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We determine the exact time-resolved photoemission spectroscopy for a nesting driven charge-
density-wave (described by the spinless Falicov-Kimball model within dynamical mean-field theory).
The pump-probe experiment involves two light pulses: the first is an ultrashort intense pump pulse
that excites the system into nonequilibrium, and the second is a lower amplitude higher frequency
probe pulse that photoexcites electrons. We examine three different cases: the strongly correlated
metal, the quantum-critical charge density wave and the critical Mott insulator. Our results show
that the quantum critical charge density wave has an ultra efficient relaxation channel that allows
electrons to be de-excited during the pump pulse, resulting in little net excitation. In contrast,
the metal and the Mott insulator show excitations that are closer to what one expects from these
systems. In addition, the pump field produces spectral band narrowing, peak sharpening, and a
spectral gap reduction, all of which rapidly return to their field free values after the pump is over.

PACS numbers: 71.10.Fd, 71.45.Lr, 79.60.-i, 78.47.J-

I. INTRODUCTION

Charge-density-wave (CDW) systems are interesting as
they exhibit an order parameter given by the modulation
of the charge density of electrons in real space. Often the
ordering pattern is commensurate with the lattice, which
means the translational invariance of the system is par-
tially broken. In other cases, the order is incommensurate
with the lattice, which proves to be much more difficult
to simulate. In electron-mediated CDW’s the ordering
disappears by the build-up of subgap states which can
open novel conducting channels. In particular, the CDW
has a quantum critical point which is a metal-to-insulator
critical point, being insulating at T = 0 and metallic for
nonzero T due to the emergence of subgap states at the
chemical potential precisely as T increases from zero. We
study how these subgap states affect the time-domain
pumping of the CDW, especially with regards to photoe-
mission experiments.

Recently, there has been significant interest in pump-
probe experiments on these materials including photoe-
mission spectroscopy (PES), core-level PES (XPS), and
electron diffraction. In particular, TbTe3,

1,2 TaS2,
3–7

and TiSe2,
6,8 were investigated with pump-probe angle-

resolved PES, which provides both time and angle res-
olution. One of the reasons for performing these ex-
periments was to try to resolve whether the CDW or-
der is mediated by the electrons, by the phonons, or
by the electron-phonon coupling12. Time-domain exper-
iments have the potential to separate out these effects on
short time scales—electron mediated interactions should
be fast, and phonon mediated ones slow on fs time scales.
In this sense, TiSe has been identified as an electron-
mediated CDW (and possibly an excitonic CDW6,8,13).
The nonequilibrium driving of these systems has also pro-
duced new “nonequilibrium phases” which do not occur

in equilibrium9–11.

In addition, the PES signal in the above experiments
showed that the CDW gap generically closes for a short
period of time, but at the same time the modulation of
the charge density remains nonzero. The above experi-
ments also displayed oscillations of the PES signal at long
times after the pump pulse is gone, which oscillate at
the frequency of the phonon responsible for the ordering;
we do not model such behavior in the all-electron model
studied here. An initial theoretical study was conducted
on the simplest noninteracting CDW system14. The PES
response shows that the CDW gap closes (while the order
parameter remains nonzero) when the pump is on and it
restores after the pump pulse is turned off.

In order to address how a CDW behaves after being
pumped, we calculate the PES response for the CDW or-
dered phase of the Falicov-Kimball model.15 This model
possesses both a metal-insulator phase transition and a
transition from uniform to commensurate or incommen-
surate CDW ordered phases in equilibrium.16,17 It has an
exact solution in nonequilibrium18,19 within the dynam-
ical mean-field theory (DMFT). The equilibrium density
of states (DOS) displays nontrivial behavior in the or-
dered phase: the width of the CDW gap in the DOS
(which occurs at zero temperature) does not change when
the temperature increases, in opposition to what happens
in BCS theory20, where the gap in the DOS continuously
closes as Tc is approached from below. Instead, it initially
fills the gap region with subgap states which increase un-
til the gap is fully filled at the critical temperature.21–23

Another feature of this model is that there is a critical
value of the interaction where the subgap states start to
form at the chemical potential just as T increases above
zero. This quantum critical state has an instantaneous
transition from an insulator at T = 0 to a metal for any
finite temperature. Hence, the Falicov-Kimball model
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shows additional correlation effects and our work goes
beyond the previous calculations of the PES signal on
the simplest noninteracting CDW model.14 We expect
our results to be useful in experiments on real CDW ma-
terials such as those already mentioned above.
The remainder of the paper is organized as follows:

In Sec. II we present the theory for our calculations. It
consists of two subsections: In Subsec. II A, we define
the time-dependent Hamiltonian of system in the CDW
ordered state. In Subsec. II B, we describe the theory
for the photoemission response function. In Sec. III, we
present our results for PES function in the CDW ordered
phase and discussion. We conclude in Sec. IV.

II. FORMALISM

We develop the nonequilibrium DMFT to solve for the
two-time contour-orderedGreen’s function defined on the
Kadanoff-Baym-Keldysh time contour. We generalize the
theory to encompass CDW ordered phases of the Falicov-
Kimball model which requires an additional 2× 2 matrix
structure. Finally, we derive the formulas for the time-
resolved PES response function.

