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Abstract

In the conventional theory of density wave ordering in metals, the onset of spin density wave (SDW)

order co-incides with the reconstruction of the Fermi surfaces into small ‘pockets’. We present models

which display this transition, while also displaying an alternative route between these phases via an

intermediate phase with topological order, no broken symmetry, and pocket Fermi surfaces. The models

involve coupling emergent gauge fields to a fractionalized SDW order, but retain the canonical electron

operator in the underlying Hamiltonian. We establish an intimate connection between the suppression

of certain defects in the SDW order, and the presence of Fermi surface sizes distinct from the Luttinger

value in Fermi liquids. We discuss the relevance of such models to the physics of the hole-doped cuprates

near optimal doping.

1

http://arXiv.org/abs/1606.07813


I. INTRODUCTION

A number of recent experiments [1–4] have highlighted a remarkable transformation in the

electronic state of the hole-doped cuprates at a hole density around p = pc ≈ 0.19: many electronic

properties change from those characteristic of a Fermi gas of charge +e carriers of density p for

p < pc, to those of a Fermi gas of charge +e carriers of density 1 + p for p > pc. As the density of

holes is conventionally measured relative to those of the insulator at unit density, a conventional

Fermi liquid is required by the Luttinger theorem to have a Fermi surface of size 1 + p, as found

for p > pc.

Starting from the Fermi liquid with a Fermi surface of size 1+p, there are two reasonable routes

to a Fermi surface reconstruction of size p that could apply to the cuprates:

(i) The conventional route involves the onset of spin density wave (SDW) order (other density wave

orders have also been suggested [5]), which reconstructs the “large” Fermi surface to pocket Fermi

surfaces. This route appears appropriate for the electron-doped cuprates, where antiferromagnetic

order is observed [6] not too far from the critical electron doping.

(ii) The more ‘exotic’ route relies on the development of topological quantum order in the metallic

state, which has been linked to changes in the Fermi surface size [7–9]. This is an attractive

and exciting possibility for the hole-doped cuprates, given the absence in observations so far of

significant correlations in any order parameter which breaks translational symmetry near p = pc.

The purpose of this paper is to present the simplest models in which the existence of the three

metallic phases mentioned above (the Fermi liquid, the Fermi liquid with SDW order, and the

metal with small Fermi surfaces and topological order) can be reliably established. We wish to

describe models which can serve as convenient starting points for analyzing the quantum phase

transitions between these metals, and which do not have extraneous exotic phases which are

ultimately unstable to confinement.

The models described below are closely connected to previous work [10–13] using a SU(2) gauge

theory and a Higgs field to represent local antiferromagnetic correlations in a metal. These previous

works, along with related works using a Schwinger boson formulation [14, 15] or a quantum dimer

model [16], show that the phases we obtain below are allowed ground states of a single-band

Hubbard model. However, in the interests of simplicity and of keeping this paper self-contained,

we will not introduce the models using these prior connections. Instead, we will emphasize the

relationship of our models to those using a conventional Landau-Ginzburg-Wilson (LGW) order

parameter framework for the onset of spin density wave order in metals; as emphasized by Hertz

[17], the general rules of LGW theories apply to such quantum phase transitions in metals, and the

main role of the Fermi surface is to damp with dynamic order parameter fluctuations. Developing

our model by deforming the LGW theory will clearly expose the intimate link between topological
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defects in the SDW order, and the possibility of metallic states which have Fermi surface sizes

distinct from the Luttinger value.

As the LGW-Hertz theory is an expansion around weak coupling, our analysis below can be

viewed as providing the minimal ingredients necessary to put strong coupling Mott-Hubbard

physics back into the LGW-Hertz model. Indeed in the limit of p = 0, our model will have a

Mott insulator with Z2 topological order [18, 19] (and other topological orders in related models),

in addition to the ‘Slater’ insulator with Néel order present in the LGW-Hertz model.

A. Easy-plane model

The most transparent introduction to our models is obtained by focusing on the case in which

the spin density wave order parameter is restricted to lie in the x-y plane in spin space. Such

a restriction can only arise from spin-orbit couplings, which are known to be rather weak in the

cuprates. Nevertheless, we will describe this case first because of its simplicity.

1. LGW-Hertz theory

The LGW-Hertz theory for the onset of SDW order can be described by the following Hamil-

tonian

Hsdw = Hc +Hθ +HY , (1.1)

where Hc describes electrons (of density (1− p)) hopping on the sites of a square lattice

Hc = −
∑

i,j

(tij + µδij) c
†
iαcjα (1.2)

with ciα the electron annihilation operator on site i with spin α =↑, ↓. We represent the SDW

order by a lattice XY rotor model, described by an angle θi, and its canonically conjugate number

operator Ni, obeying

Hθ = −
∑

i<j

Jij cos(θi − θj) + 4∆
∑

i

N2
i ; [θi, Nj] = iδij, (1.3)

where Jij positive exchange constants, and ∆ is proportional to the bare spin-wave gap (the 4 is for

future convenience). A term linear in Ni is also allowed in Hθ, but we ignore it for simplicity; such

a linear term will not be allowed when we consider models with SU(2) symmetry in Section IV.

Finally, there is a ‘Yukawa’ coupling between the XY order parameter, eiθ, and the fermions

HY = −λ
∑

i

ηi

[
e−iθic†i↑ci↓ + eiθic†i↓ci↑

]
, (1.4)
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where

ηi ≡ (−1)xi+yi (1.5)

is the staggering factor representing the opposite spin orientations on the two sublattices. Note

that the Yukawa coupling, and the remaining Hamiltonian, commute with the total spin along the

z direction

Sz =
∑

i

(
Ni +

1

2
c†i↑ci↑ −

1

2
c†i↓ci↓

)
. (1.6)

The Hamiltonian Hsdw displays the two conventional metallic phases noted above. These phases

can be conveniently accessed by tuning the value of ∆/J , where J is the nearest-neighbor exchange.

For large ∆/J , the correlations of eiθ are short-ranged, and we obtain the Fermi liquid with a

large Fermi surface controlled mainly by Hc; we can account for HY perturbatively in λ, and the

large Fermi surface leads to damping in the order parameter correlation functions. On the other

hand, for small ∆/J , we expect long-range XY order with
〈
eiθ
〉
6= 0; now HY has a stronger

effect, and in the presence of the XY condensate the fermion dispersion is modified, leading to a

reconstruction of the Fermi surface into small pockets. These phases of Hsdw are illustrated by the

small K regime of Fig. 1, where they are labelled A and B respectively (the parameter K will be

introduced below). The phase transition between these two phases has been extensively studied

[20–27] since the original work by Hertz [17], including by recent sign-problem-free quantum Monte

Carlo simulations [28–30]. Note that in such a phase transition, two important physical changes

happen at the same point in the phase diagram: the appearance of long-range XY order, and the

reconstruction of the Fermi surface.

It is also interesting to consider the p = 0 limit of phases A and B. The large Fermi surface

has size 1 + p and so phase A is not sensitive to p approaching 0: it remains a Fermi liquid. On

the other hand, in phase B, the hole pockets disappear at p = 0, so phase B is an insulator. This

insulating behavior is a direct consequence of the presence of strong long-range XY order, and so

B should be considered a Slater insulator at p = 0. We note that in between the Slater insulator

and the large Fermi surface Fermi liquid, there is a metal with hole and electron pockets, and this

is not shown in Fig. 1.

