
Fisher information and Var(λ̂) is the variance of any unbi-
ased estimator, corresponding to the average square distance
between λ and λ̂. For a pure state, the QFI is given by

H(λ) = 4
[
〈∂λψλ|∂λψλ〉+ |〈∂λψλ|ψλ〉|2

]
= 4

[∑
k

|∂λck|2 + |c∗k(∂λck)|2
]
. (1)

Here the ground state is expanded in a parameter-independent
basis, |ψλ〉 =

∑
k ck(λ)|k〉, such that |∂λψλ〉 =∑

k(∂λck) |k〉.

FIG. 1: (Color online) Quantum estimation of the Cr7Ni molecule
ground state at the anticrossing. We show results for measurements
performed on different subsystemsA of the ring (α/∆ = 1), formed
by the first nA consecutive spins, with nA = 2 (black curves), 3
(red), 4 (green), 5 (blue), 6 (purple), and 7 (orange) respectively.
The four panels show: (a) the QFI; (b) the FI corresponding to the
observable XA ≡ ρA11 − ρA22 (dotted lines), and QFI obtained for a
mixture of the diabatic states (solid lines); the (c) QFI and (d) FI of
the subsystems, normalized to the QFI of the whole ground state. The
dotted lines in (b) represent the QFI corresponding to the mixture,
rather than the linear superposition, of the states |1〉 and |2〉.

If only a specific observable X is available, then the preci-
sion of the parameter estimation is bounded by the classical
Cramer-Rao inequality: 1/Var(λ̂) ≤ F (λ,X). Here

F (λ,X)=
∑
x

pλ(x)[∂λ ln pλ(x)]2=
∑
x

[
∂λ|〈x|ψλ〉|2

]2
|〈x|ψλ〉|2

(2)

is the Fisher information, and pλ(x) = |〈x|ψλ〉|2 is the proba-
bility of obtaining the outcome x from the measurement ofX ,
at a given λ. The quantum Cramer-Rao theorem states that the

FI is bounded from above by the QFI: F (λ,X) ≤ H(λ). Any
observable X which saturates the above inequality is said to
be optimal, in that it maximizes the precision in the estimate
of λ.

The optimal measurement generally involves accessing the
system ground state as a whole. A question arises on whether,
and to which extent, its performances can be emulated by
measurements that are local in nature, i.e. performed only
on a portion of the entire system. Such question can be an-
swered by evaluating the QFI for the reduced density oper-
ator describing a specific subsystem A, as obtained by per-
forming a partial trace on the complementary subsystem B,
ρAλ = TrB [|ψλ〉〈ψλ|]. The local QFI is given by the expres-
sion

HA(λ) = 2
∑
i,j

|〈φi|∂λρAλ |φj〉|2

pi + pj
. (3)

Here, pi and |φi〉 are the eigenvalues and eigenstates of ρAλ ,
respectively, and the sum is extended over all the indices such
that pi + pj > 0.

The above quantities allow a thorough characterization of
the parameter estimation performed through measurements on
the system ground state. In fact, the ratio between FI and
QFI quantifies the relative suitability of the observable X to
estimate the parameter λ. The ratio HA/H , instead, assesses
to which extent a precise estimate of λ can be obtained by
means of local measurements within a given subsystem A.

III. LEVEL ANTICROSSINGS

In analyzing the ground-state dependence on a physical pa-
rameter, a special attention should be devoted to the avoided
level crossings. Here, small variations of a physical parame-
ter can induce large changes in the system ground state, which
are reflected in pronounced peaks of the QFI and, possibly, of
the FI of some accessible observable. Level anticrossings thus
represent a resource for the characterization of spin Hamilto-
nians. For the sake of the following discussion, we write the
spin Hamiltonian in the generic form H = H0 + λH1 +H2,
where the two dominant termsH0 andH1 commute with each
other, but not with the small termH2. By varying the parame-
ter λ in the vicinity of some critical value λlc, one can induce
a level crossing between two joint eigenstates of H0 and H1,
hereafter denoted by |1〉 and |2〉. If these two states are ener-
getically far from all the others for λ ' λlc, the system Hamil-
tonian can projected on a two-dimensional subspace and thus
reduced to

