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We apply a fluctuation electrodynamics framework in combination with semi-analytical (dipolar) approxima-

tions to study amplified spontaneous energy transfer (ASET) between active and passive bodies. We consider

near-field energy transfer between semi-infinite planar media and spherical structures (dimers and lattices) sub-

ject to gain, and show that the combination of loss compensation and near-field enhancement (achieved by the

proximity, enhanced interactions, and tuning of subwavelength resonances) in these structures can result in or-

ders of magnitude ASET enhancements below the lasing threshold. We examine various possible geometric

configurations, including realistic materials, and describe optimal conditions for enhancing ASET, showing that

the latter depends sensitively on both geometry and gain, enabling efficient and tunable gain-assisted energy

extraction from structured surfaces.

Radiative heat transfer between nearby objects can be much

larger in the near field (sub-micron separations) than in the

far field1–3 due to coupling between evanescent (surface-

localized) waves.4,5 In this paper, we investigate the possi-

bility of exploiting both active materials and geometry to

enhance and tune near-field energy transfer. In particular,

we study amplified spontaneous energy transfer (ASET)—the

amplified spontaneous emission (ASE) from a gain medium

that is absorbed by a nearby passive object—and demon-

strate orders of magnitude enhancements compared to far-

field emission or transfer between passive structures. Our

work extends previous work on heat transfer between planar,

passive media6–9 to consider the possibility of using gain as

a mechanism of loss cancellation, leading to further flux-rate

enhancements under certain conditions (diverging at the on-

set of lasing). Since planar structures are known to be sub-

optimal near-field energy transmitters,10 we also consider a

more complicated geometry involving subwavelength metal-

lic dimers or lattices of spheres doped with active emitters,

and describe conditions under which ASET ≫ ASE below the

lasing threshold (LT). Our analysis of these spherical struc-

tures includes both semi-analytical calculations (for dimers)

and dipolar approximations that include first-order geometric

modifications to the polarization response of spheres (for lat-

tices), revealing not only significant potential enhancements

but also strongly geometry-dependent variations in ASET

stemming from the presence of multiple scattering, which

suggests the possibility of using the near field as a mechanism

for tuning energy extraction. Similar to our recent findings in

the case of passive objects,11 we find that energy exchange be-

tween lattice of spheres tends to greatly outperform exchange

between planar bodies as the intrinsic loss rates of materials

decrease, with gain contributing additional enhancement.

Recent approaches to tailoring incoherent emission from

nanostructured surfaces have begun to explore situations that

deviate from the usual linear and passive materials of the

past,12–17 with the majority of these works primarily focusing

on ways to control far-field emission, e.g. the lasing properties

of active materials.18 Here we consider a different subset of

such systems: structured active–passive bodies that exchange

energy among one another more efficiently than they do into

the far field. Our predictions below extend recent progress in

understanding and tailoring energy exchange between struc-

tured materials, which thus far include doped semiconduc-

tors,19 phase-change materials,20,21 and metallic gratings.22–24

Active control of near field heat exchange offers a growing

number of applications, from heat flux control25,26 and solid-

state cooling26 to thermal diodes.27,28 Our work extends these

recent ideas to situations involving systems undergoing gain-

induced amplification.

The starting point of our analysis is the well-known linear

fluctuational electrodynamics framework established by Ry-

tov, Polder, and van Hove.29,30 In particular, given two bodies

held at temperatures T1 and T2, and separated by a distance d,

the power or heat transfer from 1 → 2 is given by:4

P (T1, T2) =

∫ ∞

0

[Θ(ω, T1)−Θ(ω, T2)]Φ12(ω)
dω

2π
(1)

where Θ(ω, T ) is the mean energy of a Planck oscillator

at frequency ω and temperature T , and Φ12(ω) denotes the

spectral radiative heat flux, or the absorbed power in object

2 due to spatially incoherent dipole currents in 1. Such an

expression is often derived by application of the fluctuation-

dissipation theorem (FDT), which relates the spectral

density of current fluctuations in the system to dissipation,4

〈Ji(x, ω), J∗
j (x

′, ω)〉 = 4
πωǫ0 Im ǫ(x, ω)δ(x−x

′)Θ(ω, T )δij ,

where Ji denotes the current density in the ith direction, ǫ0
and ǫ(x, ω) are the vacuum and relative permittivities at x,

and 〈· · · 〉 denotes a thermodynamic ensemble-average.

Extensions of the FDT above to situations involving ac-

tive media require macroscopic descriptions of their dielec-

tric response. Below, we consider an atomically doped gain

medium that, ignoring stimulated emission or nonlinear ef-

fects arising above threshold,31 can be accurately modelled

(under the stationary-inversion approximation) by a simple

two-level Lorentzian gain profile of the atomic populations

n1 and n2, resulting in the following effective permittivity:32

ǫ(ω) = ǫr(ω) +
4πg2

~γ⊥

γ⊥D0

ω − ω21 + iγ⊥
︸ ︷︷ ︸

ǫG(ω)

(2)

where ǫr denotes the permittivity of the background medium

and the second term describes the gain profile ǫG, which
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FIG. 1. Schematic of two semi-infinite plates of permittivities ǫ1 and

ǫ2, respectively, separated by a vacuum gap d. Fourier decomposi-

tion of scattered waves with respect to parallel k‖ and perpendicular

γ wavevectors simplifies calculations of energy transfer.