2. Fractionalizing the order parameter

We now ask if it is possible, at non-zero p, to realize a situation in which XY long-range

order and Fermi surface reconstructions happen at distinct points of the phase diagram. If so,

we will obtain an intermediate phase with small Fermi pockets but no long-range XY order. (At

p = 0, such a phase would be an insulator without long-range XY order, and so would be a Mott

insulator.) To obtain such a phase, we use the idea of transforming to a ‘rotating reference frame’
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FIG. 1. Schematic, minimal, phase diagram of the easy-plane Hamiltonian H1 in Eq. (1.9). The vortices

are the usual defects in the XY SDW order eiθ. The Fermi surfaces are shown in the first Brillouin zone:

those in A and B are of electrons, while those in C can be either of electrons or chargons. In phase C,

the single vortices in the SDW order are gapped excitations, identified as the visons of the Z2 topological

order. The sketched Fermi surfaces are for hole-doping with the cuprate band structure: in phases B

and C only hole pockets are shown, but electron pockets will appear near the boundaries to phase A. We

propose that the SU(2) spin rotation invariant analogs of phase C (discussed in Section IV) describe the

pseudogap state in the hole-doped cuprates. Other less-correlated superconductors (such as the pnictides)

are proposed to bypass phase C and evolve directly from phase B to A.

determined by the local orientation of the XY order [10, 31, 32]. In particular, by a rotation about

the z axis in spin space, let us define the canonical fermion operators

ψ+ = eiθ/2c↑ , ψ− = e−iθ/2c↓. (1.7)

Then the Yukawa coupling, HY , takes a simple form independent of the orientation of the XY

order [10]:

HY = −λ
∑

i

ηi

[
ψ†i+ψi− + ψ†i−ψi+

]
. (1.8)
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In other words, the ψ± fermions move in the presence of a spacetime-independent XY order, even

though the actual orientation of the XY order rotates from point to point. Moreover, from the

electron hopping term in Hc, we can obtain an effective hopping Zijtij(ψ
†
i+ψj+ + ψ†i−ψj−) where

Zij = 〈e±i(θi−θj)/2〉 is a renormalization factor of order unity (computed later in Eq. (2.21)). So

it appears we can realize a situation in which the ψ± fermions are approximately free, and their

observation of constant XY order implies that they will form small pocket Fermi surfaces (or be

fully gapped at p = 0). From (1.6), it can be verified that the ψ± fermions have Sz = 0, and so

these are spinless fermions which carry only the charge of the electron: we will refer to them as

‘chargons’ in the remaining discussion. A metallic phase with chargon Fermi surfaces was called

an ‘algebraic charge liquid’ (ACL) in Ref. 15.

However, further thought based upon the structure of (1.7) shows that there is a crucial obstacle

to realizing nearly-free ψ± fermions in a regime where
〈
eiθ
〉

= 0. The phase with no XY order

described by Hsdw has proliferating 2π vortices in the SDW order, and the half-angle transformation

in Eq. (1.7) shows that ψ± are not single-valued around such vortices. So the ψ± fermions must

be confined at the same point where the XY order disappears. In other words, we are back to the

conventional scenario in which Fermi surface reconstruction and XY ordering co-incide.

But the above argument also suggests a route around such an obstacle: the ψ± fermions are

single-valued around doubled 4π vortices, and so we need the disappearance of XY order to be

associated with the proliferation of doubled vortices.

There is a simple route to the loss of XY order by doubled vortices that has been much studied

in the literature [33–36]: it involves coupling the square-root of the XY order, the ‘spinon’ field

eiθ/2, to a Z2 gauge field. A microscopic justification for fractionalizing the order parameter in

this manner can be obtained from the Schwinger boson theory of frustrated antiferromagnets

[10, 18, 37, 38]: eiθ/2 is essentially the staggered Schwinger boson operator. The model we wish to

study is obtained by replacing Hθ in Hsdw by the model studied in Refs. 33 and 34. In this manner,

we obtain the Hamiltonian (written out completely because of our focus on it in this paper)

H1 = Hc +Hθ,Z2 +HY

Hc = −
∑

i,j

(tij + µδij) c
†
iαcjα

HY = −λ
∑

i

ηi

[
e−iθic†i↑ci↓ + eiθic†i↓ci↑

]

Hθ,Z2 = −
∑

i<j

Jijµ
z
ij cos ((θi − θj)/2) + 4∆

∑

i

N2
i − g

∑

〈ij〉

µxij −K
∑

�

[∏

�

µzij

]
, (1.9)

where µx,z are Pauli matrices on the links of the square lattice representing the Z2 gauge field.

The forms of Hc and HY are the same as those in the LGW-Hertz theory, and only the action for
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the spin density wave order has been modified by terms that are effectively multi-spin exchange

interactions. (It will become clear from our discussion later that at p = 0 and small ∆, H1

reduces to the model studied in Ref. 36.) The Hamiltonian H1 is invariant under the Z2 gauge

transformation

eiθi/2 → si e
iθi/2 , µzij → si µ

z
ij sj, (1.10)

where si = ±1 is an arbitrary function of i, and the other operators remain invariant. Associated

with this gauge invariance is the existence of an extensive number of conserved charges, Ĝi, which

commute with H1 and obey Ĝ2
i = 1; we restrict our attention to the gauge-invariant sector of the

Hilbert space in which all the Ĝi = 1:

Ĝi ≡ e2iπN̂i

∏

j∈n.n.(i)

µxij = 1, (1.11)

where j extends over the nearest-neighbors of i.

The main term driving the appearance of exotic phases in H1 is the K term, which penalizes

configurations with non-zero Z2 gauge flux. For small K, we can trace over the Z2 gauge field in

powers of K, and then H1 only has terms with the same structure as those in Hsdw. However,

at large K, the suppression of Z2 gauge flux implies that single vortices (but not double vortices)

in eiθ become very expensive: the coupling Jij ties Z2 gauge flux to a 2π vortex in eiθ because of

the branch cut in eiθ/2 around such a vortex. Hence, upon increasing ∆ at large K, we obtain

the needed transition to a phase without XY order by the proliferation of double vortices. The

resulting Z2 topologically ordered phase supports gapped deconfined “spinon” excitations that

carry a half integer value of Ni, and gapped vison excitations which are the remnants of the single

vortices in the SDW ordered phase.

This discussion therefore leads to the schematic phase diagram of H1 shown in Fig. 1. Further

details on the structure of the new phase with Z2 topological order appear in Sections II and III.

The model (1.9) can support additional phases not shown in Fig. 1, which we comment on in

Appendix A.

One important distinction between H1 and previous studies of fractionalization in doped Mott

insulators [10, 33, 39, 40] is worth noting here. In all previous works, the Hamiltonian is presented

in terms of emergent, fractionalized spinon and chargon degrees of freedom. The electron operator

does not appear explicitly in the Hamiltonian, but is described as a composite operator. In contrast,

in our model H1 we have fractionalized the order parameter only into the spinons, while retaining

the bare electron operator in the Hamiltonian. In our approach, it is the chargon, rather than the

electron, which appears as a composite particle, as a bound state of the electron and the spinon in

(1.7). We believe this difference in perspective is important, and that it leads to an efficient and

controlled description of the metallic states observed in the cuprates.
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We also comment here on an important subtlety in the structure of the metallic phase with

Z2 topological order. We have given arguments above on the appearance of reconstructed pocket

Fermi surfaces of the ψ± chargons in this phase. However, as we will see in our computations

below, there remains a strong residual attraction [14–16, 41] between the chargons and the spinons

due to the hopping terms, tij in Hc. Because of this attraction, it is possible that some or all of

the chargons form bound states with the spinons, leading to a pocket Fermi surface of electron-like

quasiparticles with charge e and spin Sz = ±1/2. If all of the chargons undergo this bound-state

formation, then we obtain a FL* metal [7, 16, 42–46]. Microscopic details of the Hamiltonian

will determined whether we obtain an ACL, or FL*, or an intermediate phase with co-existing

chargon and electron Fermi surfaces [15]—the charge transport properties of all these phases are

expected to be very similar, and so we will not focus much on the distinction here. Note that, in

the discussion above, even if all chargons bind with spinons to form electrons, we do not obtain

back the large Fermi surface Fermi liquid, but obtain FL*: this is because the Fermi surface size of

the chargons is p and not 1 + p. Thus, an important feature of our analysis is that the operations

of binding fermions to spinons, and of Fermi surface reconstruction, do not commute.

We note that a model closely related to H1 was studied by Grover and Senthil [47] in the

context of a two-band Kondo-Heisenberg model. However, their interest was limited to the regime

accessible perturbatively in an expansion in λ (in our notation), and they did not obtain the analog

of the topological phase C in Fig. 1 with reconstructed Fermi surfaces. In doped Mott insulators,

the coupling λ ∼ U , the on-site Mott-Hubbard repulsion, and so λ is the largest energy scale in the

Hamiltonian. We will work throughout in the large λ limit, and will see below that the topological

phase appears in a regime inaccessible in a small λ expansion.

The analysis of this paper will neglect superconductivity. But it should be noted that all the

metallic phases of Fig. 1 are expected to superconduct at low T [29, 30].