h =
1

2
[−α(λ− λlc)σ3 + ∆σ1] , (4)

where α = 〈2|H1|2〉 − 〈1|H1|1〉 is the rate with which the
diagonal gap varies as a function of λ and ∆ = 2〈1|H2|2〉 is
assumed to be real and positive. The operators σj (j = 1, 3)
are Pauli matrices in the basis {|1〉, |2〉}. The ground state
of such effective two-level system can be written as |ψλ〉 =
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c1(y)|1〉+ c2(y)|2〉, where

c1 =
(y +

√
1 + y2)1/2√

2(1 + y2)1/4
, c2 = −(1− c21)1/2 , (5)

and y ≡ α(λ − λlc)/∆ represents the (normalized) distance
of the parameter λ from the critical value λlc. It follows that
the FI corresponding to a generic observableX can be written
in the product form F = (α/∆)2fX(y), where the function
fX is given by the following expression:

fX=
y+
√

1 + y2

2(1 + y2)5/2

∑
x

{
〈1|x〉2−〈2|x〉2+2y〈1|x〉〈2|x〉
[y +

√
1 + y2]〈1|x〉 − 〈2|x〉

}2

.

(6)
In fact, also the quantum Fisher information can be written in
a factorized form:

H =
(α/∆)2

{1 + [α(λ− λlc)/∆]2}2
≡ (α/∆)2fH(y). (7)

The above functions fX and fH thus specify the dependence
of the highest precision achievable in the parameter estimation
on the distance y from the crossing point. The presence of the
prefactor (α/∆)2 quantifies the increase of the precision that
can be achieved, for each given distance y, by making the
anticrossing narrower.

¿From the above expressions of the FI and QFI it follows
that an observable X is optimal if there are two measurement
outcomes x and x′ allowing for a perfect discrimination be-
tween any two orthogonal states. In other words, |x〉 and
|x′〉 must be orthogonal linear superpositions of the states |1〉
and |2〉 alone, or, equivalently, there must be no finite ma-
trix element 〈i|X|j〉, with |i ≤ 2〉 and |j > 2〉 eigenstates
of H0 + H1. In this case, in fact, fX(y) = fH(y), and the
FI of X equals the QFI. It can be easily verified that (in the
absence of degeneracy at the distance y of interest) both H0

andH1 fulfill the above condition, and thus represent optimal
observables.

We finally consider the role of the phase coherence between
the two states |1〉 and |2〉 by comparing the FI and QFI of |ψλ〉
with those obtained for the mixture σλ = c21|1〉〈1|+ c22|2〉〈2|.
The QFI of the mixture σλ can be shown to coincide with that
of the linear superposition |ψλ〉 (f incH = fH ). On the other
hand, the expression of the FI is different in the two cases,
being

f incX =
y+
√

1 + y2

2(1 + y2)5/2

∑
x

(〈1|x〉2−〈2|x〉2)2

[(y +
√

1 + y2)〈1|x〉]2 + 〈2|x〉2
.

(8)
It can be easily verified that, in the presence of a mixture, an
observable X allows an optimal parameter estimation at the
anticrossing (f incX = f incH ) only if it has |1〉 and |2〉 as eigen-
states. Therefore, the highest precisions that can be achieved
in the presence of a mixture and of a linear superposition co-
incide, but the conditions on the optimal observables X are
more restrictive in the former case. Further details on the
derivation of the above equations can be found in the Ap-
pendix A.

FIG. 2: (Color online) Quantum estimation of the exchange cou-
pling between the magnetic defect and the neighboring spins (Cr-Ni),
with respect to that between all the other neighboring spins (Cr-Cr).
QFI (solid curves) and FI (dotted) corresponding to two- (blue) and
three-spin (red) subsystems. Panels (a) and (b) correspond to ferro-
magnetic and antiferromagnetic Cr-Ni coupling, respectively. In the
insets of the two panels, the same quantities are normalized to the
QFI of the whole ground state.

