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Majorana wavefunction oscillations, fermion parity switches, and disorder in Kitaev
chains

Suraj S Hegde∗ and Smitha Vishveshwara
Dept.of Physics, University of Illinois, Urbana-Champaign

We study the decay and oscillations of Majorana fermion wavefunctions and ground state (GS)
fermion parity in one-dimensional topological superconducting lattice systems. Using a Majorana
transfer matrix method, we find that Majorana wavefunction properties are encoded in the associated
Lyapunov exponent, which in turn is the sum of two independent components: a ‘superconducting
component’ which characterizes the gap induced decay, and the ‘normal component’, which deter-
mines the oscillations and response to chemical potential configurations. The topological phase
transition separating phases with and without Majorana end modes is seen to be a cancellation
of these two components. We show that Majorana wavefunction oscillations are completely deter-
mined by an underlying non-superconducting tight-binding model and are solely responsible for GS
fermion parity switches in finite-sized systems. These observations enable us to analytically chart
out wavefunction oscillations, the resultant GS parity configuration as a function of parameter space
in uniform wires, and special parity switch points where degenerate zero energy Majorana modes are
restored in spite of finite size effects. For disordered wires, we find that band oscillations are com-
pletely washed out leading to a second localization length for the Majorana mode and the remnant
oscillations are randomized as per Anderson localization physics in normal systems. Our transfer
matrix method further allows us to i) reproduce known results on the scaling of mid-gap Majorana
states and demonstrate the origin of its log-normal distribution, ii) identify contrasting behavior
of disorder-dependent GS parity switches for the cases of even versus odd number of lattice sites,
and iii) chart out the GS parity configuration and associated parity switch points as a function of
disorder strength.

PACS numbers: 73.63.Nm, 0367.Lx, 71.23.-k

I. INTRODUCTION

Majorana fermions have become an important and ac-
tive topic of research over the last decade in condensed
matter physics1–3. Defined as their own anti-particles,
in condensed matter settings, they have most commonly
been predicted to exist as particular zero energy bound
states in fermionic topological superconductors4. Ad-
vances in experimental realizations of such Majorana
modes were facilitated by various proposals which in-
volved superconductor-topological insulator interfaces 5,
proximity-induced superconductivity in spin-orbit cou-
pled wires6,7, ferromagnetic atoms in proximity to su-
perconductor 8,9. Several reports of experiments show
highly suggestive evidence of the existence of the Majo-
rana modes in these systems 10–16. In addition to the
realization of Majorana fermions in and of themselves,
conclusive evidence of their existence is of great inter-
est from the perspective of topological quantum comput-
ing given their non-Abelian braiding statistics17 and that
they form a natural basis for topological qubits18.

A key feature of systems hosting zero-energy Majo-
rana modes is the double degeneracy of the ground state
due to the pairwise existence of these modes. The Ma-
jorana modes at the edges can be combined to form a
Dirac fermionic state, which can be either occupied or
empty. The two degenerate states are thus characterized
by fermion parity. In topological p-wave paired super-
conducting wires, as is our focus here, these Majorana
modes typically appear as bound states confined to each

end of the wire. For finite-sized wires, the Majorana
boundary modes interact via their wavefunction overlap
within the bulk. This leads to a splitting in the ground
state degeneracy which is exponentially small compared
to the superconducting gap 4. It has been shown that
this splitting in degeneracy is an oscillating function of
system parameters,such as chemical potential, supercon-
ducting gap and the length of the chain 19–26. Due to the
oscillatory dependence of this splitting, the two low-lying
states cross each other at the Fermi energy at regular in-
tervals 21,27–29 and thus switch the ground state fermion
parity. In a previous collaborative work29, we mapped
out points on the topological phase diagram of a uniform
wire where such degeneracy occurs and charted regions
characterized by even versus odd fermion parity. These
studies show how even in the realistic scenario of wires
of finite length, the system can be tuned to restore the
double degeneracy at these level crossings. The ability
to tune between parity sectors provides a powerful knob
in that it effectively corresponds to performing certain
non-Abelian rotation operations30–34.

Given the importance of accessing Majorana mode re-
lated degeneracy points and specific parity sectors in re-
alistic geometries, here we perform a detailed analysis of
Majorana wavefunction oscillations and fermion ground
state parity properties in finite sized Majorana wires. We
model the wire as the oft-used one-dimensional supercon-
ducting tight-binding lattice system known as the Kitaev
chain. We investigate the features of uniform chain as
well as that in the presence of an on-site disorder po-
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tential. Focusing on the Majorana end mode in a semi-
infinite wire, one naturally finds that its wavefunction is
characterized by two features - a decaying envelope and
oscillations19–24,29. Borrowing from previous collabora-
tive work by one of us35,36, we find that these features can
be decomposed into two parts - one entirely due to the
superconducting pairing potential and another stemming
from the underlying normal system in which the pairing
potential is absent 37–39. While both can contribute to
the decaying envelope, the oscillations completely reflect
those of wavefunctions in the underlying normal system.
Thus, in uniform systems, we find that Majorana wave-
functions exhibit oscillations only in a regime where band
oscillations of the underlying normal problem are allowed
and that this regime is confined to a circular region in the
topological phase diagram. This region is intimately con-
nected to the region in which spin-spin correlations show
oscillations in the transverse field XY spin chain, a sys-
tem that directly maps to the Kitaev chain 40. For the
disordered case, band oscillations are washed out. The
underlying normal system provides a contribution to the
decay as well as random oscillations, both stemming from
the behavior of one-dimensional normal state wavefunc-
tions in the presence of a disordered landscape. Thus,
in the disordered Majorana wire, Anderson localization
physics is crucial in determining the nature of Majorana
end mode wavefunction decay and oscillations.

The behavior of ground state fermion parity directly
depends on the manner in which Majorana end mode
wavefunctions oscillate. Consequently, in the uniform
case, parity switches only occur within the circle of oscil-
lations; here we map these switches for a finite size wire.
We show that this map of the uniform case serves to in-
form parity switching behavior in the disordered case.
Our studies of parity in this disordered case addresses
several issues. We establish that zero energy level cross-
ings do indeed correspond to parity switches, a correspon-
dence which is not at all obvious due to a proliferation of
low-energy states, unlike in the uniform case. Based on
the uniform case analysis, we chart out regions where par-
ity switches are expected to occur, the manner in which
they do so, and their dependence on even versus an odd
number of lattice sites. These observations are relevant
to a slew of parity-based studies and proposals in realistic
solid state systems where disorder is a given.

Beyond topological aspects alone, the disordered one-
dimensional p-wave superconducting wire has been ac-
tively studied for more than a decade under symme-
try classification of Class-D due to its localization-
delocalization properties characteristics 37,41–43. One of
the highlighting features of this system is the existence
of a delocalised multi-fractal wavefunction at a critical
point and the surrounding ‘Griffiths phase’. In this phase
a proliferation of the low energy bulk states into the su-
perconducting gap causes the density-of-states to diverge
at zero energy. This critical point in fact separates the
topological and trivial phases; the delocalized state at
the critical point provides a channel for the Majorana

end mode in the topological phase to vanish in the triv-
ial phase. Subsequent to pioneering work in Ref.37, sev-
eral recent works have studied Majorana physics in the
presence of disorder 35,36,38,44–59. Along with some other
random-matrix based treatments59,60, our present work
is one of the few to explicitly address the issue of Majo-
rana mode based fermion parity switches in the presence
of disorder.

Finally, comments on our formalism are in order, par-
ticularly with regards to the technique of transfer matri-
ces. Transfer matrices have been used extensively in the
context of disorder as a means of studying the manner in
which wavefunctions behave across a system and of ex-
tracting properties such as transmission co-efficients, lo-
calization lengths, and conductance. It has also been em-
ployed in the context of topological phases 61,62 In class D
systems, transfer matrix method has proved highly use-
ful in deriving their unusual behavior and critical features
43,63–65. With regards to Majorana mode physics, trans-
fer matrices have been employed to define a topological
invariant based on normalization properties of the Ma-
jorana wavefunction and identify the topological phase
diagram in the presence of various potential landscapes
including that of disorder 36,39,53,66. In our analyses,
the method provides a direct way of treating the above-
mentioned separation of the Majorana wavefunction in
terms of the superconducting and normal contributions
as well as identifying the presence of zero energy states
in finite length wires. In the presence of disorder, the
technique provides us a transparent way of linking An-
derson localization physics and Majorana wavefunction
properties.

The presentation of the paper is as follows: In Sec-
tion II, we review the salient features of the Kitaev chain
Hamiltonian, its topological phases, and the formalism of
transfer matrices for describing Majorana zero modes. In
Section III, using the transfer matrix formalism, we out-
line generic features of Majorana wavefunctions in semi-
infinite wires and give detailed descriptions for the uni-
form and disordered cases. In Section IV, we focus on
finite-sized systems and obtain a general condition for
the occurrence of parity switches in terms of Majorana
transfer matrices. We also map out the fermion ground
state parity in the topological phase diagram for the uni-
form case. In Section V we study the effect of disorder
on degeneracy-splitting and parity switches.

II. KITAEV CHAIN AND TRANSFER MATRIX
SET-UP

In this section, we begin by introducing a lattice ver-
sion of the most basic Majorana wire, namely the Kitaev
chain Hamiltonian, as the starting point of our studies.
The Hamiltonian allows for the existence of i) a topo-
logical phase that hosts zero-energy Majorana fermionic
bound states at the ends of the chain giving rise to a
doubly degenerate ground state and ii) a non-topological
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phase where these states are absent. We then review a
transfer matrix formalism and the associated Lyapunov
exponent description for extracting the localization be-
havior of Majorana mode eigenstates. Finally we also
introduce a map that separates contributions of the su-
perconducting order from the underlying normal state
properties to the Lyapunov exponent. This set-up forms
the basis of our studies in subsequent sections.

