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The strongly constrained and appropriately normed (SCAN) semilocal density functional [J. Sun,
A. Ruzsinszky, J. P. Perdew Phys. Rev. Lett. 115, 036402 (2015)] obeys all 17 known exact
constraints for meta-generalized-gradient approximations (meta-GGA) and includes some medium
range correlation effects. Long-range London dispersion interactions are still missing, but can be
accounted for via an appropriate correction scheme. In this study, we combine SCAN with an
efficient London dispersion correction and show that lattice energies of simple organic crystals can be
improved with the applied correction by 50%. The London-dispersion corrected SCAN meta-GGA
outperforms all other tested London-dispersion corrected meta-GGAs for molecular geometries.
Our new method yields mean absolute deviations (MADs) for main group bond lengths that are
consistently below 1 pm, rotational constants with MADs of 0.2%, and noncovalent distances with
MADs below 1%. For a large database of general main group thermochemistry and kinetics (~ 800
chemical species), one of the lowest weighted mean absolute deviations for long-range corrected meta-
GGA functionals is achieved. Noncovalent interactions are of average quality and especially hydrogen
bonded systems seem to suffer from overestimated polarization related to the self-interaction error
of SCAN. We also discuss some consequences of numerical sensitivity encountered for meta-GGAs.

PACS numbers:

I. INTRODUCTION

Kohn-Sham density functional theory (KS-DFT)?
has become an irreplaceable tool for the calculation of
electronic structure in chemical and physical sciences.
Within KS-DFT a noninteracting system is introduced
with an effective one-particle Hamiltonian, hxg, whose
ground state density p is equivalent to the interacting sys-
tem. The wavefunction of the auxiliary non-interacting
system is an anti-symmetrized product of single-particle
eigenfunctions v; (KS orbitals), the solutions of a coupled
set of non-linear equations

hicsibi(r) =ehi(r), (1)
iLKS :T + ‘zazt + VCoul + Vzc ) (2)

with kinetic energy operator T, external potential (typ-
ically describing the fixed nuclear charges) Vizs, the
mean field Coulomb (or Hartree) potential Veour, and
the exchange-correlation (xc) potential V.

While DFT is in principle an exact theory, in prac-
tice the exchange-correlation energy has to be approx-
imated. Density functional approximations (DFAs) are
constructed by satisfying known exact constraints, or by
empirical fitting. There are three main classes of DFAs
that use only the local density and other semi-locally-
available information to approximate the xc energy, F,..
The first is the local spin density approximation (LSDA),
which is exact for the uniform electron gas.> LSDA is
still widely used in the solid state community with recent
extensions to finite temperature free energies.* While ex-
tended metallic systems can be described reasonably well

by LSDA, typical molecular systems require inclusion of
the density gradient as in the generalized gradient ap-
proximation (GGA). The most prominent GGAs are the
Perdew-Burke-Enzerhof (PBE) exchange and correlation
functionals® and the Becke exchange (B88)® combined
with the Lee-Yang-Parr (LYP) correlation functional.” A
natural extension to GGAs is to use higher-order deriva-
tives of the electron density or other semilocally-available
information, leading to the meta-GGA class. A typ-
ically employed variable is the KS kinetic energy den-
sity 7 = 3, V|, Popular meta-GGAs are the Tao-
Perdew-Staroverov-Scuseria (TPSS) functional® and the
Minnesota functionals M0O6L,% M11L,'® and MN12L'! by
Truhlar and coworkers. A recently introduced empirical
meta-GGA with a smoothness constraint and a VV10
long-range dispersion correction, B97M-V, was pre-
sented by Mardirossian and Head-Gordon.'? Constraint-
satisfaction based meta-GGA functionals have gained
more attention in recent years!®'4. The SCAN func-
tional is also a meta-GGA.1®

In contrast to the empirical design of the Minnesota
functionals, SCAN was built to satisfy the 17 known ex-
act constraints for a semilocal functional and to fit appro-
priate norms (but not fit any bonded systems). Because
SCAN is a major step forward in constraint satisfaction,
and because its enhancement factor over local exchange
is quite different'® from those of other functionals, ex-
tensive benchmarking is necessary. In particular, one
must check that the dramatic improvements of SCAN
over other semilocal functionals for certain systems and
properties'® are not bought at the price of an overall



deterioration for other systems and properties. SCAN
has been shown to be superior to PBE for several stan-
dard molecular and solid-state test sets.!%16 It is the first
efficient functional covering intermediate-range London
dispersion interactions that demonstrates simultaneous
accuracy for diversely bonded systems around equilib-
rium. SCAN is comparable to or even more accurate
than a computationally more expensive hybrid GGA.'¢
However, it is still a semilocal functional which inevitably
fails for systems where the long-range effects are impor-
tant, such as in the self-interaction error encountered in
stretched H; and long-range van der Waals interactions.

