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Effect of extended confinement on the structure of edge channels in the quantum
anomalous Hall effect

Z. Yue and M. E. Raikh
Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112, USA

Quantum anomalous Hall (QAH) effect in the films with nontrivial band structure accompanies
the ferromagnetic transition in the system of magnetic dopants. Experimentally, the QAH transition
manifests itself as a jump in the dependence of longitudinal resistivity on a weak external magnetic
field. Microscopically, this jump originates from the emergence of a chiral edge mode on one side
of the ferromagnetic transition. We study analytically the effect of an extended confinement on the
structure of the edge modes. We employ the simplest model of the extended confinement in the
form of potential step next to the hard wall. It is shown that, unlike the conventional quantum
Hall effect, where all edge channels are chiral, in QAH effect, a complex structure of the boundary
leads to nonchiral edge modes which are present on both sides of the ferromagnetic transition. Wave
functions of nonchiral modes are different above and below the transition: on the “topological” side,
where the chiral edge mode is supported, nonchiral modes are “repelled” from the boundary, i.e. they
are much less localized than on the “trivial” side. Thus, the disorder-induced scattering into these
modes will boost the extension of the chiral edge mode. The prime experimental manifestation of
nonchiral modes is that, by contributing to longitudinal resistance, they smear the QAH transition.

PACS numbers: 75.50.Pp, 75.47.-m, 73.43.-f

I. INTRODUCTION

Quantum anomalous Hall effect is achieved by dop-
ing the films possessing nontrivial band structure with
magnetic impurities.4–15,28–30 This doping gives rise to a
spontaneous magnetization caused by exchange between
the impurities. The most exciting consequence of this
magnetization is that the associated spin splitting re-
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FIG. 1: (a) and (b) illustrate two variants of the extended
confinement: potential step next to the hard wall (a), and
step in the gapwidth next to the hard wall (b); (c) illustrates
a potential well, U(y), located far away from the wall (at
distance D � l∆). A finite-D shift, δE0, of the guided mode,
E0(kx), depends on whether the underlying bandstructure is
trivial or inverted. Such a “sensitivity” originates from the
behavior of the wave function in a narrow domain, l0, near
the boundary.

sults in the band inversion. Magnetization-induced band
inversion was predicted theoretically in Refs. 16, 17.
First experiments28–30 indicated that there is a jump
in non-diagonal component, σxy, of the conductivity at
ferromagnetic transition confirming the theoretical pre-
diction. Very recently11,12, upon improving the quality
of the samples, a very accurate quantization of σxy was
demonstrated.

In experiments4–15,28–30, the ferromagnetism is
switched on and off by application of a weak external
field. The observed quantized steps in non-diagonal
resistance look similar to the steps observed in conven-
tional quantum Hall effect only in much weaker external
fields. One of the conclusions which can be drawn from
these experimental studies is that the structure of the
edge states plays a crucial role in achieving an almost
zero longitudinal resistance, ρxx.

On the theoretical side, it was demonstrated numeri-
cally in Ref. 18 that the dispersion law of the edge states
in realistic multilayer QAH structure contains nonchiral
edge modes along with a chiral one. It was also demon-
strated in Ref. 18 that coexistence of chiral and nonchiral
edge modes leads to a finite longitudinal resistance. In
order to suppress the contribution of nonchiral channels
to ρxx, in experiment Ref. 11 it was proposed to localize
them by disorder. Indeed, for nonchiral edge modes, the
backscattering and, consequently, the interference is al-
lowed. This interference, on the other hand, is the origin
of the quantum localization.

In theory, the question whether or not a given band
structure allows a chiral edge state is decided by calculat-
ing the Chern number. Naturally, this calculation does
not answer a question whether or not this band struc-
ture supports nonchiral in-gap edge modes. Alternative
microscopic approach19–22 to the issue of edge states con-
firms the prediction about their presence or absence made
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on the basis of Chern number calculation. This micro-
scopic approach also allows to calculate analytically the
modification of the wave function of the chiral edge state
due to the orbital action of magnetic field and, even, to
trace how this edge state transforms into the quantum
Hall edge state upon increasing the field. However, mi-
croscopic approach19–22 equally does not reproduce the
nonchiral modes within the envelop-function description.