Kitaev chain Hamiltonian. —
The prototypical model for studying topological p-

wave superconductivity in one-dimension is the Kitaev
chain4. This lattice model consists of non-interacting
spinless fermions on each site having nearest neighbor
tunneling of strength w, nearest neighbor superconduct-
ing pairing of strength ∆, and an on-site chemical poten-
tial µn.Its associated Hamiltonian takes the form

H =

N−1∑
n=1

(−wc†n+1cn+∆c†n+1c
†
n+h.c)−

N∑
n=1

µn(c†ncn−1/2),

(1)
where h.c. denotes Hermitian conjugate. Here, the c†n
and cn operators represent the creation and annhilation
of electrons on site n, respectively. Alternatively, these
operators can be expressed in terms of a pair of Majorana

fermion operators ân and b̂n, namely, ân = cn + c†n and

b̂n = i(c†n−cn). The Majorana operators satisfy the rela-

tions â†n = ân, b̂†n = b̂n and {ân, âm} = {b̂n, b̂m} = 2δmn.
In terms of the Majorana operators, the Hamiltonian is
given by

HM = − i
2

N−1∑
n=1

[
(w −∆)ânb̂n+1 − (w + ∆)b̂nân+1

]

−
N∑
n=1

iµn
2
ânb̂n. (2)

In the case of a homogeneous chain, µn = µ for all n.
The system is in the topological phase for the parameter
range −2w < µ < 2w for non-zero superconducting gap.
The gap closes at the transition to the trivial phase at
|µ| = 2w. In the presence of a potential energy landscape,
µn exhibits spatial variation and can drastically alter the
qualitative features of the phase diagram. Specific to
later sections, in the presence of disordered landscapes,
the system can even become gapless for a broad region
around the transition between the topological and non-
topological phase. Previous studies have explored the
Kitaev chain and the associated topological phase dia-
gram in the presence of a variety of potential landscapes
including (quasi)periodic potentials and disorder35.

Majorana Transfer Matrix and Lyapunov Exponent.
— The transfer matrix method is designed to study the
manner in which wavefunctions propagate through the
length of a system. It thus offers a natural means of prob-
ing localisation aspects of Majorana end modes and the
topological characteristics of the Kitaev chain. In previ-

ous works 35,67, one of the present authors and collab-
orators developed Majorana transfer matrix formalism
for determining the topological invariants and charting
the phase diagram of the Kitaev chain in the presence of
different potential landscapes.

Here we briefly recapitulate this Majorana transfer ma-
trix technique and the associated Lyapunov exponent de-
scription. Given the Majorana Hamiltonian of Eq.2, we
first obtain the zero energy Heisenberg equation of mo-
tion [ân, HM ] = 0 for the Majorana operators ân. Using
this, we obtain the equation for Majorana wavefunctions
an as :

(w + ∆)an+1 + (w −∆)an−1 + µan = 0. (3)

(Note that the ‘a’ without a hat is the Majorana wave-
function and not the operator itself.) For 2 ≤ n ≤ N −1,
the modes at different sites are thus related by the trans-
fer matrix: (

an+1

an

)
= An

(
an
an−1

)
,

where An =

(
− µn

w+∆ −w−∆
w+∆

1 0

)
. (4)

The transfer matrix for bn modes have an identical struc-
ture except with a change in the sign in ∆. From this
point on, unless specified we set w = 1. We only consider
∆ positive. Our results for the negative half of the phase
diagram are the same except that the roles of a and b are
switched. The full chain transfer matrix is given by an
ordered product of all the transfer matrices from the first
site to the last: A =

∏
nAn. The eigenvalues of the full

transfer matrix, λ±, determine features of the Majorana
mode wavefunctions, such as oscillation and decay. The
eigenvalues can be employed to construct a topological
invariant which determines whether or not the system is
in the topological phase based on Majorana wavefunction
normalizability67. Specifically, if the number of eigenval-
ues within the unit circle of a complex plane is even, then
the system is in a topologically non-trivial phase.

A useful quantity to extract from transfer matrices is
the Lyapunov exponent (LE), which in most cases relates
to the inverse localization length of the corresponding
wavefunction. For the purpose of analyzing a Majorana
bound state at one end of the Kitaev chain, we study the
Lyapunov exponent for a semi-infinite system having a
boundary at one end, defined as

γ(µ,∆) = lim
N→∞

1

N
ln[|λ|] (5)

The largest of the two eigenvalues λ± is taken for the
definition. It was shown in Ref. 67 using wavefunction
normalization properties that the LE is able to detect
a topological phase transition in the Kitaev chain and
was used to chart the phase diagram for various poten-
tial landscapes i.e with different configurations of µn. It
was shown that in the topological phase the LE is always
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negative and a topological phase transition occurs when
it crosses zero to become positive. Thus the loci of points
of zero LE give the phase boundary. Here, we will em-
ploy the LE not only as a probe of this topological phase
transition but also to investigate detailed features of the
Majorana wavefunction.

In obtaining the LE for a generic potential landscape,
it was recently found that the Majorana transfer ma-
trix could be mapped to that of the transfer matrix of
a normal system without a superconducting gap. The
map proved powerful in that knowledge of normal state
wavefunction properties immediately led to those of the
topological superconducting chain. This map is achieved
through the following similarity transformation on the
transfer matrix in Eq.[ 4]35, defined for 0 < ∆ < 1:

An =
√
l∆SÃnS

−1 (6)

where S = diag(l
1/4
∆ , 1/l

1/4
∆ ) and l∆ = 1−∆

1+∆ . The ma-

trix Ãn is the transfer matrix for a normal tight-binding
model in the absence of a superconducting gap (Note
that w = 1 compared to Eq.4). Its on-site chemi-
cal potential terms are rescaled by the transformation
µn → µn/

√
1−∆2 . Explicitly, the full chain transfer

matrix is given by

A(µn,∆) =

(
1−∆

1 + ∆

)N/2
SÃ(µn/

√
1−∆2,∆ = 0)S−1

(7)
This map allows the Lyapunov exponent to be written
as a sum of two components, γ(µ,∆) = γS + γN , one
that depends purely on the superconducting gap γS(∆)
and the other corresponding to the underlying normal
tight-binding model γN (µ/

√
1−∆2). We note that such

a splitting of Lyapunov exponent was already hinted in
Ref. 37 and the mapping to normal system in the context
of scattering matrices in Ref.38

In the following sections, we will employ the Majorana
transfer matrix, the Lyapunov exponent and the mapping
to a normal system to study the oscillations in Majorana
wavefunctions and associated fermion parity switches in
both uniform and disordered chains.

III. MAJORANA WAVEFUNCTIONS AND
OSCILLATIONS

In this section, we first provide a generic description of
the Majorana end modes in terms of their decay and os-
cillation. We pinpoint the separate contributions due to
superconductivity and the presence of a potential land-
scape for each of these features in terms of the Lyapunov
exponent. We use this knowledge to analyze Majorana
wavefunctions in the uniform and disordered cases.

A. Generic Formulation

The generic transfer matrix given in Eq. 4 directly pro-
vides information on the Majorana end mode decay pro-
file and oscillatory behavior. Given this matrix for a
single slice of the chain, the full-chain transfer matrix is
given by A =

∏
nAn. The eigenvalue equation for the

transfer matrix is given by

λ2 + Tr(A)λ+ det(A) = 0 (8)

Given that det(An) = ( 1−∆
1+∆ ), we have det(A) =∏N

n det(An) = ( 1−∆
1+∆ )N . Thus, the two eigenvalues of

the full transfer matrix take the form

λ± =
TrA

2
±

√(
TrA

2

)2

−
(

1−∆

1 + ∆

)N
= e±iβ

(
1−∆

1 + ∆

)N/2
.

(9)
Here, the phase β can only be real or imaginary depend-
ing on the value of TrA given its structure,

β = tan−1

(√( 1−∆
1+∆ )N − (TrA

2 )2

Tr(A)
2

)
. (10)

This phase β, which is a function of µ,∆ and N plays an
important role in determining the nature of the Majorana
wavefunction.

One can see that if β is real, the eigenvalues are com-
plex and the wavefunctions have an oscillatory compo-
nent in addition to the exponentially decaying envelope
( 1−∆

1+∆ )N/2. When β becomes purely imaginary, then the
eigenvalues are purely real, corresponding to overdamped
wavefunctions. The specific conditions for the phase β to
change from real to imaginary depends on the specific
potential landscape. In general, the phase β alone tracks
the response to different potential landscapes, while the
scaling factor ( 1−∆

1+∆ )N/2 is responsible for the localization
of the Majorana mode irrespective of the potential µn.

Now, using the similarity transformation Eq.7, we can
see that this phase factor is completely determined by
a simple underlying tight-binding problem that lacks a
superconducting gap. The transformed transfer matrix
for a single µn can be easily seen to be a simple tight-
binding model as follows:

Ãn =

(
− µn√

1−∆2
−1

1 0

)
. (11)

The Heisenberg equation for the wavefunction ãn corre-
sponding to the above transfer matrix equation is explic-
itly of the normal tight-binding form:

(ãn+1 + ãn−1) +
µn√

1−∆2
ãn = 0. (12)

Since the similarity transformation S is purely a func-
tion of ∆ and does not depend on the individual µn, the
full chain transfer matrices respect the relationship∏

n

An = (
√
l∆)NS(

∏
n

Ãn(µn/
√

1−∆2))S−1 (13)
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Since the similarity transformation preserves the trace,
the full chain transfer matrix traces are related as

Tr(A) = (
√
l∆)NTr(Ã) (14)

where Ã is the full chain transfer matrix for the under-
lying normal tight-binding model. Using this identity in
the expression for β in Eq.10, we obtain

β = tan−1

(√
1− (TrÃ

2 )2

Tr(Ã)
2

)
(15)

Thus we make the observation here that the phase fac-
tor β of the Majorana transfer matrix is solely determined
by an underlying normal tight-binding model without a
superconducting gap, but with a scaled on-site chemical
potential µn/

√
1−∆2. Therefore, oscillations of the Ma-

jorana wavefunction and the response to the specific po-
tential landscape are completely determined by properties
of the underlying normal state chain.