A. CDW ordered state Hamiltonian

The Falicov-Kimball model involves two kinds of par-
ticles: heavy electrons which are localized on the lattice
sites, and light itinerant electrons15 which are allowed to
hop between nearest-neighbor sites. The model possesses
a transition into a commensurate bipartite CDW ordered
phase16,17 at low temperature. At half-filling, this oc-
curs for any value of the Coulomb interaction and suf-
ficiently low T . Employing the Kadanoff-Baym-Keldysh
approach24,25, the nonequilibrium DMFT formalism was
developed previously for the uniform phase18,19,26. Re-
cently, we generalized it for the case of the bipartite CDW
ordered phase27,28. Here, we only summarize the main
steps of the theory to establish our notation.
The ordering arises from the nesting instability of the

Fermi surface with a modulation wavevector given by
Q = (π, π, . . . ). We employ two sublattices “A” and “B”
which have different electron density (in a checkerboard
pattern). This implies that the Brillouin zone is cut in
half and is called the reduced Brillouin zone (rBZ). To de-
fine each sublattice, we apply the modulation wavevector
Q as follows:

eiQ·Ri =

{
1, Ri ∈ A,

−1, Ri ∈ B,
(1)

where Ri is the position vector for the ith lattice site.
We express the Hamiltonian in terms of fermionic an-

nihilation and creation operators with respect to this un-
derlying two-sublattice system. We can do this either

in real space or in momentum space. In the real space
picture, we simply add an extra index for the sublattice:

ci → ci,α, α = A,B. (2)

Performing a Fourier transform to momentum space, but
with the summation over the lattice restricted to be
either over the A sublattice or the B sublattice only,
produces the corresponding momentum-dependent oper-

ators ck,α. In the momentum space picture, we introduce
two new operators which define the fermionic operators
for the k and k+Q subspaces as follows:

c̃1k = ck and c̃2k = ck+Q, (3)

where the momentum k is restricted to the rBZ and k+Q

is restricted to the complement of the rBZ. The same no-
tation is employed for the creation operators. Applying a
Fourier transformation, we find that the relation between
the real space operators in Eq. (2) and the momentum
space operators in Eq. (3) can be written in matrix form:

[
c̃1k
c̃2k

]
= Û

[
ckA
ckB

]
, where Û =

∥∥∥∥∥∥∥

1√
2

1√
2

1√
2

− 1√
2

∥∥∥∥∥∥∥
. (4)

The matrix Û is unitary and the
√
2 factors are cho-

sen to satisfy the standard commutation relations for
the fermionic annihilation and creation operators. The
connection between any quantity that is constructed
from two operators in the real space representation Ô(k)
(which is a 2× 2 matrix in the ordered state), and in the

momentum space representation
ˆ̃O(k) follows from the

unitary transformation via

ˆ̃O(k) = ÛÔ(k)Û−1. (5)

Employing this notation, the time-dependent Hamilto-
nian of the ordered system is written as

H(t) =
∑

iα

Hα
i −

∑

ijαβ

tαβij (t)c†iαcjβ , (6)

where the local term describes the Coulomb interaction
between the localized and itinerant electrons on the ith
site of the αth sublattice and the chemical potential (site
energy):

Hα
i = Unα

icn
α
if − µnα

ic + Eα
f n

α
if . (7)

The number operators of the itinerant and localized elec-

trons are given by nα
ic = c†iαciα and nα

if = f †
iαfiα,

respectively. The nonlocal kinetic-energy term of the
Hamiltonian describes hopping of itinerant electrons be-
tween the nearest-neighbor sites (that belong to different
sublattices—we will work on an infinite-dimensional hy-
percubic lattice). We work in units where ~ = c = e =
a = 1.
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In a pump-probe experiment, the material is first irra-
diated with an intense ultrafast pump pulse to excite the
electronic subsystem. Later, a higher frequency, lower
amplitude probe pulse is used to measure the temporal
evolution of the nonquilibrium electrons. To model this
scenario, we choose the pump pulse to be an electric field
E(t) with a Gaussian envelope of the form

E(t) = E0 cos[ωp(t− t0)] exp [−(t− t0)
2/σ2

p], (8)

where E0 = |E0| is the magnitude of the field at time
t = t0 (the maximum of the pump pulse). Here, we as-
sume that the electric field is spatially uniform and that
it is directed along the main diagonal in the infinite di-
mensional space (1,1,. . . ,1). We also ignore all magnetic
field and relativistic effects. This allows us to describe
the electric field via a spatially uniform vector potential
in the Hamiltonian gauge:

E(t) = − d

dt
A(t). (9)

We exploit a Peierls’ substitution to the kinetic-energy
term of the Hamiltonian to describe the interaction be-
tween itinerant electrons and the external electric field
in Eq. (8). Hence, the hopping matrix depends on time
explicitly as follows

tαβij (t) = tαβij exp

(
−i

Rj,β∫

Ri,α

A(t) · dr
)
, (10)

where tαβij is the (constant) hopping matrix in the ab-
sence of an external electric field. Performing a Fourier
transformation to momentum space, we rewrite the time-
dependent kinetic-energy term in the form

Ĥkin(t) =
∑

k

[
c†kA c†kB

]
ǫ̂(k−A(t))

[
ckA
ckB

]

=
∑

k

[
c̃†1k c̃†2k

]
ˆ̃ǫ(k−A(t))

[
c̃1k
c̃2k

]
. (11)

Here, the extended band energy ǫ̂(k − A(t))26 is off-
diagonal in the real space two-sublattice representation