The outline of the remainder of the paper is as follows. Section II will analyze the properties

of phase C of the easy-plane model H1 in a strong coupling expansion. Section III will discuss the

topological order and dynamics of visons in H1. We will generalize the results to various cases in

models with full SU(2) spin rotation invariance in Section IV. Section V will summarize our results

and discuss the nature of the phase transitions in Fig. 1.

II. STRONG COUPLING EXPANSION WITH TOPOLOGICAL ORDER

This section will present a strong coupling analysis of the topological state C of the easy-plane

model H1 in Fig. 1. The conventional metals A and B have the same properties as those of the

phases of the SDW theory Hsdw, and so don’t need further discussion here. Our analysis will

establish the stability of a metallic phase with topological order, and also determine its excitation
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spectrum in a limiting regime.

As the conventional phases appear in the limit of small K, we will study here the complementary

K → ∞ regime. At K = ∞, we can work in the gauge µzij = 1 everywhere. So the model of

interest in Eq. (1.9) reduces to the gauge-fixed Hamiltonian

H′1 = −
∑

i,j

(tij + µδij) c
†
iαcjα − λ

∑

i

ηi

[
e−iθic†i↑ci↓ + eiθic†i↓ci↑

]

−
∑

i<j

Jij cos ((θi − θj)/2) + 4∆
∑

i

N2
i , (2.1)

describing fermions coupled to a XY rotor model. Note the crucial and only difference from the

conventional SDW theory Hsdw in Eq. (1.4): the Jij terms now involve couplings between the

spinon field eiθ/2, rather than the XY order parameter eiθ. Consequently, the rotor states on each

site have Ni quantized in steps of 1/2, and the spin Sz can be half-integer or integer.

This section will describe a strong-coupling analysis of H′1 in which the on-site terms are much

larger than the off-site terms i.e.

λ,∆� |tij|, |Jij|. (2.2)

We will show that in this limit at p = 0, H′1 realizes a Mott insulator with a spin liquid ground

state. Furthermore, the spin liquid has odd Z2 topological order with gapped bosonic spinon and

fermionic chargon excitations: ‘odd’ refers to the presence of unit Z2 background charge on each

site of the Mott insulator [33, 48–50]; the vison excitations have infinite energy at K =∞, and will

be considered further in Section III. Moving towards p > 0, we occupy the lowest energy fermonic

holon states and obtain a ACL metal with odd Z2 topological order.

We will also describe the spectrum of states with one chargon and one spinon excitation above

the Mott insulator. Note that these states have total charge e and spin Sz = 1/2, and so have

the same quantum numbers as the electron. We will find that along with the scattering states in

which the holon and spinon are well separated from each other, there is an electron-like bound state

below the scattering continuum whose dispersion we shall compute. Because of the large spinon

gap in the present strong coupling limit, this holon-spinon bound state is well above the band of

fermionic holon states. However, away from the strong-coupling limit it is clearly possible that

the bound state becomes the lowest energy charged fermionic state [14, 15]. Then, at p > 0, these

states will be occupied, leading to Fermi surfaces with electron-like quasiparticles. Such Fermi

surfaces can co-exist with a holon Fermi surfaces (leading to the ‘holon-hole’ metal of Ref. 15), or

they can exist by themselves in a Z2-FL* state.
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A. Single-site eigenstates

We begin the study of H′1 in the limit (2.2) by defining the on-site Hamiltonian

H0 =
∑

i

(
−µc†iαciα − λ ηi

[
e−iθic†i↑ci↓ + eiθic†i↓ci↑

]
+ 4∆

∑

i

N2
i

)
(2.3)

It is easy to determine all the eigenstates of H0. In this subsection, we drop the site index, i.

We denote the state with N = 0 (no spinons) and no electrons as |0〉. Then the eigenstate with n

spinons is

N̂einθ/2 |0〉 =
n

2
einθ/2 |0〉 . (2.4)

The empty electron state is implicit in |0〉, and all electrons will be indicated below by creation

operators acting on |0〉. Notice that the H0 conserves n modulo 2, and states with n odd carry

the Z2 gauge charge. The state einθ/2 |0〉 carries spin Sz = n/2. Important low-lying states are:

(i) Mott insulator

This is the state

|G〉 =
1√
2

[(
c†↑e
−iθ/2 + η c†↓e

iθ/2
)
|0〉
]

, EG = −λ+ ∆− µ. (2.5)

This state carries no total spin, Sz = 0. It also carries Z2 gauge charge, and so the Z2 gauge theory

is ‘odd’ [33, 48–50], provided EG is the lowest energy state at half filling.

(ii) Spinons

These are doubly-degenerate states with Sz = ±1/2. The Sz = +1/2 state is

|↑〉 =
(
a c†↑ + ηb c†↓e

2iθ/2
)
|0〉 ; Es = −µ+ 2∆−

√
λ2 + 4∆2, (2.6)

where (a, b) is an eigenvector of the matrix

(
0 −λ
−λ 4∆

)
(2.7)

with eigenvalue 2∆−
√
λ2 + 4∆2, and similarly

|↓〉 =
(
a c†↓ + ηb c†↑e

−2iθ/2
)
|0〉 ; Es = −µ+ 2∆−

√
λ2 + 4∆2. (2.8)

Relative to the Mott insulator, the spinon carries no electromagnetic charge, and a Z2 gauge

charge. We want to be in a regime where the Mott insulator has a lower energy than the spinon,

and so we require

EG < Es ⇒ λ > 3∆/2. (2.9)
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The spin gap, ∆s, of the Mott insulator is

∆s = Es − EG = ∆ + λ−
√
λ2 + 4∆2. (2.10)

(iii) Holon

This is simply the empty state |0〉, with energy Ehn = 0. Relative to the Mott insulator, this state

has Sz = 0, +e electromagnetic charge, and a non-zero Z2 gauge charge.

(iv) Doublon

This is the state c†↑c
†
↓|0〉, with energy Edn = −2µ. Relative to the Mott insulator, this state has

Sz = 0, −e electromagnetic charge, and a non-zero Z2 gauge charge.

(v) Holes

These are the doubly degenerate states e±iθ/2 |0〉 with energy Eh = ∆. Relative to the Mott

insulator, they carry electromagnetic charge +e and zero Z2 gauge charge. They have spin Sz =

±1/2. We can now examine the energy difference between a pair of sites with hole+Mott insulator

and a pair with holon+spinon

Eh + EG − Ehn − Es = −λ+
√
λ2 + 4∆2 > 0. (2.11)

So a hole is unstable to decay into a holon and a spinon in the strong-coupling expansion of

Eq. (2.2). Note that, at λ� ∆, this energy difference can become small.

(vi) Electrons

These are the doubly degenerate states c†↑c
†
↓e
±iθ/2 |0〉 with energy Ee = −2µ + ∆. Relative to the

Mott insulator, they carry electromagnetic charge −e and zero Z2 gauge charge. They have spin

Sz = ±1/2. The condition for the instability of an electron state is

Ee + EG − Edn − Es = −λ+
√
λ2 + 4∆2 > 0, (2.12)

which is the same as (2.11).

For subsequent analysis, it is useful to introduce the canonical fermion operators of the holon

(this is a linear combination of the operators in (1.7))

ψ =
1√
2

(
eiθ/2c↑ + η e−iθ/2c↓

)
(2.13)

Note that ψ is the holon creation operator, i.e a holon is an empty state in a filled ψ band,

|G〉 =
∏

i

ψ†i |0〉 , (2.14)

which is the Mott insulator.

We also introduce the fermions

Φ†↑ = a c†↑ + ηb c†↓e
iθ

Φ†↓ = a c†↓ + ηb c†↑e
−iθ (2.15)
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Then the spinon creation operator is the boson

b†α = Φ†αψ (2.16)

This creates the spinon excitation via b†α |G〉.

B. Effective holon Hamiltonian

Now we move beyond the single-site Hamiltonian, and examine the influence of the multisite

terms on the single holon excitation above the Mott insulator.

First, we note the on-site Hamiltonian

Hh0 =
∑

i

(−µ+ ∆− λ)ψ†iψi. (2.17)

which describes the on-site energy of the holon states.