It is precisely these oscillations in Majorana zero modes
which determine the degeneracy-splitting of the ground
state in a finite sized Kitaev chain and associated fermion
parity switches. Further they also have direct bearing on
the oscillations in the spin-spin correlation functions of
transverse field XY spin chain, to which there is an ex-
act mapping from the Kitaev chain. The fact that these
oscillations can be obtained from a simple tight-binding
model easily enables one to extend the study to disorder,
periodic and quasi-periodic potential landscapes.

Further, the division of Majorana wavefunction into
the two features of oscillations and decay manifests as
an additivity in the Lyapunov exponent (LE). While this
splitting of the Lyapunov exponent was pointed out in
previous works 35,37, here we show the relevance of such
a splitting in studying the nature of the Majorana wave-
function. Specifically, we invoke the definition of the LE
in Eq. 5, γ(µ,∆) = limN→∞ ln[|λ|]/N . Now referring
back to the expression for the eigenvalues in Eq. 9, we
consider the two cases of purely real and purely imagi-
nary β:

(i) When β is real, |λ±| = ( 1−∆
1+∆ )N/2. Therefore, the

LE is only given by γS = − 1
2 ln( 1+∆

1−∆ ). We call γS as the
‘superconducting’ component of the LE. In this case the
LE is always negative assuming a finite, positive super-
conducting gap. This implies that the system is in the
topological phase. Moreover, β gives rise to an oscillatory
piece in the Majorana wavefunction.

For a small superconducting gap, on expanding in
terms of small ∆, it can be seen that γS ∼ −∆. In the
continuum limit, the wavefunction of the Majorana mode
has an exponentially decaying envelope e−x/ξ, where
ξ ∼ 1/∆ is the superconducting coherence length which
characterizes the localization of the Majorana mode deep
in the topological phase. Thus the superconducting com-
ponent of the LE corresponds to the localization of the
Majorana mode at the edge, protected by the supercon-
ducting gap. These localization features are immune to
any perturbations that do not close the gap.

(ii) When β is purely imaginary, the phase factor eiβ

is real. As a result, the LE contains two terms. Since
|λ±| = e∓|β|( 1−∆

1+∆ )N/2, the LE is given by (considering

only the largest eigenvalue):

γ = lim
N→∞

1

N
ln|exp(iβ(µ,∆, N))| − 1

2
ln(

1 + ∆

1−∆
)

= lim
N→∞

1

N
β(µ,∆, N)− 1

2
ln(

1 + ∆

1−∆
) (16)

= γN + γS (17)

The LE is thus a sum of two components γN + γS ,
where γN is the ‘normal component’ and γS is the ‘su-
perconducting component’ discussed in case i) above
and in Ref.35. The ‘normal component’ takes the form
γN = limN→∞

1
N ln|exp(iβ(µ,∆, N))|; it corresponds to

the LE of a one-dimensional normal tight-binding model
having a general potential landscape represented by a
scaled on-site chemical potential 37. To be specific, the
tight-binding problem we are considering now contains
onsite terms µn, which are scaled by a factor involving ∆
, thus giving a LE of the form γN (µn/

√
1−∆2, 0, N)35.

For a given ∆ and number of lattices sites, N , in the Ki-
taev chain, we thus need only solve the underlying nor-
mal tight-binding problem. While the ‘superconducting’
component is always present in the LE in the presence
of a gap, the ‘normal component’ depends on the specific
potential landscape under consideration. In the context
of disorder, this enables one to use known results from the
vast literature of Anderson localization to readily com-
ment on the features of Majorana modes in Kitaev chain.

B. Homogeneous wire: Circle of Oscillations

In the case of a homogeneous wire in which the the
on-site chemical potential takes on the same value on
each site, we can exactly analyze features of the previ-
ous sub-section concerning Majorana wavefunction de-
cay and oscillations. The exact wavefunction can be
obtained by solving the difference equation Eq.3 by us-
ing the Z-transform method, which is an equivalent of
Laplace transform for functions of discrete variables. For
the homogeneous case, the equation of motion is a second
order difference equation having constant co-efficients :

(1 + ∆)an+1 + (1−∆)an−1 + µan = 0. (18)

The solution to the above equation proceeds by introduc-
ing a power series

A(z) =

∞∑
n=0

z−nan ≡ Z[an], (19)

where z is a complex variable. The functionA(z) = Z[an]
is called the Z-transform of an. Taking the Z-transform of
the above difference equation and using properties such
as : Z{an−1} = z−1A(z), Z{an+1} = zA(z)− za0,(a0 is



6

(a)

FIG. 1: The topological phase diagram for the uniform Kitaev
chain as a function of superconducting gap ∆/w and chemical
potential µ/2w. The focus here is the circle of oscillations
(COO) [µ2/4w2 + ∆2/w2 = 1] within each topological phase
marking the boundary across which the nature of Majorana
wavefunctions changes. Within the circle, the wavefunction
has oscillations under the decaying envelope whereas they are
absent outside the circle.

a constant determined by boundary conditions) one can
obtain a closed form expression for the Z-transform A(z),
given by:

A(z) =
a0z

2

z2 + µ
1−∆z + 1+∆

1−∆

(20)

This Z-transform has a unique inverse, which is the exact
solution to the difference equation. Thus the obtained
wavefunction is of the form

an = a0C
n

[
cos(βn) +

1

tanβ
sin(βn)

]
. (21)

Here, the constant C = ( 1−∆
1+∆ )1/2 explicitly reflects the

superconducting component and β = arctan

√
4−4∆2−µ2

µ

the phase in Eq.10. Thus, as shown in the phase diagram
of Fig. 1, the phase β takes on real values only within
the circular regime µ2 < 4(1 −∆2). We call this regime
the circle of oscillations (COO); the reality condition on
the phase β renders the Majorana wavefunctions oscilla-
tory. Outside this regime, the oscillating terms of Eq.21
become hyperbolic and the modes, instead of oscillating,
become overdamped29,68.

This circle of oscillations (COO) has also long been
identified in the context of the transverse-field XY spin
chain, to which the Kitaev chain can be exactly mapped
using the Jordan-Wigner transformation. This circle,
termed as the disorder circle, separates the regime of
oscillations in spin-spin correlation functions from the
regime of no oscillations69. Exactly on the circular locus,
the ground state becomes separable and can be expressed
as a direct product state70,71. As a result, certain entan-
glement measures, such as the global geometric entangle-
ment, vanish on this locus72. Another measure, the ‘en-
tanglement range’, diverges and reflects a change in the

pattern of entanglement across this circle73. There are
similar oscillations in the entanglement spectrum within
the circle74. These aspects in spin chains might have
some bearing on the features of Majorana modes. In
fact some aspects of Majorana physics can be used to
obtain results in spin chains very easily, which otherwise
involve cumbersome calculations, as already pointed out
in Ref.67.

An understanding of the nature of the wavefunctions
oscillations can be obtained using the underlying tight-
binding problem resulting from the similarity transfor-
mation of Eq.7. For the homogeneous case, the equation
of motion for the underlying normal model takes the form

w(ãn+1 + ãn−1) +
µ√

1−∆2
ãn = 0 (22)

Here ãn is the wavefunction describing the Majorana
mode under the envelope coming form the gap ∆ and
we have re-inserted the hopping amplitude w. Solutions
to this equation have the plane-wave form ãn = Dne

±ikn.
Simplifying the equation, we get 2w cos k + µ√

1−∆2
= 0 .

This relationship imposes the condition that the modes
oscillate/propagate only in the region

µ√
1−∆2

< 2w (23)

If the above condition is not satisfied, the solutions lie
outside the band of propagating modes and are purely de-
caying. Now recasting the above condition, we obtain the
relationship : µ2/4+∆2 = 1, which is precisely the equa-
tion for the circle of oscillations(COO). Thus, mapping
the original Majorana problem to an underlying tight-
binding problem, we obtain a picture of the mechanism
responsible for oscillations in Majorana modes and how
these oscillations immediately vanish outside the circle.

This change in the nature of Majorana oscillations is
also tracked by the two components of the Lyapunov ex-
ponent. As discussed in the previous subsection, when
β is real i.e everywhere within COO , γN = ln(1) = 0
and the localization of the Majorana mode is only due
to the superconducting component γ = γS = 1

2 ln( 1−∆
1+∆ ).

If ∆ is kept constant, then the LE and thus the localiza-
tion length are also constant, independent of the chemical
potential µ as shown in Fig.2. Hence, in this region, the
Majorana wavefunction shows an oscillation having an
associated wave vector kβ and a decay length ξS given
by

kβ = β = arctan

√
4− 4∆2 − µ2

µ
, (24)

ξS = 1/γS = 2/ln(
1−∆

1 + ∆
),

respectively. Outside the circle, as discussed earlier, the
oscillations disappear and β becomes imaginary. Conse-
quently, γN becomes a non-zero positive number and pro-
vides a second localization length. The Majorana wave-
function thus decays over a length scale given by

(γS + γN )−1 = ξ. (25)
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FIG. 2: The homoeneous Kitaev chain Lyapunov expo-
nent(LE), γ, measuring Majorana end mode decay as a
function of chemical potential for fixed superconducting gap
(∆ = 0.6). The LE is a sum of a normal and a supercon-
ducting component γ = γN +γS , and is a constant within the
circle of oscillations since there γN = 0 and γS is constant
for fixed ∆. On crossing the circle, γN becomes a non-zero
increasing function of µ and ultimately cancels γS , resulting
in a zero LE, at the topological phase transition at µ = 2.