depends on the “lasing” frequency ω21, polarization de-

cay rate γ⊥, coupling strength g, and population inversion

D0 = n2−n1 associated with the 2 → 1 transition. Detailed-

balance and thermodynamic considerations lead to a modi-

fied version of the FDT31,33,34 involving an effective Planck

distribution Θ(ω21, TG) = −n2~ω21/D0, in which case the

system exhibits a negative effective or “dynamic” temperature

under n2 > n1.34 Note that even though Θ < 0 under popula-

tion inversion, the radiation from such a medium is positive-

definitive: because Im ǫG < 0, the spectral correlations asso-

ciated with the active medium,

〈Ji(x, ω)J∗
j (x

′, ω)〉 = − 4

π
ωǫ0(Im ǫG)n2~ω21/D0

︸ ︷︷ ︸

Θ(ω21,TG)

(3)

are positive-definite. As a consequence, the heat transfer orig-

inating from atomic fluctuations in an active body to a passive

body always flows from the former to the latter, i.e. T < 0
reservoirs always transfer energy.31 Of course, in addition

to fluctuations of the polarization of the gain atoms, such a

medium will also exhibit fluctuations in the polarization of

the host medium, depending on its thermodynamic tempera-

ture and background loss rate ∼ Im εr, as described by the

standard FDT.4 Although thermal flux rates can themselves

be altered (e.g. enhanced) in the presence of gain through the

dependence of Φ12 on the overall permittivity, the flux rate

from such an active medium will tend to be dominated by the

fluctuations of the gain atoms, the focus of our work.

I. PLANAR MEDIA

We begin our analysis of ASET by first considering an ex-

tensively studied geometry involving two semi-infinite plates

that exchange energy in the near field. Such a situation has

been thoroughly studied in the past in various contexts,6–9 but

with passive materials, whereas below we consider the pos-

sibility of optical gain in one of the plates. For simplicity,

we omit the frequency dependence in the complex dielectric

functions ǫj of the two plates (j = 1, 2), shown schematically

in Fig. 1 along with our chosen coordinate convention. We as-

sume that one of the plates is doped with a gain medium, such

that ǫ1 = ǫr+ ǫG, and consider only fluxes due to fluctuations

in the active constituents ∼ Im ǫG, as described by the mod-

ified FDT above.4,35 Due to the translational symmetry of the

system, it is natural to express the heat flux in a Fourier basis

of propagating transverse waves k‖,4 in which case the flux is

given by an integral Φ(ω) =
∫
Φ(ω, k‖)k‖dk‖. In the near

field, k‖ > ω/c, the main contributions to the integrand come

from evanescent waves which exchange energy at a rate,5,29

Φ12(ω, k‖) ≈
∑

q=s,p

Im(ǫG) Im(rq1) Im(rq2)e
−2 Im(γ0)d

Im ǫ1
∣
∣1− rq1r

q
2e

−2 Im(γ0)d
∣
∣
2 , (4)

where rsj =
γ0−γj

γ0+γj
and rpj =

ǫjγ0−γj

ǫjγ0+γj
are the Fresnel re-

flection coefficients at the interface between vacuum and the

dielectric media, for s and p polarizations, respectively, de-

fined in terms of the wavevectors kj = k‖r̂ + γj ẑ, with

|k0| = ω/c and |kj |2 = k2‖ + γ2
j =

√
ǫjω/c. Note that the

derivation of Fresnel coefficients requires special care since

when gain compensates loss, i.e. Im ǫ1 < 0, the sign of the

perpendicular wavevector γ1 = ±
√

ǫ1ω2/c2 − k2‖ needs to

be chosen correctly inside the gain medium.36–38 Here, we

make the physically motivated choice that yields decaying

surface waves inside the semi-infinite gain medium. In the

case of evanescent waves k‖ ≫ ω/c, γ0 ≈ γj ≈ ik‖, such

that rsj → 0 and rpj =
ǫj−1
ǫj+1 =

|ǫj |
2−1

|ǫj+1|2 +
2ǫ′′j i

|ǫj+1|2 , where

ǫj = ǫ′j + iǫ′′j . Substituting e2k‖d = z and approximating

the integral
∫
zf(z)dz ≈ z0f(z), with z0 = k0d = ln |rp1rp2 |

denoting the wavevector that minimizes the denominator of

(4), one obtains:

Φ12(ω) =
z0 Im(ǫG) Im(rp1) Im(rp2)

4π2d2 Im ǫ1

×
∫ ∞

1

dz

(z − Re(rp1r
p
2))

2 + (Im(rp1r
p
2))

2
(5)

It follows that the flux rate in the case of

passive media with small loss rates scales as

Φ12 ≈ ln |rp1rp2 |/(4π2d2) ∼ 1
d2 ln | ǫ1−1

Im ǫ1
ǫ2−1
Im ǫ2

| under the res-

onant condition Re ǫj = −1, illustrating a slow, logarithmic

dependence on the loss rates and corresponding divergence

as Im ǫj → 0, described in Ref. 11. However, ASET in the

presence of gain, described by (5), depends differently on

the loss rates. On the one hand, in situations where gain

does not compensate for losses (Im ǫ1 > 0), the integral can

be further simplified to yield Φ12 ≈ 1
d2

Im ǫG
Im ǫ1

ln | ǫ1−1
Im ǫ1

ǫ2−1
Im ǫ2

|,
illustrating the same logarithmic dependence on loss rates

and resonant conditions, but with the flux rate exhibiting an

additional factor ∼ Im ǫG/ Im ǫ1. On the other hand, when

the active plate has overall gain, i.e. Im ǫ1 < 0, the integral

diverges under the modified condition Re(rp1r
p
2) > 1 and

Im(rp1r
p
2) = 0, or alternatively,

(|ǫ1|2 − 1)(|ǫ2|2 − 1)− 4ǫ′′1ǫ
′′
2 > |ǫ1 + 1|2|ǫ2 + 1|2 (6)