Next, we include the hopping terms tij and Jij. We perform a canonical transformation to

eliminate the θ/2 excitations to obtain an effective Hamiltonian for the holons. This transformation

should be performed around single particle excitations of the band insulator of ψ, which is the

Mott insulator |G〉. For this transformation, it is convenient go back to the original c fermion

formulation. We make a list of all states among a pair of sites, 1, 2, which are important to second

order perturbation theory in t,J with a total charge of e and a total Sz of 0; there turn out to be

12 such states

c†1↑e
−iθ1/2 |0〉 , c†1↓e

iθ1/2 |0〉 , c†2↑e
−iθ2/2 |0〉 , c†2↓e

iθ2/2 |0〉
c†2↑e

−iθ1/2 |0〉 , c†2↓e
iθ2−iθ1/2 |0〉 , c†2↓e

iθ1/2 |0〉 , c†2↑e
−iθ2+iθ1/2 |0〉

c†1↑e
−iθ2/2 |0〉 , c†1↓e

iθ1−iθ2/2 |0〉 , c†1↓e
iθ2/2 |0〉 , c†1↑e

−iθ1+iθ2/2 |0〉 (2.18)

Each site in all of these states is limited to have a spin of Sz = 0,±1/2. A conventional computation

then eliminates the last 8 of these states to yield the effective holon Hamiltonian.

To leading order in J/λ, only hopping within the same sublattice contributes, and the effective

holon Hamiltonian turns out to be

Hh = Hh0 +Hh1 (2.19)

with

Hh1 = −
∑

i<j, n.n.n.

t2J2Z
(
ψ†iψj + ψ†jψi

)
−

∑

i<j, n.n.n.n.

t3J3Z
(
ψ†iψj + ψ†jψi

)
. (2.20)

where

Z =
(λ+ 2∆)

2∆λ
. (2.21)
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Here, n.n.n. and n.n.n.n. stand for second-and third-neighbor sites, respectively, and the renor-

malization factor Z is related to the Zij mentioned in Section I A 2. One feature of Hh1 is that

the holons on the two sublattices don’t mix with each other; i.e., hopping between same-sublattice

sites on the square lattice is forbidden. This is an exact property of this model due to a symmetry

of the XY model: the holon operator in (2.13) is odd or even under the spin inversion Sz → −Sz,
θ → −θ on the two sublattices.

C. Effective spinon Hamiltonian

Next we examine the hopping of the single spinon excitations above the Mott insulator. In this

case, the computation is simpler than the holon case, and the the spinon Hamiltonian is easily

obtained by first-order perturbation theory:

Hs =
∑

i

(
∆ + λ−

√
λ2 + 4∆2

)
b†iαbα −

(a+ b)2

2

∑

i<j

Jij

(
b†iαbjα + b†jαbiα

)
. (2.22)

D. Holon and spinon bound state

We are now ready to consider the states with both a holon and a spinon present. The most

important coupling between them appears already at first order in tij when the holon and the spinon

exchange positions. The matrix element for this is easily computed and leads to the Hamiltonian

Hhs1 = −
∑

i<j

a2tij

(
Φ†iαΦjα + Φ†jαΦiα

)

= −
∑

i<j

a2tij

(
ψ†iψjb

†
iαbjα + ψ†jψib

†
jαbiα

)
. (2.23)

Introducing the holon operators h = ψ†, and collecting all terms, the Hamiltonian acting on

the Hilbert space of one holon and one spinon is

Hhs =
∑

i

[
(µ−∆ + λ)h†ihi +

(
∆ + λ−

√
λ2 + 4∆2

)
b†iαbα

]

+
∑

i<j, n.n.n.

t2J2(λ+ 2∆)

2∆λ

(
h†ihj + h†jhi

)
+

∑

i<j, n.n.n.n.

t3J3(λ+ 2∆)

2∆λ

(
h†ihj + h†jhi

)

−(a+ b)2

2

∑

i<j

Jij

(
b†iαbjα + b†jαbiα

)
+
∑

i<j

a2tij

(
h†jhib

†
iαbjα + h†ihjb

†
jαbiα

)
(2.24)

along with a hard-core constraint which prevents the holon and spinon from residing on the same

site.
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A number of interesting features of Hhs deserve notice. In the strong-coupling limit of (2.2),

the holon+spinon states are at larger energy than the energy of a single holon. However, there is

an attractive interaction between the holon and spinon (∼ t) which is parametrically larger than

the bandwidth of the holon (∼ tJ/λ). This implies that there will be a clear separation between

the energy of the holon+spinon bound state and the bottom of the holon-spinon continuum, and

this will be evident from our numerical results below. Although such an electron-like bound state

does form in the strong coupling limit, its energy remains higher than the energy of the single

holon band. This implies that doping the Mott insulator will lead to a Fermi surface of holons

only, realizing a Z2-ACL metal in the limit (2.2). However, as we move away from (2.2), the

conditions are favorable for the holon+spinon bound state to become the lowest energy charged

fermion, and doping will then lead to a Z2-FL* metal. In particular, FL* is favored in the limit

λ � ∆ � |tij| � |Jij|, when the on-site energy cost of the hole state in Eq. (2.11), which is

∼ ∆2/λ, can be compensated by an energy gain ∼ −|tij| from the kinetic energy of the hole.

We now establish the above assertions by an exact diagonalization study of Hhs in (2.24) in the

sector with one holon and one spinon. This is most conveniently carried out in the momentum

space Hamiltonian

Hhs =
∑

k

Eh(k)h†khk +
∑

k

Eb(k)b†kαbkα +
1

L2

∑

k,k′,q

V (k + p + q)h†k+qb
†
−k,αb−p,αhp+q

Eh(k) = (µ−∆ + λ) +
t2J2(λ+ 2∆)

2∆λ
(4 cos(kx) cos(ky)) +

t3J3(λ+ 2∆)

2∆λ
(2 cos(2kx) + 2 cos(2ky))

Eb(k) =
(

∆ + λ−
√
λ2 + 4∆2

)
− (a+ b)2

2
[2J1(cos(kx) + cos(ky)) + 4J2 cos(kx) cos(ky))

+2J3(cos(2kx) + cos(2ky))]

V (k) = a2W + a2 [2t1(cos(kx) + cos(ky)) + 4t2 cos(kx) cos(ky)) + 2t3(cos(2kx) + cos(2ky))] ,(2.25)

where W →∞ is a large repulsive energy inserted to prevent the holon and spinon from occupying

the same site. We diagonalized Eq. (2.25) on a L×L lattice: after accounting for total momentum

conservation, the matrix in the holon+spinon subspace is of size L2×L2. Results for a convenient

choice of parameters are shown in Figs. 2 and 3.

III. DYNAMICS OF VISONS

We now discuss aspects of the topological order of the Mott insulator described so far; the

metallic phase C in Fig. 1 inherits the same topological order. These issues require us to return

to the full gauge-invariant Hamiltonian in Eq. (1.9), and to no longer work with the large K

gauge-fixed version in Eq. (2.1).
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(0, 0) (⇡, 0) (⇡,⇡) q (0, 0)

Ehs

22.6

23.0

23.4

23.8

FIG. 2. Lowest energy eigenvalues of Hhs with one holon and one spinon with total momentum q on a

lattice of size 48 × 48. There are 482 = 2304 eigenvalues at each q, and eigenvalues above Ehs = 24.0

are not shown. Note the bound states (which have charge e and spin Sz = ±1/2) below the two particle

continuum. The parameter values are λ = 30.0, ∆ = 8.0, t1 = 3.0, t2 = 2.0, t3 = 2.0, J1 = 0.6, J2 = 0.1,

J3 = 0.1, and µ = 0. The energy levels shift uniformly with changes in µ, and the bound state will form a

pocket with electron-like quasiparticles for large enough µ. There is also [15] a Fermi surface of chargons

associated with the single holon states, which are not shown above.