ǫ̂(k−A(t)) (12)

=

∥∥∥∥
0 ǫ(k) cos(A(t))+ǭ(k) sin(A(t))

ǫ(k) cos(A(t))+ǭ(k) sin(A(t)) 0

∥∥∥∥ ,

where ǫ(k) = − limd→∞ t∗
∑d

r=1 cos kr/
√
d and ǭ(k) =

− limd→∞ t∗
∑d

r=1 sin kr/
√
d (we apply the same scaling

of the hopping term as in equilibrium DMFT). The ex-
tended band energy in Eq. (12) is diagonal in the mo-
mentum space representation. By performing the unitary
transformation in Eq. (4), we obtain for ˆ̃ǫ(k−A(t))

ˆ̃ǫ(k−A(t)) = Û ǫ̂(k−A(t))Û−1 (13)

=

∥∥∥∥
ǫ(k) cos(A(t))+ǭ(k) sin(A(t)) 0

0 −ǫ(k) cos(A(t))−ǭ(k) sin(A(t))

∥∥∥∥ .

The CDW ordered state is characterized by two or-
der parameters. The heavy electron order parameter
∆nf = (nA

f − nB
f )/2(n

A
f + nB

f ) is the difference of the
heavy electron occupation on the A and B sublattices.
It reaches its maximum value of 1/2 at T = 0 and be-
comes equal to 0 at T = Tc. Since the heavy electrons do
not interact with the external electric field, this order pa-
rameter does not change in time and remains fixed at its
equilibrium value. While this may seem like an odd be-
havior, it arises because the heavy electrons are localized,
and hence they remain fixed, even when a field is applied
to the system. This behavior also occurs in the simplified
model where the CDW is determined by a bandstructure
with a fixed checkerboard pattern to the site potential.
In CDWs that arise due to a phonon distortion, the or-
der parameter associated with that distortion can relax
in time, but the behavior described above is what one
would expect to see for short times.

The starting point for our calculations is an equilib-
rium state at a given temperature. To solve for the order
parameter at this temperature, we avoid critical slowing
down of the iterative DMFT process by working with a
fixed order parameter, which determines the heavy elec-
tron filling on each sublattice29. Then the heavy electron
site energies Eα

f are calculated from the DMFT solution.
The order parameter is adjusted until these two ener-
gies are equal, signifying the thermodynamic equilibrium
state. At this point, we can determine the order param-
eter of the conduction electrons (which never reaches its
maximal value of 1/2 due to Pauli blocking). It is given
by the difference of the itinerant electron filling on the
two sublattices ∆nc(t) = [nB

c (t)−nA
c (t)]/2[n

A
c (t)+nB

c (t)].
Since itinerant electrons interact with the external elec-
tric field, this order parameter changes in time when the
field is applied. Indeed, it is even distinct from the heavy
electron order parameter when the system is in equilib-
rium and it can change sign when the external pulse ex-
cites the system14.

B. Time-resolved PES response function

We exploit the theory for time-resolved, pump-probe,
PES developed recently for the normal phase30. This
theory also holds in the CDW ordered phase, but in this
case we have to generalize it for the two-sublattice sys-
tem. The PES response function is computed from the
lesser Green’s function, which can be extracted from the
contour-ordered Green’s function. Since the Hamiltonian
of the system depends on time explicitly, we have to apply
the Kadanoff-Baym-Keldysh formalism to solve for the
contour-ordered Green’s function that depends on two
times. In this case, the contour-ordered Green’s function
is defined on the Kadanoff-Baym-Keldysh time contour
in Fig. 1 as follows

Gc
k(t, t

′) = −i〈Tcck(t)c
†
k(t

′)〉, (14)
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FIG. 1. Kadanoff-Baym-Keldysh time contour, which runs
from a minimum time to a maximum time along the real time
axis, then backwards to the minimum time, and then parallel
to the imaginary time axis for a length given by the inverse
of the initial equilibrium temperature.

where the average 〈O(t)〉 = Tr exp[−βH(t →
−∞)]O(t)/Z is calculated in equilibrium, before the sys-
tem is hit by the electric pulse, and we assume the
Hamiltonian becomes time independent at early times.
The partition function is Z = Tr exp[−βH(t → −∞)],
and β = 1/T is the inverse of the initial equilibrium
temperature. The continuous matrix operators must be
converted to discrete matrices. This is done by em-
ploying a finite discretization to the contour in Fig. 1
with a fixed spacing ∆t = (tmax − tmin)/N on its real
branch and ∆τ = β/n on its imaginary branch, so the
Green’s function in Eq.(14) is a (2N +n)× (2N+n) ma-
trix19. Further, for the set of {∆t1 > ∆t2 > ∆t3 > ...}
({N1 < N2 < N3 < ...}), we extrapolate the results with
a quadratic Lagrange interpolation formula to the zero
spacing limit ∆t → 0 (N → ∞).

The lattice Green’s function is a 2× 2 block matrix in
the ordered phase

Ĝc
ǫ,ǭ(t, t

′) =

∥∥∥∥∥∥

Gc,AA
ǫ,ǭ (t, t′) Gc,AB

ǫ,ǭ (t, t′)

Gc,BA
ǫ,ǭ (t, t′) Gc,BB

ǫ,ǭ (t, t′)

∥∥∥∥∥∥
, (15)

where all the dependence on k is summarized by the
two band energies [when the field is in the diagonal
direction as in Eq. (13)]; we adopt the following no-
tation for the momentum-dependent Green’s function:
Gc

k(t, t
′) = Gc

ǫ,ǭ(t, t
′).