A. Numerical results

The problem of estimating the physical parameters that
enter the spin Hamiltonian is ubiquitous in molecular mag-
netism. In the following, we consider in some detail the repre-
sentative example of the Cr7Ni molecule. Its magnetic core is
formed by seven Cr3+ ions, each carrying an sCr = 3/2 spin,
and one Ni2+ ion, with sNi = 127. As a spin ring with domi-
nant antiferromagnetic exchange interaction, Cr7Ni represents
a prototypical model of a highly-correlated, low-dimensional
quantum system28. Besides, the presence in such molecule of
the Ni ion allows us to extend the present discussion to the role
of magnetic defects. Given the purpose of the present paper,
we focus on the functional dependence of the FI and QFI on
the main physical parameters entering the spin Hamiltonian,
rather than on their specific values, as estimated by different
experimental and theoretical means.

As an example of an anticrossing in the system ground
state, we consider the one between the lowest eigenstates of
H0 + H1 with S = M = 1/2 and S = M = 3/2, here-
after labeled |1〉 and |2〉, respectively. The above two terms of
the Hamiltonian account for the exchange interaction between
neighboring spins,H0 = J

∑8
k=1 sk · sk+1 (with J > 0), and

for the coupling to an applied magnetic field, H1 = −λαSz .
The unknown parameter λ thus coincides with the Zeeman
splitting in units of α, and can be identified for example with
the g-factor of the molecule for α = µBB. The zero-field gap
between the ground S = 1/2 doublet and the lowest S = 3/2
quadruplet, mainly induced by the exchange interaction, de-
termines the value of λlc. The small term H2 includes all the
remaining contributions in the spin Hamiltonian, which are
responsible for the gap ∆27.

The dependence on λ of the system ground state and of the



4

corresponding reduced density operators is summarized by
the behavior of the FI and of the QFI. In particular, three main
features emerge from the HA(λ). First, for subsystems A
formed by a small number of consecutive spins (nA = 2, 3, 4),
the highest values of HA are obtained away from the cross-
ing point, where the QFI presents instead a clear dip [see
Fig. 1(a)]. Second, such feature can be linked to the phase
coherence between the states |1〉 and |2〉 that contribute to
the ground state |ψλ〉. In fact, the value of the QFI corre-
sponding to the mixture σAλ = c21(y)ρA11 + c22(y)ρA22, with
ρAij = TrB(|i〉〈j|), presents lower values for all λs, and a max-
imum close to λ = λlc [solid lines in Fig. 1(b)]. The QFI of
σAλ also corresponds to the maximum of the FI of |ψλ〉, re-
stricted to observables X that are diagonal in the basis of the
diabatic states {|1〉, |2〉}. Therefore, the comparison between
the QFI of ρAλ and σAλ shows that the performance of a lo-
cal observable X at an avoided level crossing can in general
benefit from the fact that X is not diagonal in the basis of
the diabatic states. Third, within the diagonal observables, the
operator XA ≡ ρA11 − ρA22 (dotted lines) is approximately op-
timal. Finally, we note that not only the maximum of the QFI
of local observables can be localized away from the crossing
point, but λlc also corresponds to an absolute minimum for
the relative suitability of the local measurements. This clearly
emerges from the plots of HA(λ) and F (λ,XA), normalized
to the QFI of the ground state [Fig. 1(c,d)].

In order to gain some quantitative insight into the prob-
lem, we consider the case where the actual value of the un-
known parameter λ = g is 2, and this coincides with the
critical value, given the applied magnetic field B. In this
case, the mean squared error in the estimate of the g-factor
resulting from a single quantum measurement is given by
Var1/2(λ̂) = (∆/µBB)[HA(y = 0)]−1/2, which for two
spins (black curves), is approximately 0.05 (we have taken
B = 10 T, which approximately corresponds to the field that
induces the level crossing between the S = M = 1/2 and the
S = M = 3/2 eigenstates, and ∆ = 0.1 K, which is a typi-
cal value of the gap in the Cr-based rings). The mean squared
error can in principle be reduced by a factor

√
N by passing

from a single measurement to a set of N measurements, or
by working at a narrower anticrossing. A few details on the
numerical calculation of the Hamiltonian eigenstates are pro-
vided in Appendix B.