This expression remains valid within the topological
phase; upon encountering the phase boundary between
the topological and non-topological phase, the decay
length diverges.

Topological phase transition. — The fate of the Majo-
rana wavefunction upon encountering the phase bound-
ary can be studied, for instance, by fixing ∆ and increas-
ing µ, as shown in the diagram of Fig.2. If we start deep
within topological phase, γN starts off as zero within the
circle, becomes non-zero outside and increases until it be-
comes equal to γS . This happens exactly at the topolog-
ical phase transition µ = 2, thus resulting in a vanishing
of the total LE, indicating complete delocalization of the
Majorana mode.

Since γS is always non-zero, such delocalization in a
generic potential landscape is possible only through its
cancellation with γN . Thus the condition for a topologi-
cal phase transition in general for any potential landscape
obeys: |γS | = |γN |.

C. Wavefunctions in the disordered Kitaev chain

We now consider the situation in which the on-site
chemical potential, µn, in the Kitaev chain described by
the Hamiltonian in Eq. 2 exhibits spatial variations. As
with normal Anderson localized systems, these variations
would reflect a disordered potential landscape. There-
fore, the values µn satisfy a typical random distribution,
for instance, a Lorentzian, Gaussian or box distribution
of an energy scale width W . While our discussion on the
disordered Kitaev chain is a natural sequel to the above
sections, the system itself forms a major topic of study;
we save a brief description of this background to a later

section.
Additional localization due to disorder.— The addition

of Lyapunov exponents in Eq.17 allows us to immediately
deduce the effect of disorder in µn on the nature of the
Majorana wavefunction. The disordered Majorana wave-
function decays over a length scale given by

ξdis = (γS + γN )−1. (26)

As we saw in Subsection.III A, γS is not affected directly
due to the variation of µ and is equal to − 1

2 ln( 1+∆
1−∆ ).

As long as there is a finite superconducting gap, there is
always a corresponding localization scale for the Majo-
rana mode. As for the contribution from γN , this stems
from the underlying normal tight-binding model having
a scaled on-site disorder potential µn/

√
1−∆2, in other

words, a scaled Anderson model in one-dimension. In
contrast to the uniform chain, the phase factor β in Eq.
9 is always imaginary and thus there never exists a region
in the phase diagram where γN = 0. This observation is
consistent with the absence of translational invariance
and associated band oscillations and hinges on the well
known statement that all states in the Anderson model
are localized in dimensions less than two75. The behav-
ior of γN is thus dictated by the localization scale of the
disordered wavefunction at zero energy (with respect to
the Fermi energy) in the Anderson localization problem
and can be studied by invoking the exhaustive literature
on the Anderson problem.

As a simple example, consider the case of ‘Lorentzian
disorder’of strengthW in which the values of µn are taken
from a probability distribution of the form P (µ;W ) =
1
π

W
µ2+W 2 . The value of the Lyapunov exponent for such a

distribution, assuming the scaled chemical potential con-
figuration appropriate for the Kitaev chain, is given by
the form originally derived by Thouless 76:

γN

(
W√

1−∆2
, 0

)
= ln

(
W

2
√

1−∆2
+

√
1 +

W 2

4(1−∆2)

)
(27)

Thus, the normal component of the Lyapunov exponent
is a non-zero function of the disorder strength charac-
terized by W and increases as the disorder strength is
increased as well as when the superconducting gap be-
comes comparable to the nearest neighbor hopping. The
function γN (W ) for other disorder distributions can be
similarly extracted from the existing literature.

Oscillations.— While band oscillations are washed
out, the wavefunction of the underlying Anderson prob-
lem can still have short range oscillations under the de-
caying envelope, but these are qualitatively different from
the band oscillations in the uniform case. As noted in
Subsection.III A, local variations of the Majorana wave-
functions, an, are governed by Heisenberg equations of
motion, Eq.12.

As emphasized throughout, this equation exactly cor-
responds to the Heisenberg equation of motion for the
Anderson problem at zero energy. Solutions of the corre-
sponding wavefunction have been avidly studied in past
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(a)

(b)

FIG. 3: A schematic of the Majorana wavefunction in (a)
the uniform case within the oscillatory regime and (b) the
disorder case. (a) Within the parameter regime containing
the circle of oscillations (see text), in addition to a decaying
envelope having an associated Lyapunov exponent γs, stem-
ming purely from the superconducting order, band oscillations
are present. (b) For the disordered case, band oscillations
are replaced by random oscillations and a second decaying
scale associated with a Lyapunov exponent γN , both stem-
ming from the underlying Anderson localization setup of a
non-superconducting normal wire having the same disorder
configuration.

literature. The localized wavefunction typically exhibits
random oscillations on the scale of the lattice spacing.
They are heavily dependent on the disorder configura-
tion and have large sample-to-sample fluctuations. They
are known to have correlations on the scale of the mean
free path and obey statistics independent of the decaying
envelope 77,78.

Thus, disorder qualitatively changes the nature of Ma-
jorana wavefunction in that it i) imposes an extra lo-
calization scale in addition to the localization due to the
superconducting gap and ii) changes the nature of under-
lying oscillations Fig.3.

This as we shall see has consequences on the finite-size
splitting of ground state degeneracy and fermion-parity
switches.

Critical properties of Majorana wavefunction. —
Turning to the critical point separating the topological
and non-topological phases, as discussed in previous sec-
tions, at this point, the Majorana decay length diverges.

Equivalently, the Lyapunov exponent vanishes and thus,
from Eq. 26, we have the relationship

γS + γN = 0. (28)

For the specific case of Lorentzian disorder discussed
above, this condition enables us to identify the critical
point to be Wc = 2∆[36]. At this point, in going between
the topological and non-topological states, the Majorana
end modes completely extend into the bulk, in contrast
to typical Anderson localization physics, and then vanish
upon crossing the critical point.

While we do not perform further analyses based on
our transfer matrix techniques here, we invoke studies
from previous work. Several insights on critical behavior
in disordered Kitaev chains can be extracted by study-
ing properties of the extensively studied spin-1/2 random
transverse field Ising chain79. The Kitaev chain can be
exactly mapped to a close relative, the transverse field
XY spin chain 80. This XY model has two kinds of crit-
ical lines, an Ising type (ferro- to paramagnetic) and an
anisotropic type (change in direction of magnetization).
This transition from the ferro- to the paramagnetic phase
corresponds to the the topological phase transition in the
Kitaev chain of spinless fermions and is thus of interest
in this context. The disordered Kitaev chain corresponds
to the XY spin chain in the random transverse field and,
in a particular limit (∆ = 1), to the random field Ising
model(RFIM), the critical properties of which are well
known 79,81,82. The ferro- to paramagnetic transition in
this case belongs to the universality class of infinite dis-
order fixed point. One of the key features of the phase
transition in RFIM79,81 is the existence of two charac-
teristic divergent length scales having different values of
critical exponent ν, where, as a function of distance to
criticality, ∆, each length scale diverges as ξ ∼ ∆−ν .
One length scale, ξmean, characterizes the decay of aver-
age Green’s function Cav(r) ∼ e−r/ξav , and diverges as
νav = 2. The second, the typical localization length ,ξtyp,
reflects the most probable correlation length. It can be
extracted from the single particle density-of-states and
diverges with an exponent νtyp = 1.

As pointed out in Ref. 43, the Lyapunov exponent
of the transfer matrix at zero energy corresponding to
the random matrix ensemble of Class D corresponds to
the ‘typical’ value of the correlation length. We expect
the Lyapunov exponent of the Majorana transfer matrix
to reflect the same properties and the correlation length,
which in this case is the decay length of the Majorana,
to have a critical exponent of ν = 1. In other words,
the Lyapunov exponent corresponding to the Majorana
transfer matrix vanishes near the topological phase tran-
sition to the trivial phase linearly as a function of distance
to criticality. Further studies on the critical exponent of
the ’mean‘ correlation length in the context of physics of
Majorana modes are in order.

Topological phase transition: Relating to result by
Brouwer et al. — In addition to the observations made
above, we can relate our work to results obtained in
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Ref. 47 on the disorder driven topological phase tran-
sition. In this work, a condition is derived for the crit-
ical disorder strength for transition into non-topological
phase as : 2l = ξ, where l is the mean free path in the
disorder configuration and ξ is the superconducting co-
herence length. This can be seen from our condition of
cancellation of the components of LE at the transition :
|γS | = |γN |. We have already identified γS ∼ 1/ξ ∼ ∆.
In order to relate to the result of 47, let us recall that
γN is the inverse localization length of the underlying
Anderson problem. As known from previous literature
Ref.83, the localization length is equal to the twice the
mean free path: γN = 1/(2l). Thus our condition trans-
lates to : 1/ξ = 1/(2l), which is precisely result of Ref.
47, obtained through calculations involving Langevin dy-
namics.

So far we have considered only semi-infinite wires to
study the Majorana wavefunctions. In the next sections
we consider finite sized wires to study fermion parity ef-
fects.