We employ the standard iterative algorithm of
nonequilibrium DMFT for the Falicov-Kimball model to
determine the Green’s functions28. To verify our numeri-
cal results, we check the spectral moment sum rules which
continue to hold in the ordered phase and in nonequi-
librium. Here we work with the local Green’s functions
which involve the two-dimensional integration of Eq. (15)
over ǫ and ǭ weighted by the joint density of states on the
infinite-dimensional hypercubic latice; the local Green’s
functions are the diagonal elements of the 2 × 2 matrix
with the retarded Green’s function extracted from the
contour-ordered Green’s function. The moments of the

local retarded Green’s function are defined as follows

µR,a
n (ta) = − 1

π

∞∫

−∞

dωIm

∞∫

−∞

dtre
iωtr in

∂n

∂tnr
GR,α(ta, tr),

(16)

where α = (A,B) and we use the Wigner coordinates
for the average ta = (t + t′)/2 and relative tr = t − t′

times. The local density of states on the α sublattice
Aα(ta, ω) = −ImGR,α(ta, ω)/π is the Fourier transform
of the retarded Green’s function with respect to the rel-
ative time tr. We calculate the zeroth, first and second
moments which satisfy31

µR,α
0 (T ) = 1, (17)

µR,α
1 (T ) = −µ+ Unα

f , (18)

µR,α
2 (T ) =

1

2
+ µ2 − 2Uµnα

f + U2nα
f , (19)

with nA
f = 1/2 + ∆nf and nB

f = 1/2 −∆nf . When we
run calculations, we find that when the maximal pulse
amplitude is large (E0 = 30), we can verify that the ex-
trapolated Green’s functions have accurate spectral mo-
ments. On the other hand, when the field amplitude is
small (E0 = 1), then the accuracy is too poor to have
trustworthy results unless the time steps are made pro-
hibitively small32.
In the case of the CDW ordered phase, we calculate

the time-resolved PES response function Pα(ω, t0
′) for

each sublattice. It is double-time Fourier transform of
the lesser Green’s function weighted by the probe pulse
envelope function s(t) as follows30

Pα(ω, t0
′) = −i

tmax∫

tmin

dt

tmax∫

tmin

dt′s(t)s(t′)e−iω(t−t′)G<
α (t, t

′),

(20)
where α = A,B. We assume the envelope function is a
Gaussian of the form

s(t) =
1

σb
√
π
e−(t−t0

′)2/σ2

b , (21)

where t0
′ is the time when the probe pulse has its maxi-

mum and it defines the time delay relative to the pump
pulse maximum at t0 in Eq. (8) and σb defines the ef-
fective width of the probe pulse. The width of the pulse
determines the energy or time resolution of the PES re-
sponse function: the broader width of the pulse, the bet-
ter the energy resolution and the worse the time resolu-
tion, and vice versa if it is narrower32. Because we work
with the total PES and not the angle-resolved PES in
this paper, we do not need to worry about gauge invari-
ance. The PES response function is always manifestly
gauge invariant.
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III. RESULTS

We present our results for the time-resolved pump-
probe PES response function in the CDW ordered
phase of the Falicov-Kimball model. Before discussing

FIG. 2. (Color online.) Equilibrium phase diagram of the
Falicov-Kimball model as functions of temperature and the
Coulomb interaction. There are five different phases: dis-
ordered metal (stongly correlated metal) with no gap in the
DOS (red); Mott insulator with a Mott gap in the DOS (blue);
weakly correlated CDW insulator with a CDW gap (green);
strongly correlated CDW insulator with CDW gap in the DOS
(purple); correlated CDW metal with a CDW gap in the DOS
but nonzero DOS at the chemical potential level (gold).

the nonequilibrium results, we present the equilibrium
phase diagram of the Falicov-Kimball model in the
temperature-Coulomb interaction plane in Fig. 2. In the
normal state, we identify a “disordered metal” (or “corre-
lated metal”) phase with no gap in the equilibrium DOS
of the Falicov-Kimball model (red), and a “Mott insula-
tor” phase with a Mott gap in the DOS (blue, critical
value of the Coulomb interaction when the Mott gap ap-
pears is equal to U =

√
2 ≈ 1.4). In the ordered state,

there is a CDW gap in the DOS defined by sharp features
at ω ≈ ±U/2. We identify a “weakly correlated CDW in-
sulator” phase for small U ’s (green, which is continuously
connected to the Fermi gas), and a “strongly correlated
CDW insulator” phase for large U ’s (purple, which is con-
nected to the atomic limit). For intermediate values of
U , a “correlated CDW metal” phase is characterized by
nonzero DOS (within the aforementioned CDW spectral
gap features at ω ≈ ±U/2) around the Fermi level for
nonzero temperatures. At zero temperature, this phase
collapses to a single point at U ≈ 0.86 (called the “quan-
tum critical point”), and the DOS is nonzero also only at
the Fermi level. In this work, we examine three different
Coulomb interactions that define three different phases
in the CDW ordered state.
In Figs. 3-5 we show the equilibrium DOS’s for three