The Hamiltonian describing the gapped edge spectrum
in QAH has a 2× 2 matrix form.16 This is in contrast to
the conventional spin-orbit 4× 4 Hamiltonian23 describ-
ing the states in HgTe-based quantum wells. The reason
is that the transition between inverted and trivial band
structures due to magnetization takes place only for one
spin projection. As a consequence of the matrix form of
the Hamiltonian, the in-gap eigenstates are characterized
by two decay lengths. Edge state is allowed if the two
corresponding eigenvectors can be combined to satisfy
the hard-wall boundary condition.27 It appears that only
“nontrivial” band structure allows such combination.

In the present paper we demonstrate that nonchiral
edge modes emerge naturally upon generalization of the
microscopic approach19–22 to the case of the extended
confinement. In fact, we employ the simplest model of
the extended confinement in the form of a step next to
the hard wall. We demonstrate that both chiral and
nonchiral modes emerge as solutions of the same char-
acteristic equation. The wave functions of nonchiral
modes oscillate within the step before decaying into the
bulk. Within the simplest model considered, we compare,
for the same confinement, nonchiral edge modes for in-
verted band structure, supporting the chiral mode, and
for “trivial” band structure. Our main finding is that,
for “trivial” band structure, the nonchiral modes have
a lower threshold with respect to e.g. the step height.
Nonchiral modes with inverted band structure are more
extended. Disorder-induced scattering into these states
extends the localization length of the chiral edge mode.

II. EDGE MODES IN THE PRESENCE OF A
STEP

A. Hard wall

To introduce notations, we briefly review the structure
of the bulk QAH Hamiltonian17. It emerges from the
conventional 4× 4 Hamiltonian23

Ĥeff =

(
ĥ(k) 0

0 ĥ∗(−k)

)
(1)

where ĥ(k) is a 2× 2 matrix defined as ĥ(k) = A(kxσx +
kyσy)+(m+Bk2)σz, while σy, σz are the Pauli matrices
acting in the pseudospin (electron-heavy hole) subspace.
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FIG. 2: (Color online) The dispersions of the modes propa-
gating along the boundary y = 0 is plotted from Eqs. (18)

and (22) for dimensionless step height Ũ0 = 0.5 and dimen-

sionless step width d̃ = 6. The spectrum of the edge mode and
of two nonchiral modes is shown with red lines. Bulk spec-
trum (black) and the spectrum in the step region, 0 < y < d,
(dashed) are also shown.

Upon adding the exchange24

ĥexch =

∆ 0 0 0
0 −∆ 0 0
0 0 −∆ 0
0 0 0 ∆

 (2)

the two blocks become inequivalent

ĥ(k)→
(
m+ ∆ +Bk2 −A(kx − iky)
−A(kx + iky) −m−∆−Bk2

)
(3)

ĥ∗(−k)→
(
m−∆ +Bk2 A(kx + iky)
A(kx − iky) −m+ ∆−Bk2

)
. (4)

Near m = ∆ the band inversion takes place only in the
second block. Thus the transition can be swept through
by applying a weak magnetic field, since the field controls
the parameter, ∆.