ǫ′′2 (|ǫ1|2 − 1) + ǫ′′1(|ǫ2|2 − 1) = 0 (7)

both of which cannot be simultaneously satisfied below

threshold. Note that in this regime, Re ǫ = −1 is no longer a

necessary condition for maximum heat transfer. In particular,

the divergence can occur at unequal values of Re ǫj and Im ǫj ,
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FIG. 2. Schematic of dimer system consisting of two spheres of per-

mittivities ǫ1 and ǫ2 and radii R1 and R2, respectively, and sepa-

rated by a gap d. Mie-series decomposition of scattered fields sim-

plifies calculations of energy transfer; shown are a flux evaluation

point x = x1 = x2 in medium 0, with xi, denoting the position

relative to the center of sphere i.

in which case the linewidth ∼ | Im(rp1r
p
2)| and peak wavevec-

tor ∼ Re(rp1r
p
2) are decreased and increased, respectively, by

suitable choices of material parameters. Such a divergence is

of course indicative of a LT, at which point linear fluctuational

electrodynamics is no longer valid. Although semi-infinite

plates offer analytical insights and computational ease, their

closed nature and large effective loss rates make them far from

ideal for studying ASET. In what follows, we consider finite

and open geometries in which even larger ASET and tunabil-

ity can be attained.

II. SPHERE DIMERS AND LATTICES

A. Sphere dimers

Consider an illustrative open geometry consisting of two

spheres separated by vacuum, shown in Fig. 2. In addition to

material loss, such a system also suffers from radiative losses,

which we quantify (neglecting stimulated emission) from the

far-field flux Φ0. The calculation of heat transfer between

two spheres was only recently carried out using both semi-

analytical8 and brute-force methods.39 Here, we extend these

studies to consider far-field radiation from one of the spheres

(in the presence of the other) and the possibility of gain. In

particular, we analyze the near-field energy exchange Φ12 and

far field emission Φ0 by exploiting a semi-analytical method

(SA) based on Mie-series expansion of scattered waves, and

which follows from a recent study of heat transfer in an equiv-

alent but passive geometry.8

Due to the spherical symmetry of each object, it is nat-

ural to consider scattering in this system by employing

field expansions in terms of Mie series.40 Figure 2 shows

a schematic of the system, consisting of two vacuum-

separated spheres of radii Rj and dielectric permittivities

ǫj , separated by surface–surface distance d, where one

of the spheres is doped with a gain medium, such that

ǫ1 = ǫr + ǫG. We compute the flux rates through a sur-

face S in vacuum from dipoles x
′
1 ∈ V1 which is given by

Re
∮

S
〈E∗×H〉 = ω2 Im ǫG

π Im
∮

S

∫

V1

d3x′
1 G

∗×(∇×G)·dS,

where G(x,x′
1) is the Dyadic Green’s function (GF), or the

electric field due to a dipole source at x′
1 evaluated at a point

x = x1 = x2 in vacuum, with xj denoting the position rel-

ative to the center of sphere j, and where we have employed

the FDT above to express the flux as a sum of contributions

from individual (spatially uncorrelated) dipoles.

When expressed in a basis of Mie modes, the GF from a

dipole at a position x
′
1 ∈ V1 evaluated at x is given by:8

G(x,x′
1) = ik0

ℓ,ν=N
m=N∑

ℓ,ν=(1,m)
m=−N

(−1)m
∑

q,q′=±

M
(1)q′

ℓ,−m(k1x
′
1)⊗

[

Cℓqq′

νm M
(3)q
νm (k0x1) +Dℓqq′

νm M
(3)q
νm (k0x2)

]

, (8)

where kj =
√
ǫjω/c, ℓ ∈ Z

+, |m| ≤ ℓ, N denotes the

maximum Mie order, Cℓqq′

νm and Dℓqq′

νm are standard Mie co-

efficients,40,41
M

(p)±
ℓm denote spherical vector waves, z

(p)
ℓ are

spherical Bessel (p = 1) and Hankel (p = 3) functions of or-

der ℓ, ζ
(p)
ℓ (x) = 1

x
d
dx [xz

(p)
ℓ (x)], and V

(p)
ℓm are spherical vector

harmonics.42

The advantages of employing spherical vector waves comes

from the useful orthogonality relations8 described in Ap-

pendix A, which greatly simplify the calculation of fluxes,

requiring integration over V1 and over either the surface

S : |x2| → R2 circumscribing sphere 2 (as derived previ-

ously in Ref. 8) or a far-away surface S : |x| → ∞, leading

to the following expressions:

Φ12(ω) =
R1 Im ǫG
R2 Im ǫ1

∑

m,ℓ,ν
q,p=±

Im

(
1

xq
ν(R2)

)

Im

(
1

xp
ℓ (R1)

)

×
∣
∣
∣
∣
∣

z
(1)
ℓ (k1R1)D

ℓqp
νm

z
(1)
ν (k0R2)

∣
∣
∣
∣
∣

2

|xp
ℓ (R2)|2, (9)

Φ0(ω) =
2k30R

2
1 Im ǫG

π Im ǫ1

∑

m,l,ν
q,p=±

ypℓ (R1)
(

|Dℓqp
νm|2 + |Cℓqp

νm |2
)