IV. FERMION PARITY SWITCHES AND
MID-GAP STATES IN FINITE-SIZE WIRES

A. General discussion

In the thermodynamic limit, the Kitaev chain in the
topological phase has a doubly degenerate ground state.
The two zero energy Majorana end modes corresponding
to the degeneracy can be combined to form a non-local
Dirac fermionic state. This non-local electronic state can
either be occupied or unoccupied and this in turn deter-
mines the fermion parity of the entire many body ground
state. Thus the double degeneracy also corresponds to
degeneracy in fermion parity.

For finite-sized systems, the degeneracy undergoes an
exponentially small splitting J due to the overlap of the
Majorana wavefunctions. The associated parity states
form an energy pair ±J closest to zero energy. Now the
fermion parity of the ground state is determined by the
fermion parity of the lowest of these two states. Explic-
itly, for two Majorana end modes depicted by ΓR,L, the
effective tunnel-coupled Hamiltonian is given by4

Heff = iJΓRΓL/2 = J(ñ− 1/2). (29)

Here ñ = C̃†C̃ and C̃ = (ΓL − ΓR)/2 is the non-local
Dirac fermionic mode obtained from the linear combina-
tion of Majorana end modes. The occupation ñ = 0, 1
determines the ground-state parity of the system. In
earlier sections, we discussed the regime in which the
Majorana wavefunctions is endowed with an oscillatory
component. Consequently, the tunneling amplitude of
the two end Majorana modes too becomes an oscilla-
tory function of the parameters of the system, crossing
zero at specific points in parameter space. Thus vary-
ing the parameters can lead to level crossings of these

states and corresponding fermion parity switches. As
explored in several recent works, these parity switches
leave definitive signatures in various macroscopic phe-
nomena such as the fractional Josephson effect, non-
equilibrium quench dynamics and charge fluctuations in
these systems25,26,29,59,84–88. Given the possibility of us-
ing Majorana modes as a tool for topological quantum
computation, the Z2 fermion parity has also drawn in-
terest as a possible way of implementation of topological
qubits89–91. There have also been proposals for detecting
parity effects of the Majorana zero modes in Josephson
junctions using microwave spectroscopy92,93.

An interesting feature of the uniform Kitaev chain is
that the number of parity crossings as a function of pa-
rameters increases linearly with the system size 29. As a
result, while the splitting between parity states varies ex-
ponentially, the ground state parity shows frequent parity
switches in realistic systems and can have important ef-
fects. Here, we study these switches in depth for uniform
as well as disordered systems.

The tunnel coupling between the Majorana modes at
the ends is a good approximation for the splitting of
the degenerate states and explaining the parity crossings.
Below, we use the transfer matrix technique outlined in
the previous sections to go beyond the approximation
and obtain the precise points where the level crossings
occur.

1. Pfaffian measure of fermion parity -

The method of calculating the ground state fermion
parity that we use in this work was formulated in Ref. 4
by A. Kitaev and is as follows. Consider the Majorana
Hamiltonian of Eq. (2) and the transformation B that
reduces the Hamiltonian to the canonical form, i.e., D =
BTHMB. Here D is an anti-symmetric matrix having
non-zero matrix elements only along the first off-diagonal
entries. It can be shown that the ground state parity
of the system is related to the unitary properties of B.
Specifically, the parity of the system is given by

P(H)=sgn[det(B)]. (30)

As a simple illustration of this expression for parity,
its application to a two-site system is as follows. The
Hamiltonian of Eq. 2 in the Majorana basis [a1, b1, a2, b2]
for a two-site system is given by 0 −iµ/2 0 i(−1 + ∆)/2

iµ/2 0 i(1 + ∆)/2 0
0 −i(1 + ∆)/2 0 −iµ/2

−i(−1 + ∆)/2 0 iµ/2 0


The Pfaffian for the above Hamiltonian is

Pf(H) =
µ2

4
− 1−∆2

4
(31)

Thus, the Pfaffian changes its sign at µ2

4 = 1−∆2

4 . This
is for the specific case of N = 2 and this result can be
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verified by explicitly diagonalizing the Hamiltonian and
obtaining the matrix B. The general condition for the
points where the Pfaffian changes sign for a Hamiltonian
of N sites is given in the next subsection.

2. Majorana transfer matrix and parity crossings -

Here we describe how the Majorana transfer matrix
can be used to track the occurrence of zero energy cross-
ings. In Sec.II we presented the form of the Majorana
transfer matrix corresponding to zero energy solutions
confined to the ends of a wire. For finite sized systems,
due to the hybridization of these two modes, in general,
a zero energy solution does not exist and the correspond-
ing transfer matrices couple the degrees of freedom as-
sociated with the two modes. For each transfer matrix
to correspond to a strict zero energy solution, it must
satisfy certain conditions imposed through the boundary
conditions for Majoranas to be end bound states. These
boundary conditions are as follows.

In previous sections, we showed that the set of indi-
vidual transfer matrices Ãn in Eq. 11 corresponds to
that of the normal tight-binding problem, which carried
all necessary information on the corresponding zero en-
ergy Majorana wavefunction in the presence of a finite
superconducting gap ∆. As the most general finite size
situation applicable for any potential landscape, consider
the transfer matrix relating the wavefunction at the first
site to the wavefunction at the last site -(

ãN+1

ãN

)
=

(
Ã11 Ã12

Ã21 Ã22

)(
ã1

ã0

)
, (32)

The full-chain transfer matrix is given by Ã =
∏
n Ãn.

For the corresponding decoupled Majorana mode to ex-
ist, we demand that its wavefunction naturally be con-
fined to the length of the wire. To impose this boundary
condition, we may introduce two fictitious sites at 0 and
N + 161. As the condition for the existence of the mode,
we then have

ãN+1 = ã0 = 0 (33)

The transfer matrix gives the equations

ãN+1 = Ã11ã1 + Ã12ã0. (34)

The boundary conditions now gives a strict condition on
the elements of the transfer matrix, namely

Ã11 = 0. (35)

Thus for any finite-sized chain, the general condition for
the existence of a zero energy solution is Ã11 = 0.

For the case of a homogeneous chain, below we can
explicitly illustrate how this condition is satisfied.

(a)

(b)

FIG. 4: Ground state parity for a uniform finite length Kitaev
chain within the topological phase in the phase diagram of
Fig.1. Within the circle bounding the region where Majorana
bound state wavefunction exhibit oscillations, alternating par-
ity sectors are demarcated by ellipses. These parity sectors
depend on the length of the chain. For chains of odd length
(N=11)(fig.(a)) the sectors are anti-symmetric across µ = 0
and are symmetric for chains of even length (N=10)(fig.(b)).
Outside the circle, the Majorana modes are overdamped with
no oscillations.

B. Parity sectors in the uniform Kitaev chain

The degeneracy splitting, level crossing and fermion
parity switches can be tracked exactly in the case of a
uniform chain. This was studied in our previous collabo-
rative work in Ref.29 and in other works27,28. To recapit-
ulate, the finite-size degeneracy splitting introduces new
features in the phase diagram of the Kitaev chain. The
points at which the split-levels cross, thus restoring de-
generacy even at finite size, form ellipses within the COO
of the phase diagram (Fig.4). The elliptical boundaries
can be derived by enforcing this degeneracy condition on
the transfer matrix of Eq.4 to yield

∆2 +
µ2sec2(πp/(N + 1))

4
= 1, (36)
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where p = 1, 2...N/2 for evenN and p = 1, 2...(N−1)/2
for odd N. These ellipses divide the circle into different
parity sectors. Consistent with Fig. 4, for fixed ∆, parity
crossings occur at chemical potential values satisfying

µswitch = 2
√

1−∆2 cos

(
πp

N + 1

)
. (37)

Larger values of p correspond to lower values of chem-
ical potential. As each crossing is accompanied by a
fermion parity switch, the adjacent areas across the el-
liptic boundaries are sectors of opposite parity. Thus for
any given system size N, there are a number of parity
sectors within the COO in the phase diagram.

Even vs Odd number of sites. — It is important to
note the difference in the features of the parity sectors
for even and odd number of sites. For even number of
sites, there is a symmetry in the parity sectors across the
line µ = 0, whereas it is anti-symmetric for odd number
of sites. This feature has a significant effect on parity
switches in the disordered case, as discussed later on.

Majorana transfer matrix and parity switches. — Here
we show the manner in which the Majorana transfer ma-
trix offers an effective means of tracking the fermion par-
ity switches. Consider the version of the individual trans-
fer matrix of Eq.11 that is applicable to the homogeneous
case. The chemical potential µ is the same on each site
and the associated transfer matrix takes the form

Ãn =

(
− µ√

1−∆2
−1

1 0

)
(38)

Its eigenvalues are given by λ± = e±iα where α =

tan−1

(√
4(1−∆2)−µ2

µ

)
. Using Eq. 36 and as elaborated

in Ref. 29, we have the condition on α for the zero-energy
crossings

α =
πp

N + 1
(39)

p = 1, 2...N/2 for even N and p = 1, 2...(N − 1)/2 for
N odd. The full-chain transfer matrix can be calculated
exactly using Chebyshev’s identity for uni-modular ma-
trices 94 to yield(
− µ√

1−∆2
−1

1 0

)N
=

(
− µ√

1−∆2
UN−1 − UN−2 UN−1

UN−1 −UN−2

)
(40)

where UN = sin(α(N + 1))/ sinα. Now the condition for
the existence of an edge state reads

[ÃN ]11 = − µn√
1−∆2

UN−1 − UN−2 = UN = 0 (41)

Here we have used the identity 2 cosαUN−1 − UN−2 =
UN . Therefore the condition for zero-energy crossings
becomes

sin(α(N + 1))/ sinα = 0 (42)
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FIG. 5: Plots which show the comparison between the fermion
parity in a uniform Kitaev chain, calculated using Eq.30, and
the matrix element Ã11 of the zero-energy Majorana trans-
fer matrix whose vanishing value reflects the existence of a
zero-energy state. The matrix element is calculated both an-
alytically using Eq.40 and numerically for a uniform chain.
One can see that the parity switches coincide exactly with
the matrix element going to zero. Here N = 21,∆ = 0.6

which is in fact satisfied precisely when α = pπ/(N + 1).
From the above, we find that at each level crossing,

[ÃN ]11 tends to 0± depending on p being an even/odd
value. Figure 5 shows the numerical results for parity
switches and the sign of [ÃN ]11 identically track each
other, confirming our arguments.