It follows from Eq. (4) that at the transition m = ∆
the Hamiltonian possesses only a single spatial scale,

l0 =
B

A
. (5)

Away from the transition, a new spatial scale,

l∆ =
A

m−∆
, (6)

appears. The theory is greatly simplified by the fact that
the first scale is much smaller than the second one.25 In
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FIG. 3: (Color online) Comparison of the dispersions of edge
modes, shown with red, for “topological” (a) and “trivial” (b)

boundaries. Parameters of the step are Ũ0 = 1.8 and d̃ = 2.2.
Bulk spectrum (black) and the spectrum in the step region,
0 < y < d, (dashed) are also shown. The inset detalizes
how the dispersion of the chiral mode merges with the bulk
spectrum.

terms of the edge states, for a given, say positive, sign
of B, the edge state is present for m < ∆ and is absent
for m > ∆. To see this, consider the two eigenvectors of

ĥ∗(−k) propagating, as exp(ikxx), along the boundary
y = 0 and decaying, as exp(−qy), into the bulk, y >
0. For these eigenvectors, the elements of corresponding
pseudospinors are related as

[m−∆ +B(k2
x − q2)− E]α+A(kx − q)β = 0,

[m−∆ +B(k2
x − q2) + E]β −A(kx + q)α = 0. (7)

With l0 � |l∆|, the q-values for the two eigenvectors
differ strongly, and the expressions for them have a simple
form

q0 =
1

l0
, q∆ =

1

|l∆|

√√√√1 + (l∆kx)2 −
(
El∆
A

)2

. (8)

Note that, by virtue of the condition l0 � |l∆|, the non-
parabolicity parameter B does not enter into q∆. Sub-
stituting Eq. (8) into Eq. (7), we find the form of the
corresponding eigenvectors

Ψ0 =

(
−1
1

)
exp

[
ikxx− q0y

]
, (9)

Ψ∆ =

(
1

A(kx+q∆)
m−∆+E

)
exp

[
ikxx− q∆y

]
. (10)

To satisfy the hard-wall boundary condition, both com-
ponents of the linear combination of the eigenvectors Eqs.
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FIG. 4: (Color online) Comparison of the probability density
profiles for different edge modes. For “topological” boundary
the profiles of chiral edge mode and lowest nonchiral mode
are shown with green and purple, respectively. The profile
for the nonchiral mode at “trivial” boundary is shown with
blue. All three profiles are calculated for energy in the center
of the gap.

(9), (10) should turn to zero at y = 0. This amounts to
the requirement

1 +
A(kx + q∆)

m−∆ + E
=

2(Akx + E)

m−∆ + E +A(kx − q∆)
= 0. (11)

One immediately concludes from Eq. (11) that the dis-
persion law of the chiral edge mode is linear

E = −Akx. (12)

However, this conclusion applies only on one side of the
transition, namely, for (m−∆) < 0. Indeed, as it follows
from Eq. (8), for E = −Akx, we have q∆ = A/|m −∆|.
Therefore, for positive m − ∆, the denominator in Eq.
(11) turns to zero together with the numerator, so that
the boundary condition cannot be satisfied.

B. Chiral edge mode in the presence of a step

Consider a boundary with a potential step next to it
depicted in Fig. 1. In the domain 0 < y < d the potential
is equal to U0. It creates the energy shift, so that the
value q∆ gets modified

q∆ → κ =
1

|l∆|

√
1 + (l∆kx)2 −

[
(E − U0)l∆

A

]2

. (13)

A general solution within the domain 0 < y < d contains
two growing and two decaying exponents
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Ψy<d =C0

(
−1
1

)
exp

[
ikxx− q0y

]
+ C∆

(
1

A(kx+κ)
m−∆+E−U0

)
exp

[
ikxx− κy

]
+

D0

(
1
1

)
exp

[
ikxx+ q0(y − d)

]
+D∆

(
1

A(kx−κ)
m−∆+E−U0

)
exp

[
ikxx+ κy

]
. (14)

On the other hand, the solution for y > d is still a linear combination of Ψ0 and Ψ∆, namely

Ψy>d = C−0

(
−1
1

)
exp

[
ikxx− q0(y − d)

]
+ C−∆

(
1

A(kx+q∆)
m−∆+E

)
exp

[
ikxx− q∆(y − d)

]
. (15)