,

(10)

where Cℓqq′

νm and Dℓqq′

νm are so-called Mie coefficients,40

x+
ν (r) = k0rζ

(1)
ν (k1r)z

(1)
ν (k0r)− k1rζ

(1)
ν (k0r)z

(1)
ν (k1r)

y+ν (r) = lim
R→∞

R2 Im[z(3)ν (k0R)ζ(3)∗ν (k0R)]

× Im[z(1)ν (k1r)ζ
(1)∗
ν (k1r)],

x−
ν (r) = x+

ν (r|ζ ↔ z), y−ν (r) = y+ν (r|ζ ↔ z), z
(p)
ℓ are

spherical Bessel (p = 1) and Hankel (p = 3) functions of or-

der ℓ, ζ
(p)
ℓ (x) = 1

x
d
dx [xz

(p)
ℓ (x)], and kj = ω

√
ǫj/c. We note

that (10) appears to be new, but we have checked its valid-

ity against numerics39 and also known expressions in the limit

(d → ∞) of an isolated sphere.40 We also note that the fac-

tors of Im ǫG/ Im ǫ1 in both flux expressions arise because we

only consider fluctuations arising from the active constituents.

We begin our analysis by first considering general radia-

tive features of dimers, comprising spheres of constant (dis-

persionless) dielectric permittivities ǫ1,2 and equal radii R,

which very clearly delineate the operating conditions needed

to observe Φ12 ≫ Φ0. We assume that one of the spheres
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FIG. 3. Far-field flux Φ0(ω) and flux-transfer Φ12(ω) associ-

ated with a dimer of two spheres of equal radii R, permittivities

ǫ1 = ǫr + ǫG and ǫ2 = ǫr, with Im ǫr = 0.05, and separated by

distance of separation d, under various operating conditions. (a) De-

pendence of Φ0(ω) and Φ12(ω) on Im ǫ1 < 0 (under gain) at fixed

Re ǫ1,2 = −1.522, and for either d → ∞ (left) or d/R = 0.3
(middle/right). White circles indicate the lasing threshold of a few

individual modes while white dashed lines indicate operating param-

eters (cross sections) for the plots in (b), which show Φ12 (solid

lines) and Φ0 (dashed lines) at fixed Im ǫ1 = − Im ǫ2 = −0.05
and d/R = 0.3. The plots compare the flux rates of gain-loss (GL)

dimers (red lines) against those of passive (LL) dimers (blue lines).

(with dielectric ǫ1) is doped with a gain medium such that

Im ǫ1 < 0 The top contour in Fig. 3(a) shows Φ0 from an

isolated sphere of Re ǫ = −1.522 as a function of gain per-

mittivity Im ǫ1, illustrating the appearance of Mie resonances

and consequently, ASE peaks occurring at k0R & 1. As ex-

pected, the LTs (white circles indicate a select few) associated

with each resonance occur at those values of gain where (as in

the planar case) Φ0 → ∞ and the mode bandwidths → 0, de-

creasing with increasing k0R (smaller radiative losses). Note

that these divergences are obscured in the contour plot by

our finite numerical resolution, which sets an upper bound

on Φ0. The middle contour plot in Fig. 3(a) shows that a

passive sphere with Im ǫ2 = 0.05 in proximity to the gain

sphere (d/R = 0.3) causes the Mie resonances to couple and

split, leading to dramatic changes in the corresponding LTs.

Noticeably, while the presence of the lossy sphere introduces

additional dissipative channels, in some cases it can neverthe-

less enhance ASE (decreasing LTs) by suppressing radiative

losses.43 These results are well-studied in the literature18,43

but they are important here because our linear FDT is only

valid below LT. Another feature associated with such dimers

is the significant enhancement in Φ12 compared to Φ0 in the

subwavelength regime k0R ≪ 1,44,45 illustrated by the mid-

dle/right contours of Fig. 3(a). Note that while such near-field

enhancements have been studied extensively in the context of

passive bodies,4,7,45 as we show here, the introduction of gain

can lead to even further enhancements. This is demonstrated

by the flux spectra in Fig. 3(b) (corresponding to slices of the

contour maps, denoted by white dashed lines), which com-

pare the flux rates of both active (red lines) and passive (blue

lines) dimers. The spectra indicate that, while the large radia-

tive components of Mie resonances at intermediate and large

frequencies k0R & 1 lead to roughly equal enhancements in

Φ12 and Φ0 ∼ Φ12, the saturating and dominant contribution

of evanescent fields and the presence of surface–plasmon res-

onances in the long wavelength regime cause Φ0 → 0 and

Φ12 ≫ 1 as ω → 0. As expected, the existence and cou-

pling of these resonances depend sensitively on d/R, arising

at Re ǫ ≈ {−2,−1} in the limit d → {0,∞} of two semi-

infinite plates or isolated spheres, respectively.