C. Scaling of parity swtiches in the homogeneous
chain

Parity switches as a function of the chemical potential
in the homogeneous chain exhibit an interesting scaling
behavior. These parity switches are found only within
the COO of the topological phase in which the Majo-
rana wavefunctions are oscillatory. Within this regime,
if we consider the parity switches for the chains with
same length but different values superconducting gaps,
the variation of the chemical potential in each case can
be scaled to collapse all switches to a single curve. One
can understand the collapse as follows: start with a sys-
tem having a zero superconducting gap and obtain the
switches in parity as function of µ. Using this, one can
reproduce the parity switches at any value of finite gap
∆ by scaling µ by a ∆-dependent factor, which as seen
in Eq.12, is

√
1−∆2.

Fig.[6] shows the collapse of the scaled parity oscil-
lations at different superconducting gaps for the homo-
geneous case. The collapse of all the plots appropriate
for different values of the superconducting gap ∆i is ex-
pressed as

P (H[µ,∆ = 0, L]) = P (H[µ
√

1−∆2
i ,∆i, L]) (43)
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FIG. 6: Fermion parity switches are concurrent in wires of
differing superconducting gap ∆ as a function of the scaled
chemical potential µ′ = µ

√
1−∆2. This is shown here for

the uniform Kitaev chain of length N = 20, where parity is
calculated using Eq.[30]. The thick red plot is for ∆ = 0. The
other plots (scaled away from unity for proper visibility) are
for finite superconducting gaps.

This scaling within the COO of the topological phase can
be understood from the previous arguments on the ori-
gin of the oscillations from an underlying tight-binding
model in the absence of a gap. The oscillations of Ma-
jorana wavefunctions are given by the solutions of the
equation Eq. 22, which is the Heisenberg equation of
motion for the normal system having the scaled chemical
potential. For ∆ = 0, the scaling factor

√
1−∆2 is 1 and

the wavefunction oscillations are functions of only µ. For
finite gap ∆, the wavefunction oscillations are functions
of a scaled down chemical potential µ/

√
1−∆2. There-

fore, the resulting parity oscillations for the gapless case
can be visualized to be ‘stretched out’ along the axis of
µ, when compared to the case of finite gap. To map
the parity oscillations in the gapped case to the gapless
case,we need to scale up µ to µ

√
1−∆2 in the gapped

Hamiltonian, such that it cancels the scaling factor of µ
in the underlying gapless, normal tight-binding model.
This is shown in Eq.[ 43].

In fact, this scaling can be obtained as function of
length of the chain too. Such a ‘universal scaling’
has been reported in the context of entanglement spec-
trum of the transverse field XY spin chain 71. This
spin chain has an exact mapping to the Kitaev chain.
From the correspondence between the spin chain en-
tanglement spectrum and edge spectrum in topological
superconductors95,it is natural that there be a mapping
between the Schmidt gap oscillations in the spin chain
and parity oscillations in the Kitaev chain.

V. FERMION PARITY SWITCHES AND
LOW-ENERGY STATES IN FINITE-SIZED

DISORDERED WIRES

A. Energy spectrum and Majorana energy splitting

Disordered Kitaev chains have formed the topic
of active research for over a decade for several
reasons36–38,41–59. Belonging to the symmetry classes D
and BDI (depending on whether they respect time re-
versal symmetry breaking or not), these systems exhibit
behavior that starkly deviates from that of their nor-
mal counterparts. One of the highlighting features is the
presence of a delocalization-localization transition as a
function of disorder strength37,41,42,96. This transition
also corresponds to the transition between the topologi-
cal phase and non-topological phase, as shown in Ref.35.
In contrast to Anderson localization physics of normal
systems in one-dimension, the critical point in fact forms
a mobility edge separating two localized phases. The
mobility edge itself possesses a zero energy multifractal
state that extends through the bulk of the entire sys-
tem and offers a route for the Majorana end modes in
the topological phase to permeate and disappear into the
bulk upon entering the non-topological phase37,42. Here,
building upon known salient features of disordered Ki-
taev wires, we focus on finite sized systems and the be-
havior of the zero-energy degeneracy splitting, associated
Majorana wavefunction physics, and parity switches. We
use the ‘box disorder’ for numerical studies, where the
values of the chemical potential µn is taken from a uni-
form distribution of width W. Such a distribution with
zero mean is given by

µn =

[
− W

2
,
W

2

]
(44)

Evolution of the density-of-states (d.o.s.). — A strik-
ing feature of the disordered Kitaev chain is the presence
of a large gapless regime around the phase transition.
As a function of disorder strength, low disorder smears
the d.o.s near the gap edges, filling in some previously
forbidden states. Increasing the disorder results in a pro-
liferation of low energy localized bulk states, followed by
a divergent d.o.s about zero energy, corresponding to a
Griffiths-like phase. Further increase in disorder results
in a divergent d.o.s that respects universal dependence on
energy ε of the form ε−1|ε|−3 at the critical point, corre-
sponding to the Dyson singularity37,43. Still further, the
system enters the non-topological gapless phase. Sev-
eral investigations on the distribution of these mid-gap
states have explored scaling of density-of-states in Grif-
fiths phases, transport properties and topological phase
transitions in the context of disordered Majorana wires.
36–38,44–59. Here, as a simple illustration, in Fig. 7, we
show the evolution of the d.o.s for a single sample as a
function of increasing disorder strength using exact nu-
merical diagonalization. While detailed features cannot
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be resolved through our methods, the evolution clearly
demonstrates the trends described above.

Behavior of low-energy mid-gap states and Majorana
physics. — Reflecting the behavior of the d.o.s, at very
low disorder, the only low energy states correspond to the
Majorana end modes. In finite sized wires, these states
hybridize and exhibit a zero-energy splitting. Upon in-
creasing disorder, while low-energy bulk states proliferate
into the gap, the lowest energy states in the topological
phase still correspond to robust Majorana modes (typi-
cally hybridized). Extensive applications of random ma-
trix theory (RMT) for class D in previous work [55,59
and references therein] show that the spacing between
energy levels of the disordered Kitaev chain (class D) re-
spect the probability distribution of energy levels given
by97]

P (E)dE =
∏
i<j

|E2
i − E2

j |β
∏
k

|Ek|αe−E
2
k/v

2

dEk (45)

Class D : α = 0 β = 2

Here v is the variance of the distribution. The expo-
nent β, which measures level correlations between energy
states that are not particle-hole symmetric, is non-zero.
Thus, for any two such energy states, level repulsion en-
sures that the probability of the two energy levels crossing
goes to zero, avoiding any crossings. For two states with
energies ±E, however, since α = 0, the level crossing is
allowed.

In Fig.8, we show the evolution of the behavior of the
lowest three particle-hole symmetric energy pairs as a
function of disorder. As described above, for low disor-
der, only two energy levels corresponding to Majorana
modes can be seen close to zero energy. As the disorder
strength is increased, other levels converge towards zero
energy in close succession. Disorder causes fluctuations
in the energy level spacing. For a significant portion of
the topological phase, the scale of energy level splitting is
very different for the Majorana modes compared to the
next higher energy levels. As in the uniform case, the
splitting of the Majorana modes as a function of system
size is expected to be exponentially small while that of
the other states is expected to be algebraic47. It can be
seen that beyond the critical disorder strength for the
topological phase to exist, the lowest energy modes now
lose their Majorana character and their level splitting is
comparable to that of the other modes.

Focusing on the energy level splitting of the Majo-
rana modes, the behavior of the disordered Majorana
wavefunction discussed in Sec.III C ought to dictate the
splitting. We saw that three components characterize
the wavefunctions: i) the gap-protected robust envelope,
whose localization is determined by the magnitude of the
superconducting gap ii) a second decaying envelope due
to disorder, whose localization is determined from the
underlying Anderson problem (see Eq.26) iii) and the
sub-envelope random oscillations dictated by the same
Anderson problem. The first two determine the average
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FIG. 7: Density-of-states plots for a disordered Kitaev chain
(∆ = 0.6) as a function of distance from the Fermi energy for a
single disorder configuration of box disorder 44. (a) For weak
disorder (W < 8), there is a well-defined superconducting
gap in the density-of-states. (b) As the disorder strength is
increased, the gap is filled due to the proliferation of low-
energy bulk states.(c) At a critical disorder strength, there
is ‘singularity’ in the density-of-states. The behavior beyond
the critical point resembles that of (b).
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FIG. 8: (a)Variation of a set of lowest energy levels (first 3
states) of the Kitaev chain as a function of disorder strength
for box disorder 44 and other parameters fixed to ∆ = 0.6,
N = 30. For small disorder width, the Majorana states are
well separated from the bulk by a superconducting gap. As
the disorder is increased there is a proliferation of the bulk
states into the gap.(b) Zoomed in view of the two Majorana
states split due to finite size. Their scale is exponentially sup-
pressed compared to the bulk states. These states cross zero
energy as the disorder width is varied, inducing a fermion
parity switch in the ground state. (c) Griffiths phase: At
strong disorder, there is an accumulation of large number of
bulk states near zero energy. Level crossings between these
states are forbidden due to level statistics of Class D (level
repulsion). Nearing the critical disorder strength, the magni-
tude of the energy states due to Majorana splitting become
comparable to the bulk states.

scale of energy splitting of the degenerate zero-energy
states in a finite size wire. The crossing of these states
is determined by the third aspect; in the next subsec-
tion, we study these crossings in detail and their direct
connection with fermion parity switches.