FIG. 3. (Color online.) Equilibrium DOS for U = 0.5 (cor-
related metal) at different temperatures: T = 0.0178 corre-
sponds to ∆nf = 0.49 (blue); T = 0.0278 corresponds to
∆nf = 0.4 (green); T = 0.0326 corresponds to ∆nf = 0.2
(red); T = 0.04 corresponds to ∆nf = 0 (black, dashed). In-
sets show the temperature dependence of the corresponding
order parameters of the localized (left) and itinerant (right)
electrons. Note how the subgap DOS rapidly forms and fills
in the gap region, while the signature of the spectral gap in
the DOS remains fixed at U for all T in the ordered phase.

different Coulomb interactions U . The temperature de-
pendence of the equilibrium DOS is similar for all U
and it behaves as follows: at T = 0, the equilibrium
DOS shows a full CDW spectral gap whose width is pre-
cisely equal to the interaction U . In this case, the sys-
tem is completely ordered: one sublattice is occupied by
the f -electrons and the other sublattice is empty. This
case corresponds precisely to the simplified CDW studied
earlier33. Increasing the temperature reduces the order-
ing and subgap states start to appear within the gap
region22. These subgap states increase in magnitude,
while the singularity at the gap edge is reduced (but
maintains the same width U) until the CDW gap be-
comes completely closed at the critical temperature, and
the order parameters vanish. Note, however, that the fill-
ing in of the subgap DOS always approaches that of the
normal state, so if U is large enough to be in the Mott
insulating phase, no subgap states form within the Mott
gap region (which is always smaller than U). We plot the
order parameters ∆nf and ∆nc in the insets of Figs. 3-5.

In nonequilibrium, when the system is pumped by the
external electric field, the transient DOS shows signifi-
cant changes in the gap region even for systems starting
from zero temperature14,33. At the same time, the itin-
erant electron order parameter has significant time de-
pendence and often remains nonzero at the time when
the gap closes in the DOS. Here we illustrate the PES
responses of the system at different temperatures and for
different interactions U .

In Fig. 6, we plot the PES response function at dif-
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FIG. 4. (Color online.) Equilibrium DOS for U = 0.86 (ma-
terial at the CDW quantum critical point) at different tem-
peratures: T = 0.03 corresponds to ∆nf = 0.495 (blue) ;
T = 0.047 corresponds to ∆nf = 0.4 (green); T = 0.053
corresponds to ∆nf = 0.2 (red); T = 0.06 corresponds to
∆nf = 0 (black dashed). Insets show the temperature depen-
dence of the order parameters of localized (left) and itinerant
(right) electrons. Note how the subgap DOS rapidly forms at
the chemical potential producing a metal and then fills in the
gap region, while the signature of the gap in the DOS remains
fixed at U for all T in the ordered phase.

ferent probe pulse times t0
′ in Eq. (21) for an interac-

tion strength U = 0.5 and for different temperatures. In
the normal state, this case corresponds to a correlated
metal and the equilibrium DOS for different tempera-
tures is shown in Fig. 3. At the top of Fig. 6, we show
the pump pulse which is the electric field from Eq. (9)
with E0 = 30. The width of a probe pulse is equal to
σb = 7 (the same value will be used for all PES results
presented here). We check the accuracy of the results
with the sum rules in Eq. (16). In our calculations, we
discretize a real time interval t ∈ [−20, 20] with three val-
ues of ∆t = 0.066, 0.05, and 0.033 and then we quadrat-
ically extrapolate the result to the ∆t = 0 case. We have
found that in this case the results accurately satisfy the
sum rules only for large amplitudes of the field (E0 & 20).
To obtain accurate results for smaller fields rapidly be-
comes problematic due to the small discretization size
required and the increase in the size of the matrices used
in the calculation.
Figure 6(a) corresponds to the lowest temperature T =

0.0178, when the order parameter is equal to ∆nf = 0.49.
In Fig. 7, we show an alternative view of this case cor-
responding to vertical cuts through the data. We plot
the PES for times t0

′ starting from t0
′ = −14 and end-

ing at t0
′ = 14 (even though the range in time for the

simulation lies in the interval [−20, 20]). This is dictated
by a loss in conservation of the total spectral weight of
the PES signal at extreme times (caused by a shrinking
of the available range of relative times).
Inset in Fig. 7, we plot the integral of the PES de-

FIG. 5. (Color online.) Equilibrium DOS for U = 1.4 (crit-
ical point for the Mott transition) at different temperatures:
T = 0.033 corresponds to ∆nf = 0.495 (blue); T = 0.0596
corresponds to ∆nf = 0.4 (green); T = 0.07 corresponds to
∆nf = 0.2 (red); T = 0.08 corresponds to ∆nf = 0 (black
dashed). Insets show the temperature dependence of the or-
der parameters of the localized (left) and itinerant (right)
electrons. Note how the subgap DOS rapidly forms but does
not fill the entire gap region due to Mott physics suppressing
the DOS at the chemical potential; the signature of the gap
in the DOS still remains fixed at U for all T in the ordered
phase.