Mixing part of the semilocal exchange with nonlo-
cal Fock exchange can reduce the self-interaction error,
and is the dominant approach in quantum chemistry.
These hybrid DFAs were originally introduced by Becke
and are motivated by the adiabatic connection.'” Simi-
larly, double-hybrid DFAs use the virtual orbital space
to construct an approximate correlation emergy.ls’19
Hybrid and double-hybrid DFAs are more computa-
tionally demanding than semilocal functionals. While
(meta-)GGAs scale as N3, where N is the size of the or-
bital basis, hybrids and double-hybrids scale as N* and
N?®, respectively. Hybrid and double hybrid variants of
SCAN have recently been reported.2°

Long-range, attractive London dispersion interactions
are important for describing extended systems such as
condensed hard and soft matter, larger molecular assem-
blies, or adsorption processes on various surfaces. For re-
views or overviews on the “dispersion problem in DFT”,
see Refs. 21-23. In this study we show how to combine
the SCAN meta-GGA with modern London dispersion
corrections. While we will focus on the most efficient D3
scheme by Grimme and coworkers??, we will also con-
sider the VV10 nonlocal density kernel by Vydrov and
Van Voorhis.?> A related SCAN+1VV10 scheme, where
rVV10 stands for a revised VV10%%, has also been devel-
oped and yields excellent accuracy for predicting proper-
ties of layered materials.?”

Due to their computational efficiency, (meta-)GGA
DFAs are heavily relied on for the computation of ge-
ometries. For other properties (e.g., band gaps of solids),
more accurate results from hybrid and double hybrid
DFAs'828 or even high level (local) coupled cluster meth-
ods are needed.?? 3! Specifically for condensed phases,
geometry optimizations with a hybrid DFA using large
orbital basis sets are not amenable for routine appli-
cations. In systems with local electron density, small
atom-centered orbital basis sets can be employed, which
makes screened hybrid functional calculations feasible.3?
However, basis set errors have to be compensated and a
meta-GGA with improved equilibrium geometries is still
desired.

We begin with a short methodological description in
section II. Consequences of the sensitivity with respect
to integration grids sometimes encountered for meta-
GGAs3334 are discussed in section ITA. Then, the D3
and VV10 London dispersion corrections are described

and the recommended damping parameters are given
in section IIB. Section III focuses on the accuracy of
the combined SCAN-D3 method and we give a broad
overview on various covalent and noncovalent bonding
regimes (section IIT A). In addition, noncovalent interac-
tion energies and some main group thermochemistry and
kinetics are analyzed in sections III B and ITI C.

II. METHODOLOGY
A. The SCAN meta-GGA

A general meta-GGA form for the xc energy can be
written as

E,o— / dr f(p(r),1(x), 7(r) (3)

where we define y(r) = Vp(r) - Vp(r). SCAN improves
upon previous nonempirical meta-GGAs such as TPSS
and MGGA-MS' by satisfying more exact constraints
on the xc energy and by resolving the “order of limits”
problem®® encountered for meta-GGA parametrizations
of f using both of the 7-dependent variables z = 7V /7
and «, defined below, where 7VWV = |Vp|?/8p is the von
Weizsécker kinetic energy density. Instead SCAN utilizes
only the 7-dependent variable a = (7 — 7vW)/7wif to
identify different density regimes such as those found in
covalent (a = 0), metallic (a & 1), and weak (o >> 1)
bonds. 7 = (3/10)(37%)?/3n%/3 is the kinetic energy
density of a uniform electron density. Parametrizing the
functional using «, however, can lead to some numerical
sensitivity in the integration of the XC potential.