IV. ESTIMATING PARAMETERS RELATED TO A
MAGNETIC DEFECT

We next consider a ground state that changes gradually with
λ, away from a level crossing (here, H0 and H1 don’t com-
mute, and H2 can be set to zero). In particular, we are in-
terested in the case where the unknown parameter is related
to a magnetic defect, such as the s8 = sNi spin in the Cr7Ni
molecule. This spin represents a defect because its length dif-
fers from that of all the other spins in the ring. Besides, the
Cr-Ni exchange coupling can differ from the Cr-Cr ones, and
the Ni g-factor can differ from that of the Cr ions.

FIG. 3: (Color online) Quantum estimation of the inhomogeneity
in the g-factor associated with the magnetic defect, i.e. µB(gNi −
gCr)B/J . Solid curves correspond to the QFI: for the whole system
(black), for subsystems formed by two (red) or three spins (blue).
Dashed and dotted curves correspond to the FI for the local magneti-
zation, with and without resolution between the spins of the subsys-
tem.

A. Exchange interaction

We start by considering the effect of an inhomogeneous
exchange interaction, and correspondingly group the relevant
part of the spin Hamiltonian into the two terms:

H0 = J

6∑
k=1

sk · sk+1, H1 = λJs8 · (s7 + s1), (9)

where the unknown parameter λ coincides with the ratio be-
tween the Cr-Ni and Cr-Cr exchange couplings.

The dependence of the system ground state on λ is char-
acterized in terms of the QFI H(λ) (Fig. 2), both for neg-
ative and positive values of the parameter [panels (a) and
(b), respectively]. For λ < 0, the defect is ferromagneti-
cally coupled to its neighbors, and the system ground state
has S = 5/2. For λ > 0, instead, such coupling is antiferro-
magnetic, and the total spin is S = 1/2. In both cases, H(λ)
is maximal for λ → 0, and decreases monotonically with |λ|
(solid black curves). The distinguishability between two (in-
finitesimally) close values of λ is thus relatively large in the
weak-coupling limit, while the ground state is weakly depen-
dent on the precise value of λ in the (more realistic) range
of values λ ' 1. In the considered range of parameters, the
lowest mean squared error that can be achieved in the esti-
mate of the Cr-Ni exchange coupling by means of a single
quantum measurement, Var1/2(λ̂) = J [H(λ)]−1/2, is of the
order of the Cr-Cr exchange coupling J . Besides the abso-
lute value of the QFI, we are interested here in the compar-
ison between the QFI corresponding to the ground state and
the same quantity derived for the reduced density operators.
We note that, already for subspaces A formed by three con-
secutive spins (solid red), HA(λ) approaches H(λ). The QFI
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corresponding to two-spin subsystem (solid blue), instead, ap-
proaches H(λ) only for λ < 0. The ratios between the lo-
cal QFI and that of the whole ground state are reported in
the figure insets. Therefore, local observables are in princi-
ple well suited for precisely estimating the exchange coupling
between the magnetic defect and the neighboring spins. Inter-
estingly, local observables consisting of exchange operators,
X(nA) =

∑k+nA−1
i=k si · si+1, are nearly optimal. This is

shown by the FI corresponding to nA = 2 and nA = 3 (dotted
curves), which are very close to the QFI of the corresponding
subsystems. The Fisher information of the local magnetiza-
tion (not shown) gives instead significantly lower values.