pending on the delay time t0
′, where we depict the region

that satisfies the sum rule in black. For the times before
t = −10, there is PES signal only from electrons in the
occupied lower band. Then, the applied external field
excites electrons to the upper band and also closes the
CDW gap. Nevertheless, there are still two clear peaks
at −U/2 and at U/2 and one can see that the gap reforms
after the pump pulse (approx. at t = 10). During the
pulse, there is a significant dressing of the bands which
causes the overall effective bandwidth to shrink (and cor-
responding peaks to grow and sharpen). This also results
in a small reduction of the spectral gap in the PES signal,
which can be seen by the inward curving of the leftmost
peak, which then curves back as the pulse ends. One can
clearly see the band narrowing and spectral gap reduc-
tion in the false color plots.
At higher temperatures [Figs. 6(b)-(d)] the scenario

remains similar. A slight difference is seen in Figs. 6(c)-
(d), which corresponds to the temperatures T = 0.0326
(with the order parameter ∆nf = 0.2), and T = 0.04
(with the order parameter ∆nf = 0), respectively. In
these cases, we see that gap completely disappears after
the pump pulse, since there is no gap in either equilibrium
DOS (see Fig. 3). Also, there are no apparent shifts of
the peaks of the PES signal for these cases, although the
band narrowing and sharpening of peaks can be easily
seen in the false-color plots.
Figure 7 also shows the conduction electron order pa-

rameter in the lower right inset. One can see that it
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FIG. 6. (Color online.) False color plot of the PES response
function for U = 0.5 at different temperatures with a logarith-
mic color scale: (a) T = 0.0178 corresponds to ∆nf = 0.49;
(b) T = 0.0278 corresponds to ∆nf = 0.4; (c) T = 0.0326 cor-
responds to ∆nf = 0.2; (d) T = 0.04 corresponds to ∆nf = 0.
The pump field with E0 = 30 is plotted above, and the probe
pulse width is σb = 7. Note how the pump pulse does excite
a substantial number of electrons to the upper band, but it
also de-excites electrons (similar to what happens in the sim-
plified CDW model) so that the net excitation at the end of
the pulse is small.

starts off reasonably flat, then oscillates and is reduced,
ending nearly at zero. The accuracy of these calculations
is on the order of a few percent. Even though the order
parameter is sharply reduced, the spectral gap feature
remains, primarily because the heavy electron order pa-
rameter is unchanged by the pump. One can also notice
that the conduction electron order parameter does not
vanish, nevertheless the CDW gap is closed. This fea-
ture was also seen in the case of a noninteracting CDW
system at zero temperature14. It remains for the Falicov-
Kimball model at nonzero temperatures as well.

In the supplemental material34, movies that show ver-
tical cuts through the false color images, or which ani-
mate the waterfall images, are available. These movies

FIG. 7. (Color online.) PES response function for U = 0.5
at temperature T = 0.0178 (∆nf = 0.49); this corresponds
to vertical cuts through the false color image in the previous
figure. Different curves correspond to different time delays
t0

′ for the probe pulse and have been offset in the vertical
for clarity. Thin red lines are a guide to the eye. The upper
inset shows results for the total spectral weight of the PES
response for different t0

′. The loss of weight at the edges sig-
nifies that there is not enough information in the calculated
Green’s function to properly construct the PES. Data from
those red points are not included in the main figure. The
lower inset shows the time evolution of the conduction elec-
tron order parameter, which goes from high order to low order
after the pulse has ended.

clearly show the sharpening of the peaks, the band nar-
rowing, and the fill in of the gap.

In Fig. 8, we plot the results of the PES response for
U = 0.86, which corresponds to the quantum-critical
point. In this case, the equilibrium DOS at T = 0 shows a
gap of size U . Once T is made nonzero, there is DOS from
subgap states that appears starting at the Fermi energy
(see Fig. 4). In Fig. 8 (a) and Fig. 9, we present the PES
response function for different times t0

′ for temperature
T = 0.03 when the order parameter is ∆nf = 0.495. In
equilibrium, the PES response originates from the lower
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FIG. 8. (Color online.) False color plot of the PES response
function for U = 0.86 (quantum critical material) at differ-
ent temperatures on a logarithmic color scale: (a) T = 0.03
corresponds to ∆nf = 0.495; (b) T = 0.047 corresponds to
∆nf = 0.4; (c) T = 0.053 corresponds to ∆nf = 0.2; (d)
T = 0.06 corresponds to ∆nf = 0. The pump field with
E0 = 30 is plotted above, and the probe pulse width is σb = 7.

band electrons only. At later times, the pump pulse ex-
cites electrons from the lower band into the upper band,
providing additional signal. We see that the gap disap-
pears at times from t = −8 to t = −4 then it reforms,
then again disappears in the range from t = 4 to t = 8,
and then it reforms again. In contrast to the previous
case of U = 0.5, all the electrons relax into a lower band
after the pump pulse: there is not any significant PES
response from upper band electrons after time t = 10.
This fast relaxation is surprisingly different from the re-
sults of the PES response at zero temperature (identical
to those of the simplified model).14 In the case of simpli-
fied model at zero temperature, excited electrons remain
in the upper band for long times after the pump pulse be-
cause they need a field to de-excite them.14 In the current
case, the external electric field excites itinerant electrons,
but as they move to the upper band, they also can be de-
excited. While the de-excitation must always be less than

FIG. 9. (Color online.) PES response function for U = 0.86
at temperature T = 0.03 (∆nf = 0.495). Different curves
correspond to different times t0

′ of the probe pulse. Thin red
lines are a guide to the eye. The upper inset shows results of
integration of the PES response for different t0

′. The lower in-
set shows the time evolution of the conduction electron order
parameter, which transiently is reduced, but then is restored
as the pulse ends.

the excitation, it is this driving of electrons back down to
the lower band that dominates the behavior here, leaving
the system with few excitations after the pump pulse is
gone. In addition, the same spectral bandwidth narrow-
ing, peak sharpening, and spectral gap reduction seen
previously continue to occur transiently when the field is
on, and disappear afterwards.