Previous works have shown that meta-GGA poten-
tial energy surfaces for dispersion bound complexes can
exhibit spurious oscillations using too small integration
grids®*, and that reaction energies can be severely im-
pacted by the choice of grid as well.36 The same issue
is also inherited by some molecular properties such as
nuclear gradients, and hence analytic geometry optimiza-
tions are also influenced by the choice of grid. The deriva-
tive of the SCAN energy density for atoms can exhibit
oscillations near o ~ 1 due to its functional form?®’, im-
plying a more dense grid is required for accurate integra-
tion.

The numerical grids used to evaluate the DFT contri-
butions to the energy are built by combining angular and
radial grids, so we studied the impact of convergence in
both grids separately. For a given angular integration
grid, slow convergence of the total energy and nuclear
gradient with respect to the radial integration grid was
encountered. To accurately integrate the SCAN poten-
tial, a larger number of radial points are needed in TUR-
BOMOLE compared to previous functionals such as TPSS.
Using a converged radial grid, however, the convergence
of the angular grid is typically much faster, and suffi-
ciently accurate results can be obtained using grid 4 in



TURBOMOLE which is only slightly larger than the de-
fault (grid m3). We report more detailed information
on the grid dependence in the supporting information3®
the conclusions of our tests being that energy differences
are less sensitive to the choice of grid than nuclear gra-
dients. Therefore, in practice a very large radial grid is
only required when computing molecular properties, and
not necessarily for computation of typical reaction ener-
gies which can be adequately described using a slightly
augmented radial grid.

B. London dispersion interaction

A natural formalism to obtain long-range correc-
tions from DFT is the adiabatic fluctuation dissipation
theorem?3%40 from which more approximate schemes can
be obtained as discussed in two recent review rticles
on modern London dispersion corrections.**42 One such
method is the VV10 nonlocal density kernel by Vydrov
and Van Voorhis?543 4% that is parametrized using only
the local density and its reduced gradient. Two parame-
ters are needed to determine the model; the first (C') is
adjusted to reproduce reference dispersion coeflicients at
large distances, and the second (b) is used to damp the
VV10 contribution at short distances. The parameter b
can be used to adjust the VV10 kernel to any semilocal
DFA.*6, while C is kept at its original value.?’

An even more efficient alternative to VV10 is the D3
scheme which is formulated from a partitioning of the
molecular polarizbility tensor. The most natural frag-
ments in a molecule are the individual atoms since, due
to their spherical symmetry, only an isotropic dynami-
cal polarizability, a(iw), has to be considered. Thus, the
correlation energy between two atoms (A and B) can be
expressed by the Casimir-Polder relation®”

G
c - 7’6 ’
AB
AB _3 ‘ .
Cj = /dwaA (iw) ap (iw) . (4)
0

This is the leading order fluctuating-dipole-fluctuating-
dipole with the typical dependence on the atomic dis-
tance rap. The most significant difference between the
various dispersion correction schemes is the way in which
the Cy coefficients are estimated.* 23 For the D3 scheme,
the dynamic polarizabilities of hydrated atoms are cal-
culated via time-dependent DFT for reference systems,
and a modified Casimir-Polder integration (similar to
Eq. 4) yields the atom-pair C{'# value.?* Higher-order
dipole-quadrupole pair-terms and Axilrod-Teller-Muto
type®*®® three-body terms are calculated via recursion
relations and averages, respectively, from the correspond-
ing Cg coefficients. The importance of many-body disper-
sion interactions has been recently analyzed by various

groups.6 98

In this work, the D3 scheme is always used including
the three-body term. Together, the D3 contribution to
the interaction energy is
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The damping functions f¢ are introduced to combine
the D3 dispersion interaction with the semilocal corre-
lation contribution from the DFA. The three-body term
depends on the atom triangle with angles 64,5/c and
geometric mean distance r4pc. The two-body damp-
ing (f¢s) can be either used with a zero damping (one
free parameter 7sg) or a rational (Becke-Johnson) damp-
ing (two free parameter a; and a3).”® Additionally, the
dipole-quadrupole Cg terms can be scaled by a param-
eter sg, which improves the interpolation between var-
ious DFAs with substantially different behavior in the
medium correlation regime. Comparisons of the D3
with the VV10 dispersion correction revealed very sim-
ilar accuracies.f%6! We thus expect very similar results
for SCAN-D3 and SCAN-VV10. While the VV10 scheme
can adjust better to unusual electronic structures with
strong charge transfer character, the D3 dispersion co-
efficients are typically better for organic molecules with
residual error in the long-range below 5%.2% Furthermore,
the three-body term is available with highly efficient ana-
lytical derivatives, which is important for large and dense
systems®? and we will therefore mainly report results for
the SCAN-D3 method throughout this study.