Overall, there are 6 unknown amplitudes in Eqs. (14), (15). The 6 boundary conditions to be satisfied is vanishing
of both components of the wave function at y = 0 and continuity of both components together with their derivatives
at y = d. At this point we note that the step affects the dispersion law of the edge state only for d & l∆ � l0.
This observation allows for two fundamental simplifications. Firstly, the term with amplitude C0 in Eq. (14) decays
rapidly with y from y = 0, so that its magnitude at the boundary y = d is ∼ exp(−d/l0). Thus, this term should be
taken into account only at the boundary y = 0. Similarly, the term with coefficient D0 should be taken into account
only at y = d. Next, the solutions with coefficients D0 and C−0 have big derivatives, 1/l0. Then, the matching with
the derivatives of a slow decaying solutions, renders their amplitude small, ∼ l0/l∆ � 1. Neglecting the terms D0

and C−0 leaves us with the system for 4 unknowns with 4 boundary conditions to satisfy. The form of this system is
the following

− C0 + C∆ +D∆ = 0,

C0 + C∆
A(kx + κ)

m−∆ + E − U0
+D∆

A(kx − κ)

m−∆ + E − U0
= 0,

C∆e
−κd +D∆e

κd = C−∆ ,

C∆(kx + κ)e−κd +D∆(kx − κ)eκd

m−∆ + E − U0
= C−∆

(kx + q∆)

m−∆ + E
. (16)

The first two equations ensure that the wave function Eq. (14) turns to zero at y = 0 while the second two equations
express the continuity of the wave function at y = d.

The consistency condition for the system Eq. (16) yields the following transcendental equation for the dispersion,
E(kx), of the edge modes

m−∆+E−U0

A(kx−κ) + 1

m−∆+E−U0

A(kx+κ) + 1
e−2κd =

(kx+q∆)(m−∆+E−U0)
(kx−κ)(m−∆+E) − 1

(kx+q∆)(m−∆+E−U0)
(kx+κ)(m−∆+E) − 1

. (17)

To analyze this equation we first rewrite it in a dimensionless form

1+E−Ũ0

Kx−sign(m−∆)P + 1

1+E−Ũ0

Kx+sign(m−∆)P + 1
e−2Pd̃ =

[Kx+sign(m−∆)Q∆](1+E−Ũ0)
[Kx−sign(m−∆)P](1+E) − 1

[Kx+sign(m−∆)Q∆](1+E−Ũ0)
[Kx+sign(m−∆)P](1+E) − 1

, (18)

where we have introduced the dimensionless energy,
momentum, and the decay constant

E =
E

m−∆
, Kx =

Akx
m−∆

,

P =
Aκ

|m−∆| =

√
1 +K2

x − (E − Ũ0)2,

Q∆ =
Aq∆

|m−∆| =
√

1 +K2
x − E2, (19)

while the dimensionless size and the depth of the step are
defined as

Ũ0 =
U0

m−∆
, d̃ =

|m−∆|d
A

. (20)

Note that the sign of (m − ∆) appears in Eq. (18) to
ensure that the decay constant is positive for any sign of
(m−∆).

The dispersion law Eq. (12) for the chiral edge state

follows from Eq. (18) in the limit d̃ → 0. Indeed, in
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dimensionless units, Eq. (12) reads E = −Kx. This
suggests that Q∆ = 1. For (m − ∆) < 0, the ratio
(1 + E)/(Kx + sign(m−∆)Q∆) is equal to −1, the frac-
tions in the left-hand side and in the right-hand side are
equal to each other, so that Eq. (18) is satisfied. It is

even easier to see that in the limit d̃→∞ Eq. (18) yields

the dispersion law E = −Kx + Ũ0. In this limit the de-
nominator in the left-hand side turns to zero for negative
(m−∆).