B. Dipolar approximation

Since the subwavelength regime allows Φ12 ≫ Φ0, we em-

ploy a simple dipolar approximation (DA)46,47 or quasistatic

analysis to understand these enhancements in more detail. In

the quasistatic regime, treating the spheres as point dipoles,

we find that the corresponding flux rates are given by:

Φ12 =
12 Im ǫG
πL6 Im ǫ1

Imαeff
1 Imαeff

2 (11)

Φ0 =
4 Im ǫG
π Im ǫ1

(k0R)3 Imαeff
1 , (12)

where αeff
i denote each spheres’ effective anisotropic polariz-

ability (computed by taking into account induced polarization

of the dipoles), with parallel (‖) and perpendicular (⊥) com-

ponents given by:48

αeff
⊥,1/2 = α1/2

1− α2/1

L3

1− α1α2

L6

, αeff
‖,1/2 = α1/2

1 +
2α2/1

L3

1− 4α1α2

L6

(13)

with αi = ǫi−1
ǫi+2 denoting the vacuum polarizability of the

isolated spheres in units of 4πR3 and L = 2+ d
R their center-

center distance in units of R.

It is well known that in the far-field dipolar limit d/R ≫ 1,

bothΦ12,Φ0 → ∞ under the resonance condition,Re ǫ = −2
and zero material loss Im ǫ → 0.10,44,46 At smaller separa-

tions, these two conditions are modified to |L6 − α1α2| = 0
(‖ component) or |L6 − 4α1α2| = 0 (⊥ component) due to

changes in the effective polarizability of each sphere. It fol-

lows that for a passive dimer, while this affects the resonance

condition Re ǫ = −2, the divergence can be reached only

when both Im ǫi → 0. For instance, in passive dimers with

α = α1 = α2, Imαeff → ∞ at specific L3 = −Reα (⊥
component) and L3 = 2Reα (‖ component) for Re ǫ close

to −2 but only under the condition of zero loss, illustrated

in the top contour of Fig. 4(a) for a small Im ǫ1,2 = 0.01.

Of course, it is well known that these quasistatic conditions

cannot generally be satisfied in finite, passive geometries, re-

sulting in finite flux rates (even in the limit as Im ǫ → 0);
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FIG. 4. (a) Flux-transfer rate Φ12 associated with the sphere dimer

system of Fig. 3 under a simple dipolar approximation (DA), in either

passive (Im ǫ1,2 = 0.01, top) or active (Im ǫ1 = − Im ǫ2 = −0.1,

bottom) regimes, as a function of Re ǫ1,2 and d/R. While the flux

rate diverges in the active case under total loss compensation, only

the rate per unit volume diverges in the case of finite, passive spheres.

The validity of the DA for large d > R is illustrated in (b), which

shows also results obtained using the semi-analytical (SA) equa-

tions [(9) and (10)]. (c) Flux rate spectra Φ0(ω) (top) and Φ12(ω)
(bottom) of the dimer system under the PT symmetry condition,

Re ǫ1,2 = −1.522 and Im ǫ1 = − Im ǫ2 = −0.05, illustrating the

splitting of a sub-wavelength dimer mode as d changes around a crit-

ical dc ≈ 0.306R. The two branches include both quasistatic ω
(−)
0

and subwavelength ω
(+)
0 resonances. (d) Flux spectra at three differ-

ent separations d ≈ {0.3056, 0.302, 0.3017}R, marked by the white

dots (i), (ii), and (iii), respectively, in the bottom contour in (c).

essentially, two far-separated (d → ∞) spheres will not be-

have as quasistatic dipoles owing to their finite skin-depth,

except in the limit R → 0 in which case only the flux rates per

unit volume rather than the absolute rates diverge.10,49 Gain–

loss dimers, on the other hand, exhibit diverging flux rates

(i.e. they can lase) under finite material gain and loss rates, as

well as in finite geometries that fall outside of the quasistatic

regime. A clear and practical example are objects satisfying

the so-called parity-time (PT ) symmetry condition, ǫ1 = ǫ∗2
or α = α1 = α∗

2 (assuming equal radii). In this case, the dipo-

lar analysis above suggests a divergence at the critical separa-

tion dc corresponding to L3 = {|α|,
√
2|α|}, illustrated in the

bottom contour plot of Fig. 3(c), assuming | Im ǫ1,2| = 0.1. It

also follows that under finite loss rates Imα 6= 0, the emission

from gain–loss dimers can be made arbitrarily larger than that

of their passive counterparts. Note that in order to capture the

enhancement factor associated with active dimers, the induced

polarization effect (captured by our quasistatic analysis to first

order in d/R) must be included, emphasizing the importance

of geometry along with gain in realizing maximum ASET; the

former has a significantly smaller effect on passive dimers.

Deviations from zero-loss conditions lead to different scal-

ings in active versus passive dimers: for small but finite

Imα ≪ |Reα|, the passive transfer rate, Φ12 ∼ (Reα
Imα )

2,

illustrating a significantly more dramatic increase in flux

rates with decreasing losses than is otherwise observed in

the planar geometry discussed above.11 Additional enhance-

ments arise in active dimers. For instance, under an equally

small breaking of PT symmetry in our example above, i.e.

α = α1 = α∗
2 + iδ, one finds that Φ12 ∼ ( Imα

Reα )
2( Imα

δ )2.

Considering the typically large loss rates of metals near the

plasma frequency, i.e. Imα/Reα ∼ 1, it is clear that one can

achieve larger enhancement factors in active dimers as com-

pared to passive dimers. Note that although we focus here on

a PT -symmetric configuration as a convenient illustration of

the divergence phenomenon, similar results arise under differ-

ent scenarios, as described by the divergence condition above.