We have trained the damping functions using the
S66x8% benchmark set. It consists of 66 small to medium
sized molecular dimers at 8 center of mass distances with
coupled cluster singles, doubles and perturbative triples
reference energies at the estimated single-particle basis
set limit, CCSD(T)/CBS(est.).5* This set can be simul-
taneously used to test noncovalent interaction energies
and equilibrium distances as recognized recently by sev-
eral groups.®> 67 We interpolate the potential surfaces
and extract the equilibrium minimum to compare with
equilibrium binding energies and equilibrium distances
at the CCSD(T) level. We fit the damping parameter
by minimizing the weighted absolute relative deviations
from the reference (0 E+100R). For comparison purpose,
we additionally report errors on the standard S66 set in
the ESI.

A summary of the optimized damping parameter for
the D3 scheme in both damping variants and the VV10
scheme is given in Table I. We give the relative absolute
deviations from the S66x8 reference minima and com-
pare with the MO6L and TPSS meta-GGAs, the PBE
GGA and its PBEQ hybrid variant. Because the SCAN
functional can cover medium-range correlation to a high
degree (similarly to MO6L), the dipole-quadrupole term
is set to zero. Typical deviations of the various methods

|
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TABLE I: Optimized (dimensionless) damping parameter of
the D3 and VV10 dispersion correction for the SCAN func-
tional in comparison with other methods.

SCAN  MO6L TPSS PBE  PBEO
plain (without correction)

SE* | % 22.7 14.4 56.5 45.7 43.6
SR | % 1.2 0.5 14.5 8.1 7.3
D3 (default rational damping®’)

58 °0 - 1.944  0.788 1.218
a 0.538 - 0.454  0.429 0.415
as 5.4200 — 4475 4441 4.859
SE* | % 7.7 - 5.8 7.6 10.1
SR | % 0.8 - 1.7 1.2 1.1
D3(0) (zero-damping)
ss °0 °0 1.105  0.722 0.928
Ts6 41.324 1.581 1166  1.217 1.287
SE* | % 7.3 9.2 6.3 9.4 12.9
SR" / % 1.0 0.5 1.5 1.7 0.9
VV10 (zero-type damping?)

b 414.0 18.9 5.0 6.4 6.0
SE* | % 8.4 8.0 6.3 8.3 15.6
SR | % 0.9 0.9 1.2 1.2 0.8

2Mean absolute rel. deviation of the S66x8 equilibrium energies.%3

bMean absolute rel. deviation of the S66x8 equilibrium
distances.63

“Value not fitted.

4This work.

are 5-10% for the interaction energy and 0.5-2% for the
center of mass distance. SCAN-D3 yields a good com-
promise of 8% and 1% error for the energy and the dis-
tance, respectively. For the intrinsically very attractive
Minnesota functionals, the parameter fit of the rational
damping function is not stable. This double counting
problem associated with the different damping functions
was recently investigated in detail.’® SCAN also covers
a large amount of medium range correlation, but both
damping variants can be successfully applied with very
similar accuracy.

Because the rational damping avoids artificial repul-
sive forces, this is typically the preferred variant. We
tested SCAN with both damping variants and obtained
very similar results, therefore we give only the results
for the recommended rational damping scheme. If not
stated otherwise, the defaults mentioned here are used
throughout this study.

III. RESULTS
A. Geometries

The analysis of molecular and condensed phase geome-
tries is separated in the following way and closely fol-
lows the strategy in Refs. 66 and 69: first the covalent
bond distances of different element classes are investi-
gated (subsection IIT A 1), then we highlight the interplay
between covalent bond distances and medium-range cor-
relation in medium sized molecules (subsection IIT A 2).