For general parameters of the step the dispersion law
of the chiral mode is illustrated in Figs. 2, 3. Naturally,
presence of the step does not violate the fact that the chi-
ral mode exists only for negative (m−∆). For a “weak”
step the edge mode is present for both positive and neg-
ative momenta, while for a “strong” step only at positive
momenta. Although it is not a rigorous statement, the
dispersion is linear with very high accuracy. Numerically,
the relative change of the slope with Kx is ≈ 10−3.

Figs. 2, 3 also suggest that the dispersion of a chi-
ral edge mode has an endpoint. This is also the con-
sequence of a finite accuracy of the numerical proce-
dure. The true behavior of the slope, as the edge
mode merges with continuum at certain point Kx = Kcx,

E = Ec =
[
1 + (Kcx)2

]1/2
is
[
∂E
∂Kx
− K

c
x

Ec
]
∝ (Kx −Kcx).

To see this, one can view the transcendental equation
Eq. (18) as a relation between the variables Kx and
Q∆. Since it contains the terms linear in Kx and Q∆, its
variation yields δKx = ηδQ∆, where η is some constant.
On the other hand, from definition of Q∆ it follows that
Q∆δQ∆ = KxδKx − EδE . Thus, one has

Q∆

E = η
(Kx
E −

∂E
∂Kx

)
. (21)

As the dispersion law approaches the continuum, the
variable Q∆ turns to zero. Then it follows from Eq.

(21) that the velocity of the edge mode approaches
Kc

x

Ec ,
which is the velocity of the bulk mode. Numerically, the
merging of the chiral edge mode dispersion with the bulk
spectrum is illustrated in Fig. 3, inset. It is seen that
the change of sign of the slope takes place within a very
narrow domain of momenta ∼ 10−4.

C. Nonchiral edge modes

Our main finding in the present paper is that the tran-
scendental equation Eq. (18) captures, along with the
chiral mode, a set of nonchiral edge modes. For these
modes the decay rate, κ, within the step and, thus, the
dimensionless P are purely imaginary. For such P it is
convenient to cast Eq. (18) in the form

|P|d̃+ Φ1 + Φ2 = πn, (22)

where n is integer and the phases Φ1, Φ2 are defined as

Φ1 = arctan

(
sign(m−∆)|P|
1 + E − Ũ0 +Kx

)
,

Φ2 = arctan

(
sign(m−∆)|P|

1+E−Ũ0

1+E (Kx + sign(m−∆)Q∆)−Kx

)
.

(23)

The meaning of |P|d̃ is the phase accumulated by the
components of the pseudospinor on the interval 0 < y <
d, where they oscillate. The meaning of Φ1 and Φ2 is the
phase shift at the boundary y = 0 and y = d, respectively.

The maximal value of n, i.e. the number of modes with
dispersion law having its origin in the bulk gap, is finite26

and is determined by the thickness, d.

Note that both phase shifts depend on sign of (m−∆).
Thus, the dispersion laws of nonchiral modes “know”
whether or not the band structure is inverted. These dis-
persion laws, obtained from Eq. (22) are shown in Fig.
3 for a given step and with opposite signs of (m − ∆).
It is seen that for (m − ∆) > 0 the nonchiral branches
lie deeper in the gap than nonchiral branches for negative
(m−∆). The sign of (m−∆) also determines the clas-
sification of the branches. For (m − ∆) > 0 the values
of n start from n = 0, while (m − ∆) > 0 they start
from n = 1. Qualitatively, this suggests that a chiral
mode “complicates” the formation of nonchiral modes.
Different dispersions for positive and negative (m − ∆)
implies that the behavior of |Ψ(y)|2 is different. This
is illustrated in Fig. 4. We see that nonchiral mode
for (m −∆) < 0 is significantly more extended than for
(m−∆) > 0.