1. Scaling of degeneracy-split states

In Ref. 47, it was shown using a scattering matrix
approach that the energy level splitting of coupled Ma-
jorana end states in a finite sized wire is exponentially
small compared to bulk states in the weak disorder limit.
Due to large fluctuations, the energies of these mid-gap
states themselves do not follow a simple probability dis-
tribution. But as is common with random systems, the
logarithm of these energies obeys a normal distribution.
A central result of Ref. 47 is that for a continuum model
of the p-wave superconducting wire, the average of this
quantity has the form

〈ln(ε0,max/2∆)〉 = −L[1/ξ − 1/(2l)], (46)

where ε0 is the Majorana end state energy in a finite
sized wire,∆ is as usual the magnitude of the supercon-
ducting gap, ξ is the superconducting coherence length
and l is the mean free path of the corresponding disorder
configuration.

These results can be understood in the light of our
discussion on Majorana transfer matrices. As described
before, the degeneracy-split end modes have energies pro-
portional to the overlap of the Majorana wavefunctions.
In a finite sized wire of length L, for two end modes
having a decaying envelope of localization length 1/γ,
this overlap is proportional to ε0 ∼ eγxeγ(L−x) = eγL.
Here, γ is the Lyapunov exponent and is a negative
quantity in the topological phase. As shown in Eq. 17,
γL = (γS + γN )L consists of a superconducting and nor-
mal piece. Now, as is commonly invoked in treatments of
localization physics and random systems, given the mul-
tiplicative nature of transfer matrices, the Lyapunov ex-
ponent corresponding to the transfer matrix is in general
self-averaging. Thus, we expect ln(ε0) to have an average
value of Lγ; this result is reminiscent of Eq.46 where ξ is
the length scale associated with superconductivity and l
with normal localization properties.

B. Parity switches - qualitative discussion and
numerical results

In Sec.IV A, we outlined how a pair of zero energy
Majorana modes form a Dirac fermion state that can be
occupied or unoccupied, corresponding to two states of
opposite parity. We then showed the manner in which
end Majorana modes hybridize in a finite sized uniform
chain, giving rise to an energy splitting and an associ-
ated unique ground state parity. We charted out the
points in phase space where zero energy crossings take
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place, corresponding to ground state parity switches, and
mapped the regions of odd and even parity in the topo-
logical phase diagram. Turning to disordered systems,
in the previous section, we gave a detailed description
of the behavior of low energy states and discussed the
distribution of energies associated with zero energy split-
tings. Here, we focus on the vanishing of this splitting
and show that this occurrence directly corresponds to a
ground state parity switch. We also show the manner
in which our study of the uniform system informs the
ground state parity distribution map for the disordered
case.

Zero-energy crossings and parity switches. — Follow-
ing the discussion on mid-gap states in the previous sec-
tion, first off, we see that zero-energy level crossings
are infact possible as a function of system parameters,
such as chemical potential and disorder strength. The
RMT result of Eq.46 further corroborates that particle-
hole symmetric states can undergo zero-energy crossings
but other pairs of adjacent states cannot do so due to
level repulsion. This suggests that the only states under-
going zero-energy crossing are the ones associated with
Majorana physics. In other words, zero-energy crossing
are concurrent with fermion parity switches. We now
demonstrate this explicitly.

In Sec.III C, we saw that the Majorana wavefunction in
the disordered case has a decaying enveloping as well as
oscillations that are completely dictated by the underly-
ing normal Anderson tight-binding model. In the previ-
ous section, we saw that the decaying envelope is directly
related to the scale of the average zero-energy splitting
and is always finite for a finite length wire. However, the
oscillations directly contribute to the fluctuations and, in
particular, to the vanishing of the splitting. In principle,
just as the correlation between two decaying envelopes
gives the average scale for zero-energy splitting, analytic
studies of correlations between the oscillations78 ought to
give precise information on the locations where the split-
ting vanishes. Here, we resort to the numerical methods
that we employed in previous sections. Specifically, we
use the normal system transfer matrix condition for the
existence of a zero energy state given by Eq.35, Ã11 = 0.
Here, Ã11 is the appropriate matrix element of the full
transfer matrix, Ã and the condition dictates that the
amplitude of the associated wavefunction vanish outside
the length of the wire.

In Fig.9, we plot the matrix element Ã11 as well as the
ground state parity for a finite sized disordered wire as
a function of disorder strength. Here, we use the Pfaf-
fian measure of Eq. 30 for determining the parity. The
points of vanishing Ã11 correspond to points which host
a generic zero-energy state. Note that this state also
has a zero energy partner, whose transfer matrix can be
derived from the initial transfer matrix by replacing ∆
with −∆. While the magnitude of Ã11 is unimportant for
parity switch physics, its increase with disorder strength
reflects the increase of the increase of the average energy
splitting. Most prominently, we see that the vanishing of
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FIG. 9: Comparison between the fermion parity in a disor-
dered Kitaev chain and the transfer matrix element Ã11 as
a function of disorder strength(box disorder). The vanish-
ing of the matrix element reflects the existence of a zero-
energy Majorana state and can be seen here to coincide with
parity switches as with the uniform case of Fig.5. Here
N = 40,∆ = 0.6

Ã11 is concurrent with the switching of ground state par-
ity. Thus zero energy crossings correspond to the pres-
ence of two decoupled Majorana modes and associated
degenerate parity states.

In summary, the underlying normal Anderson model
dictates zero-energy crossings in the disordered supercon-
ducting wire. These zero-energy crossings are exclusively
associated with Majorana mode physics and correspond
to the points when the system encounters a parity degen-
eracy in the process of undergoing a ground state parity
switch.

Tracking parity switches in the topological phase dia-
gram. — In obtaining a map of the regions where parity
switches occur in the disordered Kitaev chain, we find
that our studies from previous sections of the parity dis-
tributions in the uniform system serves as a guide. The
precise points in parameter space where the switch oc-
curs depend on the particular realization of disorder and
are thus random. However, the parity switch phase di-
agram for the pure case in Fig. 4 identifies the broad
regimes in which parity switches can or cannot occur. In
essence, for a fixed value of the the superconducting gap,
anywhere in the uniform chain phase diagram, windows
in chemical potential where no parity switch occurs de-
termine the width that the disorder distribution can span
in the disordered case before a parity switch occurs. As
we explicitly demonstrate, those observations allows us
to chart out regimes where parity switches occur or not
in the disordered wire.

We first analyze parity switch behavior in chains hav-
ing an even number of lattice sites. Figure 10.a shows
numerical results for typical parity switching behavior as
a function of disorder strength W . In all numerical simu-
lations, the values of µn are chosen randomly from a box
distribution or a ‘window’, centered at a mean < µn >
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FIG. 10: (a) Parity switches in a wire of an even number of
lattice sites, N = 10, as a function of disorder width for box
disorder. Here, ∆ = 0.6. Since parity is an even function
of chemical potential for even N , the initial disorder window
lies within a fixed parity as indicated in the uniform chain
phase diagram in (b). As the disorder window is increased
beyond a length-dependent value µp

switch of Eq. 47 (dotted
line) to include opposite parity sectors, parity switches begin
to occur.

value and having a width W . The parity is calculated
again using the Pfaffian expression given by Eq. 30.

One can see from Fig.10.(a) that for the case of an
even number of sites no parity switches occur up to a spe-
cific disorder window width. Beyond this width, switches
start occurring in rapid succession and follow a random
pattern that depends on the specific realization of dis-
order. As the disorder window width increases and in-
cludes opposite parity sectors, number of parity switches
increase from being sparse to very dense.

A qualitative picture for the parity switches can be
obtained by invoking the properties of the uniform chain
phase diagram. As shown in Fig.10.(b) and discussed
in previous sections, for a fixed wire length, the uni-
form chain ground state parity changes in a character-
istic manner as a function of chemical potential. The
chemical potential values at which these parity crossing
happen are given by

µpswitch = 2
√

1−∆2 cos

(
πp

N + 1

)
, (47)

where p takes integer values from 1 to N/2 for even N .
The first crossing occurs for p = N/2 and the width of the

central parity sector is 2µ
N/2
switch. Thus, any value of chem-

ical potential lying within this window is associated with
the same parity. Upon introducing disorder such that the
site-dependent chemical potential lies within this width,
we would expect no changes in the overall ground state
parity. Beyond this width, however, chemical potentials
associated with the opposite parity become included in
the on-site distribution, allowing for the possibility of a
global ground state parity switch. The probability of
such a switch increases with increasing disorder window
width as it allows a higher chance of on-site chemical
potentials being associated with opposite parity. This
qualitative picture is consistent with the behavior of par-
ity switches in Fig. 10.b. We now show that it accounts
for our numerical findings with regards to parity switch
behavior as a function of system size, average chemical
potential off-set, and odd versus even number of lattice
sites.

The occurrence of parity switches highly depends on
the system size, N . As can be seen in Eq. 47, as N in-
creases, the chemical potential value at which the first

parity switch occurs in the uniform case, µ
N/2
switch, be-

comes smaller. Thus, in the disordered case, for a wire
of longer length, we expect parity switches to commence
for smaller disorder window width. We indeed find this
to be true.