Here, a very useful fact is that the Mott insulator in Eq. (2.5) and the Z2 gauge theory of its

bosonic spinon excitations are essentially identical to the theory of bosonic chargons presented

by Paramekanti and Vishwanath in Section V.A of Ref. 9; and the change from the spinon to

chargon character of the bosons makes essentially no difference to the topological analysis. The

main observation is that the Mott insulator in Eq. (2.5) only has states in which the number 2Ni

equals ±1 on every site. (We can view the deviation of 2Ni from ±1 as a measure of the number of

spinon excitations. Or by a slight abuse of language, we identify 2Ni as the number of spinons ‘in

the ground state’.) This observation motivates a return to the Hamiltonian in Eq. (1.9) at p = 0,

from which we integrate out the gapped ciα electronic excitations at large λ, when there is a large

energy cost to deviations of the number, 2Ni, from ±1. So, we obtain an effective Hamiltonian of
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qx

qy

(0, 0)

(⇡,⇡)

22.6

23.0

Ehs

FIG. 3. Colour density plot of the energy of the lowest holon-spinon bound state in Fig. 2. Parameter

values are the same. Note that there is no particular symmetry of the bound state dispersion associated

with antiferromagnetic Brillouin zone: the minimum of the dispersion is not exactly at (π/2, π/2). In

contrast, the holon dispersion given by Eq. (2.19) does have a minimum at (π/2, π/2).

the form

H̃θ,Z2 = −
∑

i<j

Jijµ
z
ij cos ((θi − θj)/2)− g

∑

〈ij〉

µxij −K
∑

�

[∏

�

µzij

]

+ ∆̃
∑

i

(4N2
i − 1)2, (3.1)

where the ∆̃ term is a phenomenological representation of the energy cost for deviation of the

‘spinon’ number 2Ni from ±1. Eq. (3.1) is essentially the Hamiltonian HA(I∗) of Ref. 9. All of

their arguments associated with momentum balance in the presence of flux insertion in a torus

geometry go through unchanged: so we have established the existence of the needed Mott insulator

described by an odd Z2 gauge theory [33, 48–50], which can then act as a parent for metallic states

with Fermi surfaces of size p [13].

As argued in Ref. 9, we can proceed a step further and also integrate out the gapped spinon

excitations from Eq. (3.1). Then, we obtain a pure Z2 gauge theory

H̃Z2 = −g
∑

〈ij〉

µxij −K
∑

�

[∏

�

µzij

]
, (3.2)
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X

X

X

X

|e 0vi| 0vi

FIG. 4. A gauge-fixed state, |Ψ0v〉 of two visons marked with the X’s. The dotted line connects links

with µzij = −1. The state |Ψ̃0v〉 is obtained after the top vison encircles the site, j, marked with a circle.

where the ‘spinons’ in the ground state can be accounted for by an ‘odd’ constraint on every site

i derived from Eq. (1.11)

Ĝi ≡
∏

j∈n.n.(i)

µxij = −1. (3.3)

This is the most convenient form of the theory to investigate the dynamics of visons. Note that if

we have obtained an effective theory of visons simply by integrating out the ciα in a weak-coupling

perturbation theory in λ, then we would have obtained the effective theory in Eq. (3.2), but with

the opposite sign even constraint in Eq. (3.3): this was the procedure used in Ref. 47. So the

important constraint in Eq. (3.3) relies crucially on our focus on the large λ physics, and the fact

that at large λ each electron binds a spinon into the state |G〉 in Eq. (2.14).

In the large K limit, the ground state of H̃Z2 with the constraint in Eq. (3.3) is the same as an

‘odd’ toric code model [51]. Starting with the gauge-fixed ground state, |Ψ0〉, used in Section II

with all µzij = 1, we can obtain a ground state, |ΨG〉 obeying Eq. (3.3) by summing over all

combinations of gauge transformations applied to this state (normalized on a torus with an even

number of sites)

|ΨG〉 =
1√
2

∏

i

1√
2

(
1− Ĝi

)
|Ψ0〉. (3.4)

All the terms on the right hand side have
∏

� µ
z
ij = 1 on every plaquette, and so minimize the

energy at large K. Similarly, we can also obtain the vison excited states in the large K limit from

a gauge-fixed vison wavefunction. We show in Fig. 4 a two vison state, |Ψ0v〉, with two plaquettes

(each marked by an X) which have
∏

� µ
z
ij = −1. The two vison state obeying Eq. (3.3) is obtained
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by

|ΨGv〉 =
1√
2

∏

i

1√
2

(
1− Ĝi

)
|Ψ0v〉. (3.5)

Unlike the toric code, these visons are not localized, and acquire a non-zero dispersion at linear

order in a perturbation theory in g/K. A crucial property of these mobile visons in a odd Z2 gauge

theory is that they experience a Berry phase of π upon encircling any site of the square lattice

[33, 48, 49]. This is apparent from the state |Ψ̃0v〉 in Fig. 4 in which the top vison has encircled

the site, j, marked with the circle. Then, it is easy to show that vison states obeying Eq. (3.3)

satisfy

|Ψ̃Gv〉 =
1√
2

∏

i

1√
2

(
1− Ĝi

)
|Ψ̃0v〉 = Ĝj|ΨGv〉 = −|ΨGv〉. (3.6)

This Berry phase leads to a double degeneracy in the vison spectrum at all momenta. Alternatively,

we can obtain an effective Hamiltonian for the visons by applying a duality transformation to

Eq. (3.2): this can be done using the operator methods described by Kogut [52], by the perturbative

Berry phase computation of Ref. 53, or by path integral methods [33, 48, 49]. The result by any of

these methods is a transverse field Ising model on the dual lattice, with the Ising order representing

the vison field operator. The odd constraint in Eq. (3.3) leads to π flux per plaquette in the vison

hopping matrix elements. Such a model for visons was extended to FL* metals in recent work [54].

IV. GENERALIZATIONS TO SU(2) GLOBAL SPIN SYMMETRY

All of our analysis so far has been restricted to the simplest case with only a U(1) global spin

rotation symmetry, so that the SDW order is described by a XY order parameter. Now we consider

the generalization to the physically important case of full SU(2) spin rotation symmetry. There are

now significant differences determined by the specific configuration of the SDW order. In general,

we can characterize a state with long-range SDW order by the expectation value

〈
c†iασ

`
αβciβ

〉
∼ Φx` e

iKx·ri + c.c. + Φy` e
iKy ·ri + c.c.. (4.1)

where σ` are the Pauli matrices, Kx,y are ordering wavevectors along the x and y directions, and

Φx`,Φy` are 6 complex numbers determining the nature of the spin density order. The quantum

fluctuations of the Φ are controlled by a Landau free energy of the form [55]

V (Φ) = s(|Φx`|2 + |Φy`|2) +
u1
2

(|Φx`|4 + |Φy`|4) +
u2
2

(
∣∣Φ2

x`

∣∣2 +
∣∣Φ2

y`

∣∣2)

+ w1 |Φx`|2 |Φy`|2 + w2 |Φx`Φy`|2 + w3 |Φ∗x`Φy`|2 + . . . (4.2)

Depending upon the relative values of the Landau parameters w1,2,3, the 6 complex numbers

Φx`,Φy` can realize physically distinct types of spin density wave order which we consider separately
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in the subsections below. Each type of order leads to a different routes towards taking the ‘square

root’ of the order parameter into fractionalized spinor variables.

A. Spiral order

The case most similar to the easy-plane order is when then SDW order has a spiral form at

a wavevector not equal to (π, π). For simplicity, we consider the case with circular spiral spin

correlations only along the wavevector Kx; it is not difficult to extend the action below to also

include the Ky direction. The case corresponds to (after an overall normalization)

Φx` = n1` + in2` (4.3)

where n1,2` are a pair of real orthonormal vectors

∑

`

n2
1` = n2

2` = 1 ,
∑

`

n1`n2` = 0. (4.4)

The order parameter defined by Eqs. (4.3) and (4.4) is a doublet of orthonormal 3-vectors, and

this is equivalent to the SO(3) manifold.

To obtain the intermediate metallic state with topological order, we need to fractionalize the

above order. For the easy-plane case, we accomplished this by working with the square-root of the

order parameter, eiθ/2. Here, we need to introduce a bosonic complex spinor zα, representing the

spinon excitation, which we take to be of unit length

|z↑|2 + |z↓|2 = 1. (4.5)

Then the parametrizations in Eqs. (4.3,4.4) can be satisfied by the representation [37, 56]

Φx` = εαγzγσ
`
αβzβ (4.6)

Note that Eq. (4.6) is invariant under the Z2 gauge transformation zα → −zα, and so we will again

obtain here a Z2 gauge theory, similar to the easy-plane case (which corresponds to zα = (e−iθ/2, 0)).