It is instructive to compare the above results for the
step potential with dispersion of nonchiral modes emerg-
ing from a jump of the gap magnitude next to the bound-
ary in the domain 0 < y < d, see Fig. 1b. Modifications
of Eq. (18) to this case are straightforward. Firstly, the
decay constant P should be redefined

P →
√
δ̃2 +K2

x − E2, (24)

where δ̃ = (m−δ)/(m−∆) is the relative reduction of the
gap in the domain 0 < y < d. The second modification
is the replacement of the combination 1− Ũ0 in Eq. (18)

by δ̃. The solutions of Eq. (18) for a particular set of
parameters are shown in Fig. 5a. Naturally, nonchiral
modes are symmetric with respect to E = 0. Unlike the
case of potential step, they never reach the midgap. With
regard to the density profile, Fig. 5b, the nonchiral mode
is repelled from the boundary even further than in the
case of potential step.
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FIG. 5: (Color online) Dispersions (a) and the density profiles
(b) of a chiral and nonchiral modes are shown for the extended
confinement Fig. 1b. The magnitude of the gap reduction
near the edge is δ = 0.2∆, while the dimensionless width
is d̃ = 5. Density profile of both modes is calculated for
dimensionless energy E = 0.6. Bulk spectrum (black) and the
spectrum in the step region (dashed) are also shown.

III. “TOPOLOGICAL” SHIFT OF THE
DISPERSION OF THE MODE LOCALIZED FAR

AWAY FROM THE BOUNDARY

A. Formulation of the problem

In the present Section we consider the following prob-
lem. Suppose that a potential well, U(y), is located far
away from the boundary, see Fig. 1c. Quantitatively,

this implies that the distance, D, is much bigger than l∆.
Even in the limit D → ∞ the potential U(y) supports
a nonchiral mode with dispersion, E0(kx). This disper-
sion does not depend on whether the underlying band
structure is trivial or inverted. Finite D causes a small
correction, δE0(kx), to the dispersion of the mode guided
by U(y). We will demonstrate that this correction has
a “topological” character: it shifts E0(kx) towards the
center of the gap for (m − ∆) > 0 and away from the
midgap for (m−∆) < 0. Moreover, we will see that the
“topological” character of the correction manifests itself
in the fact that it depends on the sign of kx, while the
bare dispersion, E0(kx), is obviously an even function of
kx. Qualitatively, this effect can be understood as fol-
lows. Consider the situation (m − ∆) < 0. The guided
mode “senses” the boundary via the far tail of the wave
function, see Fig. 1c. For (m −∆) < 0 there is a chiral
mode propagation along the boundary. The coupling of
the tail to this mode is either strong or weak depending
on weather the guided mode co-propagates (kx < 0) or
counter-propagates (kx > 0) with the chiral mode. In
the next subsection we trace analytically the resonance
between the guided mode in potential U(y) and the chi-
ral edge mode. Calculation can be performed explicitly
due to the small parameter l∆/D.

B. Calculation of the shift

Denote with ψe(y) and ψh(y) the components of pseu-
dospinor describing the wave function of a nonchiral
mode

(
ĥ∗(−k̂) + U(y)

)
Ψ =

(
ĥ∗(−k̂) + U(y)

)(
ψe
ψh

)
= E(kx)

(
ψe
ψh

)
. (25)

For l0 � l∆ presence of the boundary is taken into account by imposing a boundary condition

Ψ(0) =

(
1
−1

)
. (26)

We emphasize that, as in the case of a step, the meaning of y = 0 in this condition is, in fact, l0 � y � l∆, see Eqs.

(9), (10). Denote now with ψ
(0)
e (y), ψ

(0)
h (y) the component of pseudospinor for the case when the boundary is absent

(moved to y = −∞). One has(
ĥ∗(−k̂) + U(y)

)
Ψ(0) =

(
ĥ∗(−k̂) + U(y)

)(
ψ

(0)
e

ψ
(0)
h

)
= E0(kx)

(
ψ

(0)
e

ψ
(0)
h

)
. (27)

As a next step, we multiply Eq. (25) by Ψ(0) from the left and Eq. (27) by Ψ from the left and subtract them from
each other. This yields

A
d(ψ

(0)
e ψh − ψeψ(0)

h )

dy
= δE0(kx)