Chemical potential off-set and absence of parity
switches. — As with the case above of disorder centered
around zero chemical potential, here we analyze parity
switches in the presence of a chemical potential off-set
where the mean < µn > 6= 0. Once again, the uniform
chain parity regimes inform the behavior of the disor-
dered wire. One of the most striking features to emerge
is that if the chemical potential off-set and disorder win-
dow width are chosen to lie within a region of the uni-
form chain phase diagram where no parity switches oc-
cur, then the disordered wire too shows no ground state
parity switch. Specifically, from Eq. 47, we see that the
chemical potential span of any given parity sector in the
uniform wire is given by

∆µp = 2 sin

(
π(p+ 1/2)

N + 1

)
sin

(
π

N + 1

)
This sector width shrinks with increasing N . Also for a
given size N , this width decreases as one progresses from
zero chemical potential to the boundary of the circle of
oscillation (COO), i.e. as p → 1. Furthermore, outside
the COO, no parity switches occur. These features pro-
vide bounds for the values of chemical potential off-set
and disorder window width in which no parity crossings
occur.

In Fig.11, we explicitly verify the observations made
above. As one example, we consider a double box disor-
der distribution where two disorder windows are centered
around two values of chemical potential such that both
windows lie within the same parity sectors in the uniform
chain phase diagram. As a second example, we place the
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FIG. 11: Possibility of no parity switches in the disordered
Kitaev chain.(a) Two possible disorder distributions centered
around finite chemical potential are shown in which parity
switches are not expected - I. Double box disorder in two
disjoint sectors of the same parity and II. Box disorder outside
the circle of oscillations. (b) In both cases, the plot of parity
as a function of disorder strength indeed shows the absence
of parity switches.

disorder window outside the COO, thus expecting no par-
ity switches. Indeed, in both situations parity switches
are not observed. While the double box disorder seems
unrealistic, the case of taking the window outside the
circle might be possible to realize experimentally. One
can study the ‘Ising-limit’ ∆ = 1, which is tangential
to the circle. In this case taking < µn >= 0, the par-
ity switches as a function of width again depends on the
number of sites being even or odd. This explicitly shows
that there are cases where one need not have any parity
switches even in the presence of disorder and when they
are present, the behavior completely depends crucially on
the features of the parity sectors of the uniform Kitaev
chain.

Dependence on even versus odd N . — A notewor-
thy difference arises in the behavior of parity switches
between chains of even and odd number of lattices sites,
once again stemming from the structure of the uniform
wire ground state parity distribution. The key difference
is that the distribution of parity switches is symmetric
as a function of chemical potential for the even site case
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FIG. 12: Parity switches in a wire of odd length (N = 11,∆ =
0.6) as a function of disorder strength for box disorder. (a)
Given the antisymmetry in parity sectors across µ = 0 for
the uniform case, the slightest change in disorder strength is
expected to produce a parity switch. This is confirmed in
(b), which shows a profusion of random parity switches as
a function of disorder strengths starting from the smallest
amount of disorder.

but anti-symmetric for the odd site case. Explicitly, the
values of chemical potential for when parity crossing oc-
cur are given by Eq. 47 for an even number of sites.
While the same holds for the odd site case (with values
of p ranging from 1 to (N − 1)/2), a parity switch also
occurs at µ = 0. Thus, in the presence of disorder, in
contrast to the even site case shown in Fig. 10, even the
narrowest disorder window centered around zero chemi-
cal potential gives rise to parity switches. This behavior
is corroborated in Fig. 12.

Thus, we have presented a qualitative study of ground
state parity in finite sized disordered Kitaev chains.
Salient features are that the uniform Kitaev chain serves
to inform parity switches in disordered chains. The trans-
fer matrix, as with the uniform case, tracks zero energy
crossings and shows that they are consistent with par-
ity switches, thus attributing all such crossings with Ma-
jorana mode physics. For the disordered case, the un-
derlying normal state Anderson problem determines os-
cillations of the Majorana wavefunctions and associated
parity switches. Finite length analyses of the uniform
wire have direct bearing on parity switching behavior for
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the disordered case. Windows in chemical potential that
contain fixed parity sectors in the uniform case provide
bounds for disorder distribution widths that respect no
parity switching. Specifically, this observation results in
the characteristic parity switching behavior for even and
odd length chains shown in Fig.10 and Fig.12 as well as
regimes in the phase diagram where no parity switching
takes place, as shown in Fig.11.

VI. DISCUSSION

To summarize our approach and results, we have pre-
sented a detailed analysis of the Majorana wavefunc-
tions and fermion parity switches in the finite-sized Ki-
taev chain. Employing the Majorana transfer matrix and
studying its properties enabled us to resolve the effect of
any general potential landscape on the Majorana wave-
function. The wavefunctions are characterized by decay
and oscillations where we found that the latter stems
purely from the underlying normal tight-binding model.
In the uniform system, these oscillations correspond to
band oscillations which, when analyzed as a function of
parameter space, allowed us to identify a circular regime
in the topological phase in which Majorana wavefunc-
tions oscillate. In the disordered case, the underlying
normal tight-binding model is the Anderson model. Thus
the underlying oscillations are random oscillations stem-
ming from the Anderson problem and there are large
fluctuations between different disorder realizations. Any
further investigation on the oscillations and the result-
ing parity flips can thus bank on the vast literature on
disorder and Anderson localization.

The disordered one-dimensional p-wave superconduct-
ing wire has been studied extensively in the past for its
rich localization and Majorana physics. On this front,
our work performs one of the initial studies probing
fermion parity effects in this system. We show that in
spite of the random nature of the parity switches in the
presence of disorder, the parity sectors of the uniform
Kitaev chain can still dictate various qualitative features
of switches in the disordered case. One of the striking
observations in our studies is the presence of regimes in
which no parity switching takes place for a range of disor-
der strengths. These features can have strong bearing on
realistic protocols for topological quantum computation,
where the operations are through ground state parity ma-
nipulations.

Our study here opens up several future directions
concerning Majorana wavefunction features and parity
switches. With regards to disorder, several aspects can
potentially be studied by invoking known results from
the literature on disordered spin chains. One challenge
with characterizing topological features in the presence
of disorder, just as with non-topological features, is that
certain quantities of interest might show large sample-to-
sample fluctuations and appropriate quantities need to
be identified for disorder averaging. For example, in the

case of Anderson localization, the conductance itself has
large fluctuations whereas the logarithmic conductance
shows a Gaussian distribution in certain limits. Specif-
ically, seeking a quantity for cleanly characterizing par-
ity switches is in order; related studies in the context of
Josephson junctions have been performed using random
matrix theory 59,60.

Our treatment here enables the future study of a range
of potential landscapes. A crucial feature in our work
here and in previous ones is that we map features of the
Majorana bound mode through the behavior of the un-
derlying normal tight-binding problem. In light of this
observations, a specific case of interest would be that of
(quasi-)periodic potentials. The wave equation for Majo-
rana modes in this case respects Harper’s equation, which
has been studied extensively for its mathematical rich-
ness. As already pointed out in Ref. 35, the Lyapunov
exponent reflects the Hofstadter butterfly pattern and we
expect Majorana wavefunctions and parity switches to do
the same.

On the front of extensively studied realistic systems,
our treatment directly applies to proposed and experi-
mentally investigated systems such as proximity induced
spin-orbit-coupled wires and superconductor-topological
insulator hetero-structures. In these systems, the Kitaev
chain forming the basis of our work provides an excellent
prototype and we expect our observations on Majorana
oscillations and parity switches to be directly applica-
ble. A possible avenue for exploring parity effects would
involve coupling the Majorana wire to a charge sensi-
tive system, such as a quantum dot, a single electron
transistor, or a scanning tunneling microscope(STM) tip
25,89,98–102. Other methods which have gained promi-
nence in the Majorana mode context include coupling
to microwave cavity, circuit quantum electrodynamics,
cooper pair boxes and Transmon systems seem to show
promise and have gained much attention, especially as
they directly couple to the parity sectors arising from the
Majorana modes92,103–109. There have also been several
proposals for realization of topological systems hosting
Majorana modes in cold atomic systems 110–112. These
systems and probes put together offer ample ways of ac-
cessing and exploring the wavefunction oscillations and
parity regimes delineated here.

Having a precise handle of the parity landscape in
Majorana wires is one of the key requirements for sev-
eral topological quantum computational considerations.
As an example, as shown in Refs.30,31,33,113,114, one
method of performing non-Abelian rotations in the de-
generate Majorana ground state manifold is through tun-
ing the coupling between Majorana modes. This method
has formed the basis of various quantum computational
protocols31,32,90,109,113–115. Thus the detailed knowledge
presented here on the degeneracy points in the topologi-
cal phase diagram, parity switches in a finite length wire,
and their behavior in the presence of disorder are all of
relevance in this context.

Finally, an obvious extension of our work would be to
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include interactions in the system. It has been shown us-
ing Luttinger liquid treatments that interaction of small
strength would not destroy the topological phase as long
as the superconducting gap is maintained in the system
51,116–124. Majorana modes and interactions have also
been studied in various settings and is shown to exhibit
rich phenomena 96,125–130. The issue now would be to
cast parity effects in terms of a many-body generaliza-
tion of the non-interacting case 125,131,132. A possible
approach would entail drawing from the exact map be-
tween the Kitaev chain Hamiltonian with nearest neigh-
bor density-density interaction and the transverse-field
XYZ Heisenberg spin chain133–135. Such systems with
both disorder and interactions have also been studied ac-
tively in the recent years in the context of many-body lo-

calization. These considerations regarding interactions,
along with several other avenues, will form the basis of
further studies on wavefunction oscillations and fermion
parity switches in Majorana wires.
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