1. Bond distances

Though the covalent bonds are mainly determined by
the semilocal xc contributions from the DFA, we use the
methods with London dispersion interaction, as the cor-
rection scheme should not deteriorate the covalent bonds.
In order to put the results into some broader perspective,
we compare with results from MO06L,° TPSS-D3,%, PBE-
D3,°> and PBE0-D3.7° The MO6L meta-GGA is used as
the most prominent Minnesota DFA and applied with-
out further correction as recommended by Truhlar and
coworkers.”" In the past years, Grimme and coworkers
established the TPSS-D3 meta-GGA for computing re-
liable geometries at rather low computational cost.”?73
PBE-D3 is included in the comparison as the most widely
applied DFA in the solid state community. Recently,
extremely accurate geometries computed with the dis-
persion corrected hybrid functional PBE0-D3 have been
reported.56 Due to the nonlocal Fock exchange, the hy-
brid PBEO-D3 has significantly higher computational
costs compared to the other meta-GGA based methods.
We report the comparison of experimental and calculated

LMGB35

HMGBI11 TMC32

FIG. 1: Mean absolute deviations of various methods for dif-
ferent bond distances separated into light main group bonds
(LMGB35), heavy main group bonds (HMGB11), and tran-
sition metal complexes (TMC32). For SCAN, we show both
the plain functional (gray bar) and the dispersion corrected
variant in order to highlight the influence of the long-range
correction.

ground state equilibrium bond distances R, (in pm) for
35 light main group bonds (LMGB35), 11 heavy main
group bonds (HMGBI11), and 32 3d-transition metal
complexes (TMC32). The light main group bonds are
sufficiently accurate with all applied methods, with mean
absolute deviations (MADs) between 0.5 and 1.0 pm.
Compared to the plain Hartree-Fock (HF) mean field
method, which has an MAD of 2.8 pm, all semilocal DFAs
lead to a substantial improvement. The base line for
a good method on the HMGBI11 set can be again de-
fined by the HF MAD of 2.2pm. While SCAN-D3 and
PBEO-D3 provide excellent results with MADs slightly



below 1.0 pm, the error increases to 1.9, 2.4, and 3.6 pm
for TPSS-D3, PBE-D3, and MO6L, respectively. The
TMC32 set of 3d-transition metal complexes is partic-
ularly interesting as its description with hybrid function-
als is rather problematic.”® This can be seen by the bad
performance of HF with MAD larger than 12pm. In
contrast, meta-GGAs are the ideal choice as they do not
suffer from the inclusion of HF exchange for (organo-
Jmetallic systems and implicitly account for static cor-
relation effects. TPSS-D3 is second only to PBE0O-D3
and the 2.2pm MAD of SCAN-D3 is very reasonable,
outperforming MO6L, PBE, and the uncorrected SCAN.
Due to the larger systems, the impact of the dispersion
interaction is significant. The error spread of SCAN-D3
drops by a factor of 2.4 when including the dispersion
correction. This indicates that the D3 scheme not only
leads to a systematic shift (more strongly bound systems
with shorter bonds), but rather to an overall systematic
improvement.

Concerning the bond lengths, the new SCAN-D3 func-
tional provides very promising results. It clearly outper-
forms the PBE-D3 and TPSS-D3 functional for all main
group bonds and is of similar quality for transition metal
complexes. Compared to the popular MO6L the bond
lengths seem to be more reliable especially for heavier
elements as seen in the HMGB11 benchmark set.

2. Rotational constants

In order to account for zero-point vibrational effects
in the determination of molecular structures, gas phase
rotational spectra can be measured very accurately at
low temperature. From these spectra, the rotational con-
stants, corresponding to inverse moments of inertia of the
molecule, can be extracted and used to infer structural
information. The accuracy of these measurements makes
them an ideal benchmark observable to compare with
high-level quantum-chemical calculations™ and density
functional approximations.”™7 Very accurate, comple-
mentary theoretical predictions can help in assigning
molecular conformations from rotational microwave spec-
troscopy.