(
ψ(0)
e (y)ψe(y) + ψh(y)ψ

(0)
h (y)

)
. (28)

Upon integrating Eq. (28) from y = 0 to ∞, we find the analytical expression for δE0(kx)

δE0(kx) = −A ψ
(0)
e (0)ψh(0)− ψe(0)ψ

(0)
h (0)

∞∫
0

dy
(
ψ

(0)
e (y)ψe(y) + ψh(y)ψ

(0)
h (y)

) . (29)
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The difference between the boundary values ψe(0) and ψ
(0)
e (0) as well as ψh(0) and ψ

(0)
h (0) is that the exact wave

functions satisfy the boundary condition Eq. (26). The boundary leads to the admixture to Ψ(0) of the “short-range”
solution decaying into the bulk as exp(−q0y) and of the “reflected” solution decaying as exp(−q∆y). The corresponding
amplitudes, C0 and C∆, are found from the boundary condition

C0

(
−1
1

)
+ C∆

(
1

A(kx+q∆)
m−∆+E0

)
+

(
ψ

(0)
e (0)

ψ
(0)
h (0)

)
= 0, (30)

which yields

C0 =
−A(kx+q∆)
m−∆+E0

ψ
(0)
e (0) + ψ

(0)
h (0)

1 + A(kx+q∆)
m−∆+E0

, C∆ = −ψ
(0)
e (0) + ψ

(0)
h (0)

1 + A(kx+q∆)
m−∆+E0

. (31)

At distance y � l0 from the boundary the short-range solution vanishes. Thus, the differences ψh(0) − ψ(0)
h (0), and

ψe(0)− ψ(0)
e (0) are determined only by the reflected solution(

ψe(0)
ψh(0)

)
= C∆

(
1

A(kx+q∆)
m−∆+E0

)
+

(
ψ

(0)
e (0)

ψ
(0)
h (0)

)
. (32)

Substituting Eq. (32) into Eq. (29), we express the correction δE0(kx) via the components of the bare pseudospinor

δE0(kx) = −A
ψ

(0)
e (0)ψ

(0)
h (0)

(
1− kx+q∆

kx−q∆

)(
1+

A(kx−q∆)

m−∆+E0

1+
A(kx+q∆)

m−∆+E0

)
∞∫
−∞

dy
[
(ψ

(0)
e (y))2 + (ψ

(0)
h (y))2

] , (33)

where we took into account that ψ
(0)
h (0)/ψ

(0)
e (0) = A(kx − q∆)/(m−∆ + E0).

We see that the correction is proportional to the product of the bare amplitudes, and thus to exp(−2q∆D), which
is the probability to find an electron at the edge. The result Eq. (33) applies when this probability is small. For this

reason we replaced ψe(0), ψh(0) in the denominator by ψ
(0)
e (0), ψ

(0)
h (0) and extended the low limit of integration to

−∞. To analyze the dependence of the correction on the bare spectrum, E0(kx), it is instructive to recast the last
bracket into the form

m−∆ + E0 +A(kx − q∆)

m−∆ + E0 +A(kx + q∆)
=

[
m−∆ + E0 +Akx −

√
(m−∆)2 +A2k2

x − E2
0

]2
2(E0 +Akx)(m−∆ + E0)

. (34)

The above expression illustrates the topological origin
of the shift of a nonchiral mode, E0(kx). Indeed, the
correction Eq. (33) contains a pole corresponding to the
dispersion law of the chiral edge mode. This confirms
our earlier observation that presence of this mode com-
plicates the formation of nonchiral modes. The shift Eq.
(33) tends to reduce the binding energy. Another feature
that points at the topological origin of the correction is
that it depends on the sign of kx. This is in contrast
to non-perturbed behavior E0(kx) which is an even func-
tion of kx. As kx increases, the parameter q∆, which is
the characteristics of proximity of E0(kx) to the continu-
ous spectrum, becomes much smaller than kx. Then the
second bracket in Eq. (33) is close to 1, while the first
bracket falls off as 1/kx.