While the DA offers intuitive and analytical insights into

energy exchange in the subwavelength regime, it fails to

capture many important, finite-size effects that result from

second- and higher-order scattering artifacts, and must there-

fore be supplemented by exact calculations if more quan-

titative predictions are desired. Nevertheless, as shown in

Fig. 4(b), when compared against the SA above, with flux

rates given by (9) and (10), the DA and exact predictions ex-

hibit close agreement whenever d & R, suggesting that the

DA is sufficient to understand the main features of energy

transfer at intermediate to large separations. It further follows

from the DA that the ratio of ASET to ASE, Φ12

Φ0

∼ (R/d)6

(k0R)3 , fa-

voring absorption to radiation as k0R → 0, clearly evident in

Fig. 4. Furthermore, although our dipolar analysis suggests a

unique L at which Φ12 → ∞, finite geometries support many

such modes and there exists multiple critical separations and

quasistatic divergences, an example of which is demonstrated

in Fig. 4(b)(c), which delineate lasing transitions and strong,

distance-dependent enhancements at d . R that are not pre-

dicted by DA. In particular, Fig. 4(c) shows the flux rates

under PT symmetry, corresponding to Re ǫ = −1.522 and

Im ǫ1 = − Im ǫ2 = −0.05, illustrating the appearance of a

subwavelength resonance (otherwise absent at far-away sepa-

rations) at d ≈ 0.317R and ω0R/c ≈ 0.25 that splits into two

resonances at d/R ≈ 0.306R, whose frequencies ω±
0 move

farther apart (white dashed lines in the top contour plot) with

decreasing d. Such a resonant coupling mechanism results

in an ultra-large red shift ω−
0 → 0 of one of the branches,

as d → dc, eventually leading to the quasistatic divergence

predicted by the dipolar analysis and better illustrated in the

bottom figure of Fig. 4(c), which shows the spectrum corre-

sponding to three different separations, denoted by white dots.

While the DA does not predict such a low-d divergence, which

arises due to higher-order scattering effects, it does predict the

right scaling of Φ12/Φ0 with the various parameters.

The analysis above suggests that a proper combination of

gain, geometry, and subwavelength operating conditions can

provide optimal conditions for achieving ASET ≫ ASE be-

low the LT. In what follows, we consider a more practical and

interesting, extended geometry, involving lattices of spheres

that exchange energy among one another, where one can po-

tentially observe even larger enhancements, leaving open the



6

��� 

���!

"#-6

"#-5

"#-4

"#-3

|Φ
0
|R

2

/A

Distance, d/R

LL, t/R=7

SA

Isolated 
dimer

DA

t/R=7

t/R=2

10-1 100 101

SA

DA

LL, t/R=7

t/R=7

t/R=2PA, t/R=7

10-6

10-4

10-2

100

102

104

10-1 100 101

Distance, d/R
|Φ

1
2
|R

2
/A

Isolated
dimer

z

y

x

|Φ0|/A

|Φ12|/A
d

t

R
t

(a) (d)(c)(b)

|Φ12
(max)|

t = d = 2RSphere lattices

Parallel plates d = 2R

Im ε2=0.01

Im ε2=0.1

10-4

10-2

100

102

104

m
ax

{
|Φ

1
2
|R

2
/A

}

0 0.2 0.4 0.6 0.8 1
Im ε1/ Im ε2

FIG. 5. (b) Flux transfer |Φ12|R
2/A and (c) far-field flux |Φ0|R

2/A associated with the system shown schematically in (a), involving an

infinite, two-dimensional lattices of gain and loss spheres of equal radii R and period t ≈ d, and separated by a (varying) vertical distance

d, for different choices of t/R & 1 and fixed values of Re ǫ = −1.95 and Im ǫ1 = − Im ǫ2 = −0.01. Also shown are the corresponding

flux rates obtained using a simple pairwise approximation (PA, dashed red lines) that ignores multiple scattering (see text), or associated with

either passive spheres (LL, black solid lines) or isolated dimers (blue lines, both DA and SA). The flux rates are normalized by either the

dimensionless unit areas A/R2 in the case of lattices, with A = (t + 2R)2, or A = 4πR2 in the case of an isolated dimer. (d) compares

the maximum achievable flux rate |Φ12|R
2/A in sphere lattice (solid lines) versus planar (dashed lines) geometries as a function of the ratio

Im ǫ1/ Im ǫ2 (relative overall permittivity of the gain spheres/plates) for two different choices of Im ǫ2 = {0.01, 0.1} (red, blue) and fixed

lattice parameters d/R = t/R = 2.

possibility of further improvements in other geometries.50–52

Because exact calculations of flux rates in such a structure are

far more complicated,53 we restrict ourselves to quasistatic sit-

uations that lie within the scope of our DA.

C. Sphere lattices

The combination of reduced loss rates and resonant, near-

field enhancements potentially achievable in extended geome-

tries could lead to orders of magnitude larger heat flux rates

compared to planar geometries. In fact, as we showed recently

in Ref. 11, structures comprising tightly packed, pariwise-

additive dipolar radiators can approach the fundamental limits

of radiative energy exchange imposed by energy conservation.

In what follows, we analyze more realistic versions of such

structures, albeit under gain, demonstrating the possibility of

achieving significant and widely tunable near-field and mate-

rial flux enhancements.