As the temperature is increased the system becomes
more and more metallic, which allows for more conven-
tional excitation (see Figs. 8 (c)-(d)). Electrons relax into
the states within a “gap” region since, the equilibrium
DOS shows no gap at these temperatures (see Fig. 4)
and this process of relaxation is slower. The excitations
are longer lived as the de-excitation process appears to be
suppressed by these thermal fluctuations. Also, the re-
duction of the spectral CDW gap is reduced, but the band
narrowing and sharpening only become slightly weaker
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with temperature [Figs. 8 (c)-(d)].

FIG. 10. (Color online.) False color image of the PES re-
sponse function for U = 1.4 (critical Mott insulator) at differ-
ent temperatures on a logarithmic color scale: (a) T = 0.033
corresponds to ∆nf = 0.495; (b) T = 0.0596 corresponds
to ∆nf = 0.4; (c) T = 0.07 corresponds to ∆nf = 0.2; (d)
T = 0.08 corresponds to ∆nf = 0. The pump field with
E0 = 30 is plotted above, and the probe pulse width is σb = 7.

Figure 9 also shows the conduction electron order pa-
rameter, which starts off reasonably flat, then oscillates
and then is restored nearly to its starting value. This
suprising evolution is similar to what is happening with
the PES, which ends looking very similar to the way it
started with limited excitation. It once again shows how
this critical CDW state is efficient in de-exciting electrons
from the upper to the lower band due to the metallic den-
sity of states it has at the chemical potential.
In the supplemental material34, movies are available

that show the sharpening of the peaks, the band narrow-
ing, and the fill in of the gap.
Finally, we present the results of the PES response

function for U = 1.4 (≈
√
2) in Fig. 10. This is the point

where the system undergoes the Mott metal-insulator
transition in the normal state and it corresponds to a
strongly correlated CDW. The equilibrium DOS shows

FIG. 11. (Color online.) PES response function for U = 1.4
at temperature T = 0.033 (∆nf = 0.495). Different curves
correspond to different times t0

′ of the probe pulse. Thin
red lines are a guide to the eye. The upper inset shows the
results of the integration of the PES response for different t0

′.
The lower inset shows the time evolution of the conduction
electron order parameter, which goes from high order to low
order after the pulse has ended.

the CDW gap at zero temperature and the critical Mott
DOS (where the Mott gap is just starting to form) in
the uniform phase (at temperatures higher than critical
T > Tc). In Fig. 5, we show the equilibrium DOS for dif-
ferent temperatures for U = 1.4. Fig. 10(a) and Fig. 11
correspond to the lowest temperature T = 0.033 with
∆nf = 0.495. When the pump pulse hits the system,
we see the PES response from the electrons in an up-
per band starting at time t = −10. In contrast to the
cases discussed above, here a gap remains active during
the entire time interval (there are always a small amount
of subgap states that preclude a rigorous gap, but they
remain small throughout the evolution). At longer times
the system does tend toward a steady state, as is also
seen in case of simplified model at zero frequency14. At
the same time, we see the same band narrowing, peak
sharpening, and spectral gap reduction as before.
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Figures 10(c)-(d) correspond to higher temperatures
T = 0.7 (∆nf = 0.2) and T = 0.8 (∆nf = 0), respec-
tively. In these cases, the gap rapidly disappears at times
from t = −11 to t = −9, then reforms for the period from
t = −8 to t = 8 (during the pump pulse), and then disap-
pears again at longer times. This is explained by the fact
that there are significant subgap states within the gap
(at these temperatures) which accelerates the process of
de-excitation.
Figure 11 also shows the order parameter, which acts

more like the generic case. It starts off flat, oscillates
and is reduced, nearly to zero. Even so, the spectral gap
features remain those of the CDW and not of the Mott
phase, because of the heavy electron order. This occurs
even when nearly half of the electrons are excited into
the upper band, which is the maximum one expects for
a system approaching infinite temperature. Surprisingly,
this Mott phase has more total excitation than the metal
or the quantum critical CDW, both which have smaller
spectral gaps.
Once again, in the supplemental material34, movies are

available that show the sharpening of the peaks, the band
narrowing, and the fill in of the gap.
Since the PES spectra is convolved with the probe en-

velope function, we also show how such a convolution
affects the equilibrium DOS. It removes a number of the
sharp structures in the DOS, and helps explain why those
sharp structures are not seen in the theoretical PES re-
sponse functions that we plotted earlier. These plots
also show what the PES would be in the quasiequilib-
rium approximation30 (if one also multiplied by the cor-
responding Fermi-Dirac distribution function). Namely,
we calculate the convolved DOS of the equilibrium sys-
tem with the pump-probe pulse as follows