We can now write down our theory for the interplay between spiral SDW order and Z2 topo-

logical order, which is analogous to the easy-plane Hamiltonian H1 in Eq. (1.9),

H2 = Hc +Hz,Z2 +HY

HY = −λ
∑

i

[
εαγziγσ

`
αβziβ e

iKx·ri + c.c.
]
c†iασ

`
αβciβ

Hz,Z2 = −
∑

i<j

Jij µ
z
ij (z∗iαzjα + c.c.) + ∆

∑

i

~L2
i − g

∑

〈ij〉

µxij −K
∑

�

[∏

�

µzij

]
, (4.7)
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where Hc was defined in Eq. (1.2), and ~Li are angular momenta of the O(4) rotor defined by (4.5),

analogous to Ni for the easy-plane case. The on-site eigenstates of H2, in the limit of K →∞ and

strong coupling as defined by Eq. (2.2) , are described in Appendix B 1.

The analog of the relationship between the chargon and electron operators in Eq. (1.7) trans-

forming to the rotating reference frame now becomes the SU(2) rotation

(
ψ+

ψ−

)
=

(
z∗↑ z∗↓

−z↓ z↑

)(
c↑

c↓

)
. (4.8)

In terms of the chargon operators, the Yukawa term, HY in Eq. (4.7) takes the simple form [11]

HY = −2λ
∑

i

[
ψ†i+ψi− e

iKx·ri + c.c.
]
, (4.9)

which is the analog of Eq. (1.8). So analogous to the easy-plane case, the ψ fermions move in a

background of spatially uniform spiral order.

The subsequent discussion is a close parallel to that described above for the easy-plane case. We

expect a phase diagram very similar to that in Fig. 1, with the eiθ order parameter replaced by Φx`.

One difference is that the interpretation of the phase transitions in terms of vortex proliferation

now needs some modification, as the order parameter is no longer XY-like but takes values in

SO(3). Such an order parameter does have Z2 vortices, associated with the homotopy group

π1 (SO(3)) = Z2. So the topological phase C is now associated with the suppression of such Z2

vortices, which become gapped excitations identified with visons. In contrast, the Fermi liquid

phase A has proliferating Z2 vortices.

B. Néel order

Next, we consider the case of two-sublattice collinear antiferromagnetism. For the cuprates,

this corresponds in Eq. (4.1) to the wavevectors Kx = Ky = (π, π) and real Φx` = Φy`, and is

applicable to the electron-doped compounds.

In this case, the order parameters are related to a single, real vector Φx` = Φy` = n`/4 obeying

∑

`

n2
` = 1. (4.10)

We fractionalize this vector by

n` = z∗ασ
`
αβzβ, (4.11)

which leaves a U(1) gauge invariance under zα → eifzα. So now, our generalization of the Z2 gauge
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theory H2 in Eq. (4.7) is a U(1) gauge theory for SDW order in metals:

H3 = Hc +Hz,U(1) +HY

HY = −λ
∑

i

ηi z
∗
iασ

`
αβziβ c

†
iασ

`
αβciβ

Hz,U(1) = −
∑

i<j

Jij
(
z∗iαe

iAijzjα + c.c.
)

+ ∆
∑

i

~L2
i + g

∑

〈ij〉

E2
ij −K

∑

�

cos

(∑

�

Aij

)
, (4.12)

where Aij is a compact U(1) gauge field on the links of the square lattice, and Eij is the canonically

conjugate electric field. The on-site eigenstates of H3, in the limit of K →∞ and strong coupling

as defined by Eq. (2.2) , are described in Appendix B 2.

The analysis proceeds as in Section IV A. We transform to the rotation reference frame in terms

of chargons as in Eq. (4.8), and the Yukawa coupling for the chargons is [10]

HY = −λ
∑

i

ηi

[
ψ†i+ψi+ − ψ†i−ψi−

]
, (4.13)

which is the analog of Eqs. (1.8) and (4.9). So the phase diagram of H3 will be analogous to that

for H1 in Fig. 1, with the chargons experiencing uniform Néel order given by Eq. (4.13) in phase

C.

One important difference between the cases with Z2 and U(1) gauge theory is that pure U(1)

gauge theory is always confining in two spatial dimensions due to the proliferation of monopoles.

At p = 0, this mechanism will lead to insulating states with valence bond solid order [57–59].

At non-zero p, monopoles can be suppressed by Fermi surfaces of particles carrying U(1) gauge

charges [60, 61], and this mechanism can stablize a U(1)-ACL in the intermediate phase C. But it

should be noted that there is a non-BCS pairing instability of such a metallic state [62], and after

the Fermi surface has been gapped by pairing, monopole-induced confinement will reappear.

C. Stripe order

Finally, we consider the case of collinear spin order at wavevectors not equal to (π, π). By

symmetry, such spin order is accompanied by charge density wave order at twice the wavevector

[63]. Considering the case of uni-directional stripes with wavevector Kx for simplicity, the ordering

is described by Eq. (4.1) with

Φx` = eiφ n`, (4.14)

where n` is a real vector obeying Eq. (4.10). The order parameter for a charge density wave at

wavevector 2Kx is e2iφ.

Following the discussion in the previous subsections, we now have to examine fractionalizations

of the stripe order parameter in Eq. (4.14). This question has been considered in a number of
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previous works [55, 64–68], all of which used a Z2 gauge theory to fractionalize Φx` into its charge

and spin components, represented by eiφ and n` respectively; such a fractionalization is invariant

under

eiφi → sie
iφi , n` → sin` (4.15)

with si = ±1 the Z2 gauge transformation. However, this fractionalization is not suitable for our

purposes because it does not involve spinor variables, and so cannot yield Fermi surface recon-

struction in the phase with topological order. So we examine combining the above fractionalization

with the spinor decomposition of n` in Section IV B:

Φx` = eiφ z∗ασ
`
αβzβ. (4.16)

Then, in terms of the chargon variables in Eq. (4.8), the Yukawa term coupling the order parameter

to the fermions (analogous to Eqs. (1.8), (4.9) and (4.13)) becomes

HY = −λ
∑

i

2 cos (φ+ Kx · ri)
[
ψ†i+ψi+ − ψ†i−ψi−

]
. (4.17)

This expression makes it clear that the chargons move in the presence of a non-fluctuating potential

only in a state with long-range charge density wave order with 〈eiφ〉 6= 0. In such a situation, the

theory of SDW order in the stripe model reduces [10] to the U(1) gauge theory already considered

in Section IV B. So Fermi surface reconstruction in a state with topological order requires charge

density wave order in the stripe model.

V. CONCLUSIONS

This paper has presented an alternative approach to symmetry breaking and topological order

in doped Mott insulators. Instead of the conventional focus on electron fractionalization, we set

up a formalism based upon order parameter fractionalization. So our main Hamiltonian for the

case of a XY SDW order parameter in Eq. (1.9) involved a fractionalized ‘square root’ of the SDW

order parameter, but retained the unfractionalized bare electron operator. Starting from Eq. (1.9),

we obtained the phase diagram in Fig. 1, containing states that had previously been obtained from

the more common electron fractionalization route. The advantage of our formalism is that offers a

focus on just the phases observed in experiments, while being very economical in using extraneous

degrees of freedom which have to be projected out. Furthermore, generalizations of the models in

Eqs. (1.9) and (2.1) are amenable to sign-problem-free quantum Monte Carlo simulation by the

methods of Refs. 28–30, which can also study the connection to superconductivity.

We began with the LGW-Hertz theory for the onset of SDW order in metals: this exhibits phases

A and B in Fig. 1, the Fermi liquid with large Fermi surface, and the SDW metal with small pocket
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Fermi surfaces. Both phases have well-defined electronic quasiparticles and their Fermi surfaces

sizes obey the conventional Luttinger theorem. The phase transition between A and B has also

been extensively studied [20–27]. (In the limit of zero doping, p = 0, phase A remains a Fermi

liquid, while phase B becomes a Slater insulator with long-range antiferromagnetic order.)

We argued that the LGW-Hertz theory could be modified to Eq. (1.9) by introducing a Z2

gauge field, and this allowed a phase transition in which the destruction of SDW order did not

coincide with appearance of a large Fermi surface: this led to phase C with pocket Fermi surfaces

(of chargons and/or electrons) and no SDW order. (In the limit p = 0, phase C becomes a Mott

insulator with Z2 topological order.) For the case of easy-plane SDW order, we showed that the

transition from phase B to phase C was associated with the proliferation of doubled vortices. The

universality class of the B-C transition has been identified in earlier work [47, 69] as a relativistic

2+1 dimensional O(2)* field theory for the easy plane case (O(4)* for the Heisenberg case) [70].