B. Zeeman coupling

The magnetic defect affecting the ground state can also con-
sist in the presence of a spin with a different g-factor (or,
equivalently, in a local magnetic field). In this case, the rele-
vant terms of the spin Hamiltonian are grouped as follows:

H0 = J

8∑
k=1

sk · sk+1, H1 = λJsN,z. (10)

The unknown parameter λ thus corresponds to the differ-
ence in the Zeeman splitting of the Ni ion with respect to
that of the Cr ions, normalized to the exchange coupling,
λ = µB(gNi − gCr)B/J . The quantum Fisher informa-
tion of the system ground state (solid black line in Fig. 3)
presents a pronounced maximum for λ ' 0.5. As in the
previous case, the QFI information corresponding to two-
and three-spin subsystems (solid blue and red, respectively)
approaches H(λ), especially if the subsystems A includes
the defect. The FI corresponding to the local magnetization,
X(nA) =

∑k+nA

i=k aisi,z , falls significantly below the QFI for
the corresponding subsystem if the observable is not spin se-
lective (ai = aj for all i 6= j, dotted lines). However, if the
magnetization is spin selective (ai 6= aj for i 6= j, dashed
lines), the values of the FI are very close to the maximal ones.
In the latter case, the magnetization thus represents a nearly
optimal observable for the parameter estimation.

V. CONCLUSIONS

We have analyzed the performances of local measurements
in estimating different physical parameters that enter the spin
Hamiltonian of a molecular nanomagnet. Local measure-
ments are shown to allow a precise estimation of parameters
related to both magnetic defects and avoided level crossings.
Parameters such as the exchange coupling or the g-factor of a
magnetic defect can be estimated locally —with nearly the ul-
timate precision allowed by quantum mechanics— by measur-
ing related observables, namely the exchange operators and
the local magnetization, respectively. Local measurements
also approach the ultimate precision in the parameter estima-
tion at avoided level crossings, where the commutation rela-
tions between the observable and the Hamiltonian are shown

to play a relevant role. Our results clearly show the effec-
tiveness of local measurements in probing Hamiltonian pa-
rameters, thus paving the way for the development of optimal
characterization schemes for molecular spin clusters.
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APPENDIX A: DERIVATION OF THE ANALYTICAL
RESULTS

The ground state |ψλ〉 of the effective Hamiltonian h in Eq.
(4) can be expressed as a function of the basis states |1〉 and
|2〉 by means of the coefficients

c1(y) = P (y)Q(y), c2(y) = −Q(y), (11)

where y = α(λ − λlc)/∆ is the normalized distance of the
parameter λ from the critical value. The functions P and Q
are given by the following expressions:

P (y) = y+
√

1 + y2, Q−1(y) =
√

2P (y) (1+y2)1/4. (12)

¿From the above equations, it follows that the derivatives of
the coefficients, entering the expressions of both the classical
and the quantum Fisher information, are given by:

∂yc1(y) =
Q(y)

2(1 + y2)
, ∂yc2(y) =

P (y)Q(y)

2(1 + y2)
. (13)

As a result, the expression of H(λ) takes the form:

H = 4(α/∆)2
[
(∂yc1)2 + (∂yc2)2

]
=

(α/∆)2

(1 + y2)2
, (14)

where we made use of the equation ∂λ = (α/∆)∂y . As to the
classical Fisher information corresponding to the observable
X , this can be written as a function of the amplitudes 〈1|x〉
and 〈2|x〉 (which are assumed to be real, for simplicity), of
the coefficients c1 and c2, and of their derivatives with respect
to λ (or y). These enter the expression of the probabilities

pλ(x) = 〈ψλ|x〉2 =

2∑
k,l=1

ck(y)cl(y)〈k|x〉〈x|l〉. (15)

The derivative of such probability with respect to y can be
shown to be:

∂ypλ(x) =
P (y)[Q(y)]2

1 + y2
(〈1|x〉2−〈2|x〉2 + 2y〈1|x〉〈2|x〉).

(16)
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After replacing the two above expressions into that of the
Fisher information,

F (λ,X) = (α/∆)2
∑
x

[∂ypλ(x)]2

pλ(x)
, (17)

one can derive the Eq. (6) reported in the manuscript.
In order to highlight the role of the phase coherence be-

tween the two basis states, the QFI of |ψλ〉 can be compared
with that obtained for the statistical mixture of |1〉 and |2〉,
with populations corresponding to [ck(y)]2. In this case, the
probabilities pλ(x) take the form

pincλ (x) =

2∑
k=1

[ck(y)〈k|x〉]2. (18)

The corresponding derivative with respect to y reads

∂yp
inc
λ (x) =

P (y)[Q(y)]2

1 + y2
(〈1|x〉2−〈2|x〉2). (19)

The adimensional function that enters the expression of the
quantum Fisher information thus becomes the one reported
in Eq. (8). This also corresponds to the function fX for an
observable X =

∑
x x|x〉〈x|, which is diagonal in the basis

of the diabatic states, and thus such that 〈1|x〉〈x|2〉 = 0 for
any x. This follows simply from the fact that, for such an
observable, pλ(x) = pincλ (x).