P (ω) = −i

∫
dνGr(ω − ν)|s̃(ν)|2/2π, (22)

where s̃(ν) is the Fourier transformation of s(t) in
Eq. (21), and Gr(ω) is total (sum of the A and B sub-
lattices) equilibrium retarded Green’s function.
In Fig. 12, we compare the convolution from Eq. (22)

to the equilibrium DOS for U = 0.5. The panels from
(a) to (d) correspond to different temperatures starting
from the lowest T = 0.0178 to the highest T = 0.04,
respectively. At high temperatures the convolution and
the DOS are almost the same in Figs. 12(c)-(d), implying
that the form of the probe pulse does not play a signifi-
cant role here. But, at low temperatures in Figs. 12(a)-
(b) the convolution does not show a complete gap and
does not distinguish separate subgap states. As was men-
tioned above, one may improve the energy resolution by
increasing the width of the pulse, but this decreases time
resolution32.
Similarly, in Fig. 13, we present the results for the

convolution for quantum critical case of U = 0.86. In this
case, the most interesting result is that we see a gap at the
lowest temperature at zero frequency [Fig. 13(a)] while
the equilibrium DOS shows states at zero frequency. This

FIG. 12. (Color online.) DOS (black) and convolved DOS
(red) for U = 0.5 at different temperatures: (a) T = 0.0178
corresponds to ∆nf = 0.49; (b) T = 0.0278 corresponds to
∆nf = 0.4; (c) T = 0.0326 corresponds to ∆nf = 0.2; (d)
T = 0.04 corresponds to ∆nf = 0.

explains how a “gap” in the PES response persists for
whole time interval in Fig. 8(a) and Fig. 9.
Figure 14 shows the results for the convolution for U =

1.4. Again, we find that there is a complete gap in the
convolution at the lowest temperature with no signs of
subgap states. At the highest temperature [in Fig. 14(d)],
the convolution is similar to the equilibrium DOS, with
a clear two-hump structure.

IV. CONCLUSIONS

In this work, we presented our results on the time-
resolved pump-probe PES response function in the CDW
ordered phase of the Falicov-Kimball model. We de-
scribed the general formalism to solve for the two-time
Green’s function defined on the Kadanoff-Baym-Keldysh
contour within the nonequilibrium DMFT in the CDW
ordered phase. These results are numerically exact, but
we were forced to restrict ourselves to the time interval
t ∈ [−20, 20], and to the case of a large electric field am-
plitude for the pump pulse. Similar calculations for small
fields require significantly more computer time. We ex-
amined three cases with different Coulomb interactions,
which correspond to the correlated metal, the quantum-
critical point for the CDW, and the critical point for the
Mott insulator in normal state. Further, we examined
different temperatures, starting from close to zero tem-
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FIG. 13. (Color online.) DOS (black) versus convolved DOS
(red) for U = 0.86 at different temperatures: (a) T = 0.03
corresponds to ∆nf = 0.495; (b) T = 0.047 corresponds to
∆nf = 0.4; (c) T = 0.053 corresponds to ∆nf = 0.2; (d)
T = 0.06 corresponds to ∆nf = 0.

perature (when the system is fully ordered), to a temper-
ature above Tc, when the system is in the normal state.
We have also analyzed the role of the form of the probe
pulse by comparing the convolved equilibrium DOS with
the equilibrium DOS.

The main counter-intuitive result that we found is that
including many-body correlations into the CDW greatly
enhances the relaxation and de-excitation of the system.
In particular, the quantum critical case is quite diffi-
cult to excite by the pump pulse. The most likely ex-
planation for why this occurs is that the excitation and
de-excitation processes are nearly balanced in this case,
making it hard to generate net electron transfer from the
lower to the upper band. Surprisingly, it is much easier

to excite a Mott insulator than it is the quantum-critical

CDW or a weakly coupled CDW. We do not have a full
understanding as to why and how the quantum correla-
tions conspire to remove the excitations in this system;
this occurs in the absence of a thermal bath that the
system is coupled to.

We also note that the conduction electron order pa-
rameter does not vanish while the CDW gap is closed
at nonzero temperatures. In addition, there is a com-
plex subgap sructure to the DOS which fills in to close
the CDW gap, unlike a BCS picture where the entire
spectral gap collapses by the gap becoming progressively
smaller. This appears to be a feature of electronic-driven
CDW systems, but we have no formal proof that it must

FIG. 14. (Color online.) DOS (black) versus convolved (red)
for U = 1.4 at different temperatures: (a) T = 0.033 cor-
responds to ∆nf = 0.495; (b) T = 0.0596 corresponds to
∆nf = 0.4; (c) T = 0.07 corresponds to ∆nf = 0.2; (d)
T = 0.08 corresponds to ∆nf = 0.

be present in such models. Nevertheless, by continuity,
one can easily argue that if a hopping of the f -electrons is
turned on, then for small values of the hopping, the sce-
nario given here should remain, because the nonzero DOS
cannot instantly collapse to zero. On the other hand, as
the hopping increases to be equal to the conduction elec-
tron hopping, we recover the Hubbard model, and the
behavior for that system in the CDW phase is currently
unknown.
The other interesting result is that there is a significant

spectral CDW gap shrinkage, bandwidth narrowing, and
peak sharpening in the field-dressed PES, which becomes
less pronounced as temperature rises. Some of these fea-
tures could be related to recent experiments2, where a
partial closing of the spectral CDW gap is seen, but not
a full closing. Our theory is general and can be applied to
other Hubbard-like models. We hope, our results might
be helpful for experimentalists to examine real materials
which demonstrate CDW order.
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M. Bauer, A. Föhlisch, L. Kipp, W. Wurth, and K. Ross-
nagel, Phys. Rev. Lett. 105, 187401 (2010).

6 S. Hellmann, T. Rohwer, M. Kalläne, K. Hanff, C. Sohrt,
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