We consider two vacuum-separated square lattices of gain–

loss nanospheres having equal radii R, lattice spacing t, and

surface–surface separation d, depicted in Fig. 5(a). As noted

above, the radiation between and from such structures will, to

lower order in {d, t}/R, depend on the local corrections to the

polarizabilities of each individual sphere. The generalization

of the DA to consider such a situation yields the following set

of equations for the effective polarizabilities of each sphere:
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∞∑

n1,n2=0
n1+n2 6=0

1

(n2
1 + n2

2)
3/2






αeff
G,z

−
[

1

(2 + t/R)3

∞∑
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αeff
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−
[

1

(2 + t/R)3

∞∑

n1,n2=0

(d/t)2 + n2
2 − 11n2

1

[n2
1 + n2

2 + (d/t)2]5/2

]

αeff
L,‖ = 1,

(15)

in terms of the bare polarizabilities α
(0)
G,L and structure param-

eters. (Note that there are three additional equations, which

we have chosen to omit, obtained by letting G ↔ L above.)

Figure 5 shows (b) Φ12 and (c) Φ0 in the subwave-

length regime k0R = 0.01, normalized by the dimension-

less lattice area A/R2 = (2 + t/R)2, assuming spheres of

ǫ1,2 = −1.95± 0.01i and for various t = {2, 7}R. To under-

stand the range of validity of the DA with respect to d/R, we

once again compare its predictions against our semi-analytical

formulas (SA) in the case of isolated dimers (dotted blue

lines), showing excellent agreement in the range d/R > 1;

note, however, the failure of DA to predict the additional peak

at low d/R ≈ 0.2. Restricting our analysis to large separa-

tions, one finds that the presence of additional spheres causes

significant enhancements and modifications to the flux rates,

leading to complicated, non-monotonic dependences on geo-

metric parameters such as t. To illustrate the importance of

multiple-scattering among many particles, we also show re-
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sults obtained using a simple pairwise-additive (PA) approxi-

mation (dashed lines), in which the flux rates associated with

pairs of spheres are individually summed.

Figure 5(d) compares the performance of sphere lattices

against that of parallel plates, showing the maximum achiev-

able |Φ12|/(A/R2) as a function of relative active medium

permittivity Im ǫ1/ Im ǫ2 for fixed d/R = t/R = 2 and mul-

tiple loss rates Im ǫ2 = {0.01, 0.1} (red and blue lines), vary-

ing Re ǫ1,2 so as to satisfy the resonant condition. As noted

above, for Im ǫ1 < 0 (loss compensation), it is always pos-

sible to choose geometric parameters under which the system

undergoes lasing (gray shaded region), though this condition

can only be obtained analytically for simple structures such

as the plates or dipolar spheres above. Below the LT, it is

evident that there is significant enhancement in ASET in the

case of sphere lattices compared to plates, especially as the

lattice system approaches the LT. Such an enhancement de-

pends crucially on the loss rates, decreasing with increasing

Im ǫ2, which can be explained by the weak, logarithmic de-

pendence of the planar flux rates on overall loss compensa-

tion.11 Note that as discussed above, at finite R, the DA be-

comes increasingly inaccurate in the limit Im ǫ1 → 0, owing

to the finite skin depth effect.10,49 Our calculations therefore

offer only a qualitative understanding of the trade-offs in ex-

ploiting particle lattices as opposed to plates. Under losses

Im ǫ2 ≈ 0.1 typical of plasmonic materials, we find that par-

allel plates exchange more energy compared to sphere lattices

for a wide range of gain parameters (except close to the LT),

while the latter dominate at smaller Im ǫ2 and can be greatly

enhanced by the presence of even a small amount of gain.

Note that while we have chosen to investigate only the case

{t, d}/R = 2 in order to ensure the validity of the DA, po-

tentially larger enhancements are expected to arise at shorter

distances or lattice separations, but such an analysis requires

a full treatment of ASET in these extended systems, including

both finite size and nonlinear effects.54,55 Nevertheless, our re-

sults provide a glimpse of the opportunities for tuning ASET

in structured materials.

D. Real materials

The ability to achieve gain at subwavelength frequencies

is highly constrained by size and material considerations. In

what follows, we describe ASET predictions in a potentially

viable material system. Consider a sphere dimer consisting

of two ion-doped metallic spheres, shown schematically on

the inset of Fig. 6. While there are many material candidates,

including various choices of metal-doped oxides and chalco-

genides,56 for illustration, we consider a medium consisting

of (2wt%) Ga-doped zinc oxide (GZO) that is further doped

with 4-level Chromium (Cr2+) ions, in which case the transi-

tion wavelength lies in the near infrared. The permittivity and

gain profile of the ions and GZO are well described by (2),

with ω21 = 0.75× 1015 rad/s, γ⊥ ≈ 0.02ω21, and,56–58

ǫr(ω) = ǫ∞ −
ω2
p

ω(ω + iΓp)
+

f1ω
2
1

ω2
1 − ω2 − iωΓ1

(16)
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FIG. 6. (a) Far-field flux Φ0(ω) (blue line) and flux-transfer Φ12(ω)
(red line) spectra of a dimer consisting of two Ga-doped zinc-oxide

spheres of radii R = 0.2c/ω21 , separated by a distance d/R = 0.5.

One of the spheres is doped with Chromium (Cr2+) ions having tran-

sition wavelength λ21 = 2.51µm, and pumped to a population inver-

sion D0 = 0.375 (~γ⊥/4π
2g2). Also shown is the far-field emis-

sion Φ0(d → ∞) of the isolated gain sphere (green line). The top

inset shows the peak ratio Φmax
12 /Φmax

0 with respect to changes in R,

keeping d/R and D0 fixed. (b) Contour plots illustrating variations

in Φ0 (left/middle) and Φ12 (right) with respect to D0, with the black

dashed lines indicating operating parameters in (a). (c) Maximum

spectral flux rates |Φ12(ω)|R
2/A (left) and |Φ0(ω)|R

2/A (right)

for extended sphere lattices comprising GZO gain-loss spheres op-

erating at D0 = 0.3 (~γ⊥/4π
2g2), well below the LT, but of radii

R ∼ 0.05c/ω21, as a function of d/R and for different values of

t/R. Also shown are the flux rates of passive lattices (LL, black

solid lines), obtained by letting D0 = 0.

where ǫ∞ = 2.475, f1 = 0.866, ωp = 2.23ω21,

Γp = 0.0345ωp, ω1 = 9.82ω21, and Γ1 = 0.006ω1. These

parameters dictate dimer sizes and configurations needed to

operate in the subwavelength regime.