Phase C (or more properly, its SU(2) spin rotation analogs in Section IV) is proposed as the

pseudogap state of the hole-doped cuprates, present in between the phase B at low p, and phase

A above optimal doping. Other less-correlated high temperature superconductors (such as the

pnictides) are proposed to go directly from phase B to phase A. We maintain that this simple

connection between different families of superconductors supports our model, and the unified

phase diagram in Fig. 1.

The main problem left open in our analysis is the nature of the transition from phase C to

phase A. This is a candidate transition for the physics near optimally hole-doped cuprate super-

conductors. The simple model in Eq. (1.9) contains such a transition, but does not easily yield

a continuum theory for the quantum criticality. Phase C is in a deconfined phase of a Z2 gauge

theory, while phase A is in a confined phase. However, the transition between them is not just a Z2

confinement transition: the Z2 gauge theory also changes from an “odd” gauge theory [33, 48–50]

(with e2πNi = −1) in phase C to an “even” gauge theory (with e2πNi = 1) in phase A. Continuum

formulations of confinement transitions in Z2 gauge theories in the presence of gauge-charged mat-

ter require duality transforms to vison fields via mutual Chern-Simons terms [71], which we have

not discussed here. It is possible that such an analysis of the criticality will eventually lead to the

deconfined SU(2) gauge theory for the C-A transition proposed in Refs. 10–13.
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Appendix A: Additional phases

In our phase diagram in Fig. 1 for the easy-plane Hamiltonian H1 in Eq. (1.9), we have 2 phases

with no broken symmetry, phases A and C. In phase C we are in the deconfined phase of the Z2

gauge theory, and the spinon number obeys e2iπNi = −1 on each site. In contrast, in phase A we

are in the confined phase of the Z2 gauge theory, and the spinon number obeys e2iπNi = 1 on each

site. There is no fundamental reason for these assignments of spinon number, and we can also

imagine additional phases with the opposite assignment; such phases are not shown in Fig. 1.

A Z2 deconfined phase with e2iπNi = 1 would have Fermi surfaces of chargons and/or electrons

of total size 1 + p, by the flux piercing arguments in Refs. 8, 9, and 13. However, such a phase

is energetically disfavored at large λ, and so not suitable for the physics of the Mott-Hubbard

systems under consideration here.

More relevant is a Z2 confined phase with e2iπNi = −1. This must have valence bond solid

(VBS) order, as established in early work [33, 48, 49]. More recent work has shown [54] that the

VBS order can have a variety of complex spatial configurations, depending upon the nature of

frustrating interactions. The Fermi surface is expected to be small by the flux piercing arguments,

but with the doubling of the unit cell by the VBS order, there is no fundamental distinction

between small and large Fermi surfaces. Such a confining phase with VBS order is a possibility in

Mott-Hubbard models with frustrated exchange interactions [14], but is not shown in Fig. 1.

Appendix B: Single-site eigenstates with SU(2) symmetry

1. O(4) model: Spiral order

In the limit K →∞, the fluctuations of the Z2 gauge field are frozen, and we choose the gauge

µzij = 1. Then the model in Eq. (4.7) reduces to:

H′2 = −
∑

i,j

(tij + µδij) c
†
iαcjα − λ

∑

i

[
εαγziγσ

`
αβziβ e

iKx·ri + c.c.
]
c†iασ

`
αβciβ

−
∑

i<j

Jij (z∗iαzjα + c.c.) + ∆
∑

i

~L2
i (B1)

Analogous to the Z2 case, the Jij term involves coupling to the fractionalized spinon-fields zα,

which has Sz quantized in units of 1/2 on every site. We now further specialize to the strong

coupling limit as defined by Eq. (2.2), and show that the ground state at p = 0 is again a Mott
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insulator with odd Z2 topological order. To do this, we define the on-site Hamiltonian Ho by

dropping the site index i and letting ξi = eiK·ri :

Ho = −µ c†αcα − λ
[
εαγzγσ

`
αβzβ ξi + c.c.

]
c†ασ

`
αβcβ + ∆

6∑

µ=1

~L2
µ

= −µ c†αcα − 2λ
[(
ξiz

2
↓ − ξ∗i (z∗↑)2

)
c†↓c↑ +

(
−ξiz2↑ + ξ∗i (z

∗
↓)

2
)
c†↑c↓ + (ξiz↓z↑ + ξ∗i z

∗
↑z
∗
↓)(c

†
↑c↑ − c†↓c↓)

]

+∆
6∑

µ=1

~L2
µ (B2)

We start by looking at the eigenmodes of the O(4) rotor angular momenta
∑6

µ=1
~L2
µ. These are

given by the hyperspherical harmonics Y n
l,m, which are a complete set of eigenfunctions on the

3-sphere S3 (generalizations of the spherical harmonics Y l
m on S2).

(∑

µ

~L2
µ

)
Y n
l,m = n(n+ 2)Y n

l,m, n ∈ {0, 1, 2, ...} (B3)

We can conveniently describe these eigenmodes in the toroidal coordinates [72], which we define

as follows:

(z↑, z↓) = (cos(β)e−iθ, sin(β)e−iφ), where 0 ≤ β ≤ π/2, 0 ≤ θ, φ < 2π (B4)

In these coordinates, the hyperspherical harmonics are given by (here we choose a slightly different

basis compared to Ref. 72 for later computational convenience)

Y n
l,m = N n

l,m

eilθ√
2π

eimφ√
2π

cos|l|(β) sin|m|(β)P
(|l|,|m|)
d (cos(2β)), d =

n− (|l|+ |m|)
2

∈ Z, |l|+ |m| ≤ n

(B5)

where P
(|l|,|m|)
d (u) are the Jacobi polynomials and N n

l,m are appropriate normalization constants,

which we provide explicitly below for completeness:

P
(|l|,|m|)
d (u) =

1

2d

d∑

i=0

(|m|+ d

i

)(|l|+ d

d− i

)
(u+ 1)i(u− 1)d−i

N n
l,m =

√
2(n+ 1)d!(|l|+ |m|+ d)!

(|l|+ d)!(|m|+ d)!
(B6)

Using the above coordinates, we list the important low-lying eigenstates.

(i) Mott insulator

In analogy with the easy-axis case, we look for the lowest energy state with a single electron per

site in the n = 1 subspace of the hyperspherical harmonics. We choose the following basis, labeling

the states as c†σY
1
l,m |0〉:

{c†↑Y 1
1,0 |0〉 , c†↑Y 1

−1,0 |0〉 , c†↑Y 1
0,1 |0〉 , c†↑Y 1

0,−1 |0〉 , c†↓Y 1
1,0 |0〉 , c†↓Y 1

−1,0 |0〉 , c†↓Y 1
0,1 |0〉 , c†↓Y 1

0,−1 |0〉} (B7)
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In this subspace, we have:

Ho = (−µ+ 3∆)I8×8 −
2λ

3




0 0 0 ξ∗i 0 0 0 0

0 0 ξi 0 −2ξi 0 0 0

0 ξ∗i 0 0 0 0 0 2ξ∗i

ξi 0 0 0 0 0 0 0

0 −2ξ∗i 0 0 0 0 0 −ξ∗i
0 0 0 0 0 0 −ξi 0

0 0 0 0 0 −ξ∗i 0 0

0 0 2ξi 0 −ξi 0 0 0




(B8)

The lowest-energy Mott insulating state |G〉, with energy EG = −µ+ 3∆− 2λ, is given by:

|G〉 =
1

2

(
c†↑Y

1
−1,0 + ξ∗i c

†
↑Y

1
0,1 − ξ∗i c†↓Y 1

1,0 + c†↓Y
1
0,−1

)
|0〉

=
1

2π

[(
c†↑z↑ + c†↓z↓

)
− ξ∗i

(
−c†↑z∗↓ + c†↓z

∗
↑

)]
|0〉 ∼

(
ψ†+ − ξ∗i ψ†−

)
|0〉 (B9)

where ψ± are the spinless fermionic chargons defined in Eq. (4.8). The last representation makes

it evident that the Mott insulating ground state does not carry any spin. However, it carries Z2

gauge charge, and therefore the Z2 gauge theory is odd.