We next consider the case where there are two outcomes of
the measurement of X , x and x′, with corresponding eigen-
states |x〉 and |x′〉 that are mutually orthogonal and belong to
the two-dimensional subspace {|1〉, |2〉}. We write them as
linear combinations of the basis states, with real coefficients
(what follows can be easily generalized to the case of com-
plex coefficients): |x〉 = a|1〉 + b|2〉 and |x′〉 = b|1〉 − a|2〉.
Plugging these expressions into the Eq. (1) of the manuscript,
one obtains, after some algebra, the equation fX = fH =
1/(1 + y2)2, which implies that the measurement is optimal.

In the case of the Cr7Ni ring, the observable XA ≡ ρA11 −
ρA22 is diagonal in the basis of the states |1〉 and |2〉 (even if
it doesn’t belong to the two-dimensional subspace). In fact,
|1〉 and |2〉 are eigenstates of Sz , corresponding to different
values, M1 = 1/2 and M2 = 3/2, of the total spin projec-
tion. The reduced density operators ρAkk (and thus XA) can
be written as mixtures of density operators, each with a de-
fined value of the total spin projection. This follows from

the fact that each finite term of ρAkk comes from contribu-
tions like 〈iB |k〉〈k|iB〉, with |iB〉 a basis state of the subsys-
tem B, which can be chosen so as to have a defined value
of the spin projection MB . The ket and the bra in the term
of ρAkk thus have to be characterized by the same value of
MA = Mk −MB . As a result, ρAkk ⊗ IB cannot have ma-
trix elements between states with different values of the total
spin projection, such as |1〉 and |2〉.

APPENDIX B: NUMERICAL CALCULATIONS

The eigenstates of Cr7Ni are obtained by numerically di-
agonalizing the Hamiltonian, with the inclusion of the ex-
change and of the Zeeman terms. The Hamiltonian is com-
puted and diagonalized within the irreducible tensor opera-
tor formalism11. In the case of the avoided level crossing,
the Hamiltonian commutes with S2 and Sz , and can be di-
agonalized independently within each (S,M) subspace, with
S = M = 1/2 (dimension 574) and S = M = 3/2 (di-
mension 1000). The eigenstates are the expanded in a local
basis |m1,m2, . . . ,m8〉 (with mi the projection of the i-th
spin along z), and the terms ρAij are computed by performing
a partial trace over the spins that don’t belong to the subsystem
of interest A. The reduced density operators ρλ is then com-
puted by combining the above operators, through the expres-
sion ρAλ =

∑2
i,j=1 ci(λ)cj(λ)ρAij . This matrix is diagonalized

numerically, for all the values λk = k δλ of the parameter λ in
the grid, so as to obtain the eigenvalues pi and the eigenvec-
tors |φi〉 that enter the expression of HA, for each point of the
grid. The derivative of the reduced density operator, ∂λρAλ , is
computed numerically as (ρAλk+1

− ρAλk−1
)/(2δλ).

The introduction of the magnetic defect reduces the sym-
metry of the Hamiltonian. In particular, in the case of the ex-
change coupling the ground state of the spin Hamiltonian be-
longs either to the S = 5/2 or to the S = 1/2 subspaces, de-
pending on whether the Cr-Ni coupling is ferromagnetic or an-
tiferromagnetic, respectively. In the case of the magnetic field,
H1 doesn’t commute with S2. This implies that the ground
state has to be calculated in a larger subspace, including all
the basis states with total spin from 1/2 to Smax > 1/2. The
value of Smax is determined upon convergence of the ground
state energy and depends on the value of λ.
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