Figure 6(a) shows Φ12 (red line) and Φ0 (blue line)

for one possible dimer configuration, corresponding to

R = 0.2c/ω21 ≈ 80nm, d/R = 0.5, and population in-

version D0 = 0.375 (~γ⊥/4πg
2), demonstrating orders of

magnitude larger ASET compared to ASE within the gain

bandwidth. Noticeably, the emission from an isolated sphere

under the same gain parameters (green line) is significantly
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larger, evidence of an increased LT due to the presence of

the lossy sphere. The flux spectra of this system are ex-

plored in Fig. 6(b) with respect to changes in D0, illus-

trating the appearance of the subwavelength peak and large

Φ12 ≫ 1. As expected, the LT corresponding to the first

peak occurs slightly above Im ǫL ≈ 0.37, which is the thresh-

old gain needed to compensate material loss, at which point

Im ǫ1 < 0. The black dashed lines in the contours de-

note the operating parameters of Fig. 6(a), confirming that

the system lies below the LT. As expected, smaller dimers

lead to larger Φ12

Φ0

∼ (k0R)−3, as illustrated by the top

inset of Fig. 6(a). Figure 6(c) shows the flux rates (red

and blue lines) corresponding to extended lattices of spheres

comprising the same GZO gain–loss profiles and with radii

R = 0.05c/ω21 ≈ 20nm (in the highly subwavelength

regime), in a situation where the system is well below the LT,

which occurs at D0 = 0.3 (~γ⊥/4π
2g2). Noticeably, the flux

rates are significantly larger than the rates achievable in pas-

sive structures (green solid lines).

III. CONCLUDING REMARKS

Our predictions shed light on considerations needed to

achieve large ASET between structured active–passive ma-

terials, attained via a combination of loss compensation in

conjunction with near-field effects. While our work follows

closely well-known and related ideas in the areas of near-field

heat transport and nano-scale lasers (e.g. spacers), the pos-

sibility of tuning and enhancing heat among active bodies in

the near field is only starting to be explored.26,59 Our analy-

sis, while motivating and correct in regimes where ASE do-

miantes stimulated emission, ignores important nonlinear and

radiative-feedback effects present in gain media as the LT is

approached, nor have we considered specific pump mecha-

nisms which will necessarily affect power requirements and

ASET predictions,60,61 especially above threshold. To an-

swer such questions, future analyses based on full solution of

the Maxwell–Bloch equations62,63 or variants thereof35,58 are

needed.
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Appendix A: Vector spherical harmonics

When deriving the flux rates associated with two spheres,

we employed the following spherical-vector functions:

M
(p)+
ℓm (kx) = z

(p)
ℓ (kr)V

(2)
ℓm(θ, φ), (A1)

M
(p)−
ℓm (kx) = ζ

(p)
ℓ (kr)V

(3)
ℓm(θ, φ)

+
z
(p)
ℓ (kr)

kr

√

ℓ(ℓ+ 1)V
(1)
ℓm(θ, φ), (A2)

where z
(p)
ℓ are spherical Bessel (p = 1) and Hankel (p = 3)

functions of order ℓ, ζ
(p)
ℓ (x) = 1

x
d
dx [xz

(p)
ℓ (x)], and V

(p)
ℓm and

associated spherical vector harmonics,42

V
(1)
ℓm(θ, φ) = r̂Yℓm (A3)

V
(2)
ℓm(θ, φ) =

1
√

ℓ(ℓ+ 1)

(

−φ̂
∂Yℓm

∂θ
+ iθ̂

m

sin θ
Yℓm

)

(A4)

V
(3)(θ, φ) =

1
√

ℓ(ℓ+ 1)

(

θ̂
∂Yℓm

∂θ
+ iφ̂

m

sin θ
Yℓm

)

, (A5)

which satisfy the following orthogonality relations:

∮

S

V
(p)
ℓm ·V(p′)∗

ℓ′m′ = δℓℓ′δpp′δmm′

∮

S

dΩV
(p)
ℓm ×V

(p)∗
ℓ′m′ · r̂ = −

∮

S

dΩV
(2)
ℓm ×V

(3)∗
ℓ′m′ · r̂

= δℓℓ′δmm′

∫

Vi

dx′
M

(1)+
ℓm (kx′) ·M(1)+∗

ℓ′m′ (kx′)

= R2
i Im

[

k∗i z
(1)
ℓ (kiRi)ζ

(1)∗
ℓ (kiRi)

] δℓℓ′δmm′

k20 Im ǫi
,

∫

Vi

dx′
M

(1)−
ℓm (kx′) ·M(1)−∗

ℓ′m′ (kx′)

= R2
i Im

[

k∗i z
(1)∗
ℓ (kiRi)ζ

(1)
ℓ (kiRi)

] δℓℓ′δmm′

k20 Im ǫi
.
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