(ii) Spinons

These are doubly degenerate states which have Sz = ±1/2, and a Z2 gauge charge relative to the

Mott insulator, but no electromagnetic charge. We consider only the |↑〉 spinon, the calculations

for the |↓〉 spinon are idenical. Therefore, we choose the following basis of states which span the

subspace with Sz = 1/2:

{c†↑Y 0
0,0 |0〉 , c†↑Y 2

0,0 |0〉 , c†↑Y 2
1,1 |0〉 , c†↑Y 2

−1,−1 |0〉 , c†↓Y 2
2,0 |0〉 , c†↓Y 2

0,−2 |0〉 , c†↓Y 2
1,−1 |0〉} (B10)

In this basis, we have:

H = −µ I7×7 +




0 0 −
√

2
3
λξi −

√
2
3
λξ∗i

2λξi√
3
−2λξ∗i√

3
0

0 8∆ 0 0 λξi λξ∗i 0

−
√

2
3
λξ∗i 0 8∆ 0 0 0 −λξ∗i

−
√

2
3
λξi 0 0 8∆ 0 0 λξi

2λξ∗i√
3

λξ∗i 0 0 8∆ 0
λξ∗i√

2

−2λξi√
3

λξi 0 0 0 8∆ λξi√
2

0 0 −λξi λξ∗i
λξi√
2

λξ∗i√
2

8∆




(B11)

For all positive values of λ and ∆, we find that the energy of the lowest-lying spinon state is

Es = −µ + 4∆−
√

16∆2 + 4λ2. For the Mott insulator to have lower energy than the spinon, we
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require EG < Es, which translates to λ > 15∆/4. The spin-gap of the Mott-insulator is given by:

∆s = Es − EG = 2λ+ ∆−
√

16∆2 + 4λ2 (B12)

(iii) Holon

This is the empty state |0〉, with energy Ehn = 0. Relative to the Mott insulator, it has Sz = 0,

electromagnetic charge +e and non-zero Z2 gauge charge.

(iv) Doublon

This is the state c†↑c
†
↓ |0〉, with energy Ed = −2µ. Relative to the Mott insulator, it has Sz = 0,

electromagnetic charge −e and non-zero Z2 gauge charge.

(v) Holes

These are the 4 degenerate states given by the n = 1 hyperspherical harmonics, which can be

represented as Y 1
l,m |0〉, for {l = ±1,m = 0} and {l = 0,m = ±1}. Each state has energy given by

Eh = 3∆. They have electromagnetic charge +e and Sz = ±1/2 relative to the Mott insulator,

but no Z2 gauge charge. The energy difference between a pair of sites with hole+Mott insulator

and a pair with holon+spinon is given by:

EG + Eh − Ehn − Es = 2∆− 2λ+
√

16∆2 + 4λ2 > 0 (B13)

Therefore, the hole is unstable to decay to a holon and a spinon in the strong-coupling limit.

(vi) Electrons

These are again 4 degenerate states given by c†↑c
†
↓Y

1
l,m |0〉 for {l = ±1,m = 0} and {l = 0,m = ±1}.

One can check that Hint acting on any of these states gives zero, so only the diagonal terms matter

and therefore, they have energy Ee = −2µ + 3∆. They have electromagnetic charge −e and

Sz = ±1/2 relative to the Mott insulator, but no Z2 gauge charge. The energy difference between

a pair of sites with electron+Mott-insulator and a pair with doublon+spinon is given by:

EG + Ee − Edn − Es = 2∆− 2λ+
√

16∆2 + 4λ2 > 0 (B14)

which is the same condition as Eq. (B13). Therefore, the electron is also unstable to decay to a

doublon and a spinon in the strong-coupling limit.

Finally, note that we can define a new spinless fermionic operator as a linear combination of

ψi,±, given by:

ψi =
1√
2

(ψi,+ − ξi ψi,−) (B15)

ψ is the holon creation operator, and the Mott insulator is a filled band of ψ, given by

|G〉 =
∏

i

ψ†i |0〉 (B16)

We can also define bosonic spinon creation operators analogous to Eq. (2.16) which will create

Sz = ±1/2 excitations over the Mott insulating ground state using the eigenstates of Eq. (B11).
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2. O(4) model: Néel order

For the fractionalization defined by n` = z∗ασ
`
αβzβ, the constraint defined by Eq. (4.10) can be

re-written as |z↑|2 + |z↓|2 = 1. Therefore, the dynamics of the order parameter field are described

by an O(4) model which is coupled to the c fermions. We again consider the limits of K →∞ and

strong-coupling as defined by Eq. (2.2), resulting in the following on-site Hamiltonian Ho (with

ηi = (−1)xi+yi):

Ho = −µ c†αcα − ληi z∗ασlαβzβ c†ασ`αβcβ + ∆
∑

µ

~L2
µ

= −µ c†αcα − ληi
[
2z∗↑z↓c

†
↓c↑ + 2z∗↓z↑c

†
↑c↓ + (z∗↑z↑ − z∗↓z↓)(c†↑c↑ − c†↓c↓)

]
+ ∆

∑

µ

~L2
µ (B17)

The rest of the calculation exactly follows Appendix B 1. Only the Mott-insulator and the spinons

eigenstates are different, so we restrict the following description to these two kinds of eigenstates.

(i) Mott insulator: In the basis described in Eq. (B7) we have:

Ho = (−µ+ 3∆)I8×8 −
ληi
3




1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 2

0 0 −1 0 2 0 0 0

0 0 0 −1 0 0 0 0

0 0 2 0 −1 0 0 0

0 0 0 0 0 −1 0 0

0 0 0 0 0 0 1 0

0 2 0 0 0 0 0 1




(B18)

The lowest energy state is given by:

|G〉 =





1√
2

(
c†↑Y

1
−1,0 + c†↓Y

1
0,−1

)
|0〉 = 1

2π

(
c†↑z↑ + c†↓z↓

)
|0〉 ∼ ψ†+ |0〉 , for ηi = 1,

1√
2

(
−c†↑Y 1

0,1 + c†↓Y
1
1,0

)
|0〉 = 1

2π

(
−c†↑z∗↓ + c†↓z

∗
↑

)
|0〉 ∼ ψ†− |0〉 , for ηi = −1

Therefore, the Mott insulator can be written conveniently in terms of the spinless fermionic char-

gons as:

|G〉 = ψ†ηi |0〉 , EG = −µ+ 3∆− λ (B19)

In this representation, it is evident that |G〉 does not carry any spin but carries a non-zero Z2

gauge charge, and and therefore the Z2 gauge theory is odd.

(ii) Spinons: These are doubly degenerate states which have Sz = ±1/2, and a Z2 gauge charge

relative to the Mott insulator, but no electromagnetic charge. We can find the |↑〉 spinon by using
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the Sz = 1/2 subspace defined in Eq. (B10).

Ho = −µI7×7 +




0 −ληi√
3

0 0 0 0 −
√

2
3
ληi

−ληi√
3

8∆ 0 0 0 0 0

0 0 8∆ 0 −ληi√
2

0 0

0 0 0 8∆ 0 −ληi√
2

0

0 0 −ληi√
2

0 8∆ + ληi
2

0 0

0 0 0 −ληi√
2

0 8∆− ληi
2

0

−
√

2
3
ληi 0 0 0 0 0 8∆




(B20)

The energy of the lowest-lying spinon state is Es = −µ + 4∆ −
√

16∆2 + λ2. For the Mott

insulator to have lower energy than the spinon, we require EG < Es, which translates to λ > 15∆/2.

The spin-gap of the Mott-insulator is given by:

∆s = Es − EG = λ+ ∆−
√

16∆2 + λ2 (B21)

The descriptions of the (iii) holon, (iv) doublon, (v) holes and (vi) electrons are identical to

Appendix B 1. The only difference arises from the change in energy eigenvalues EG and Es.

This changes the energy gap between a pair of sites with hole+Mott insulator (electron + Mott

insulator) and a pair with holon+spinon (doublon+spinon):

EG + Eh − Ehn − Es = EG + Ee − Edn − Es = 2∆− λ+
√

16∆2 + λ2 > 0 (B22)

As before, we observe that the hole (electron) is unstable to decay to a holon (doublon) and a

spinon in the strong-coupling limit.
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