The result Eq. (33) strongly simplifies for small kx.
Then we have

δE0(kx) =−A 2ψ
(0)
e (0)ψ

(0)
h (0)

∞∫
−∞

dy
[
(ψ

(0)
e (y))2 + (ψ

(0)
h (y))2

]
×
[

(m−∆)−
√

(m−∆)2 − E2
0

E0

]
. (35)

It is the factor in the square brackets that carries informa-
tion on whether or not the boundary supports the chiral
mode. Indeed, if the level, E0, in the potential U(y) is
close to midgap, then this factor diverges for (m−∆) < 0,
while it turns to zero for (m −∆) > 0. This is because,
for (m−∆) < 0, there is a level E = 0 at the boundary
from which the level E0 is repelled. When this level is
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absent, the behavior of the shift δE0 ∝ E0 is natural. For
E0 → 0 there are equal probabilities to be shifted up or
down.

IV. CONCLUDING REMARKS

(i) Presence or absence of chiral modes in QAH effect
is decided by the relative sign of (m−∆) and parameter

B in the Hamiltonian ĥ(k), although the parameter B
itself does not enter into the dispersion law of the chi-
ral mode. The situation with nonchiral modes is analo-
gous, their dispersion relations do not contain B. Still,
these relations depend on whether (m −∆) and B have
the same sign or opposite signs. Moreover, similarly to
chiral mode, nonchiral modes will not exist without the

term Bk2 on the diagonal of the matrix ĥ. This is be-
cause, without the short-range solution ∝ exp(−q0y) in
Eq. (14), the hard-wall boundary conditions cannot be
satisfied.

(ii) Within the standard picture of the QAH
transition,17 it takes place as the gap closes and two chiral
modes at the opposite edges merge. Disorder would facil-
itate this merging and, thus, smear the transition. In this
regard, it is instructive to draw an analogy of QAH with
conventional quantum Hall transition. This transition is
broadened due to the disorder-assisted overlap between
the counter-propagating chiral edge modes. This mecha-
nism was appreciated already in the early papers on the
quantum Hall effect, see e.g. Refs. 28-31. Quantita-
tively, scattering by disorder-induced in-gap states effec-
tively enhances the localization radius of the edge modes
boosting their overlap. In the present paper we found
that extended confinement gives rise to in-gap nonchiral
modes. This suggests that chiral edge modes can “com-
municate” with each other using nonchiral modes, which
are less localized, as virtual intermediate states.28–31 This

is how the extended confinement may cause the smearing
of the QAH transition.

(iii) Our other finding is that, while nonchiral modes
are present for both signs of (m − ∆), their formation
is much less likely for (m − ∆) < 0. This can be in-
terpreted as follows. The pseudospinor corresponding to
nonchiral mode should be orthogonal to the chiral mode,
if it is present. Thus the formation of nonchiral mode is
impeded for “topological” sign of (m−∆).

(iv) In Ref. 32 it was assumed that the boundary of
the system is planar, and the generalized, compared to
hard wall, version of the boundary conditions was em-
ployed. It was demonstrated that variation of parame-
ters in the boundary condition can lead to disappearance
of the chiral mode form the gap, but nonchiral modes do
not emerge upon this variation.

(v) It is straightforward to generalize our results for
rectangular step to arbitrary profile of the step. Essen-
tially, the decay constant κ defined by Eq. (13) becomes
the function of coordinate. Qualitative conclusions do
not change.

(vi) The probable microscopic origin of the extended
confinement is a conventional band bending at the in-
terface. For the material Bi2Se3 this bending was stud-
ied experimentally in Ref. 34. According to this pa-
per, the extension of the bending region is about 200Å,
while bending magnitude is about 0.2eV. These quanti-
ties should be viewed as estimates for our d and U0.
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