The rotational constants of small molecules can be cal-
culated with an MAD of only 0.04 % using well converged
coupled-cluster methods.™ For molecules with more than
a few heavy atoms, this is a tremendous computational
effort and it is important to have more efficient methods.
A recently published set of 12 medium sized molecules
has been corrected for anharmonic zero-point effects and
can be directly compared to free optimizations.”® MADs
below 0.5 % were obtained with very few methods, all in-
corporating virtual excitations such as MP273, except for
PBE(0-D3 which is even better than MP2.56

In Fig. 2, the deviations of rotational constants with
the reference computed with SCAN-D3 are shown along-
side comparable methods. The accuracy of both SCAN
and MO6L meta-GGAs is excellent and exceeds the accu-
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FIG. 2: Normal distribution of the relative errors in the com-
puted rotational constants B. for the ROT34 benchmark set
with various theoretical methods. HF and MP2 results are
taken from Ref. 73. The inset shows the molecules of this set.

racy of all other tested (meta-)GGAs thus far. Since
SCAN already covers medium range correlation to a
high degree, the impact of the dispersion correction is
smaller, but still noticeable, compared to the more repul-
sive TPSS or PBEO. Apparently it is possible to compute
highly accurate molecular geometries using neither the
virtual excitation space (dynamic correlation) nor the oc-
cupied orbital space in a nonlocal sense (Fock exchange).

MOG6L yields highly accurate geometries, but the corre-
sponding systematic shifts are small and already indicate
an overbound system with too dense molecular structures
and too short noncovalent distances. In contrast, SCAN
yields systematically too large molecular structures and
noncovalent distances. The addition of a dispersion cor-
rection not only removes the systematic underbinding for
SCAN, but also reduces the error spread on all analyzed
sets except for LMGB.

B. Noncovalent interactions

As the most simple model systems for weak van der
Waals interactions, we analyzed Ney, Aro, Kro with the
full SCAN(-D3) functional and an exchange only variant
(SCANx).7"7® Potential curves are reported in the ESI.
While we see some deviations for the neon dimer, the
potentials for the argon and krypton dimer are encour-
aging, i.e., SCANx closely reproduces the HF reference
potential and SCAN-D3 is in excellent agreement with
CCSD(T). More problematic is the interaction of rare
gas atoms with a positive point charge, which probes the
polarizability. Here, the SCAN density appears to be
too polarizable with systematic deviations from the ref-
erence. This may partly explain some problems in the



description of strong hydrogen bonds discussed below.

1. Molecular dimers

We discuss two standard benchmark sets introduced by
Hobza and coworkers. The first is the very well-known
and widely used S22 set™ ®! comprising 22 medium-sized
molecules, mostly organic complexes in their equilibrium
structure. This set covers hydrogen bonded as well as
typical vdW complexes and it has become the de-facto
standard in the field of theoretical non-covalent inter-
action calculations. Significantly larger complexes are
compiled in the L7 test set®?, and we use the more con-
sistent DLPNO-CCSD(T)/CBS* interaction energies as
a reference.®?

TABLE II: Deviations of intramolecular interaction energies
from the CCSD(T) references for the S22 and L7 NCI bench-
mark sets. (1 kcal/mol = 0.0434 eV)

measure SCAN SCAN MO06L TPSS PBE PBEO
-D3 -D3  -D3 -D3
S22 (binding energy in kcal/mol)®

MD® -0.4 0.6 0.8 0.0 -0.1 -0.3

MAD® 0.4 0.9 0.8 0.4 0.5 0.5

SD¢ 0.7 1.1 0.5 0.6 0.7 0.7

MAX* 2.6 2.9 1.7 1.5 1.9 1.8
L7 (binding energy in kcal/mol)f

MD 1.2 7.9 3.0 0.9 2.1 91.4

MAD 2.5 7.9 3.0 1.1 2.6 1.6

SD 3.0 5.3 2.4 1.2 2.9 1.2

MAX 4.7 15.6 6.3 2.8 6.7 3.0

*See Ref. 79 for details.

®Mean deviation, > 0 denotes underbound systems.
“Mean absolute deviation.

dStandard deviation.
¢Maximum absolute deviation.

fSee Refs. 82,84 for details.
9Values replaced by PW6B95-D3.82

The statistical deviations from the references are given
in Table II. When comparing the different test sets, one
has to keep in mind that the mean binding energies are
7.3 kcal/mol and 16.7 kcal/mol for S22 and L7, respec-
tively.

We confirm that TPSS-D3 is one of the most accu-
rate non-hybrid DFAs for noncovalent binding energies of
molecular complexes. The MADs of 0.4 and 1.1 kcal/mol
for the S22 and L7 sets are excellent, below 7% of the
mean binding energy. The dispersion corrected PBE and
PBEO functionals also perform well for these sets. The
plain meta-GGA MOG6L has substantially larger errors
and the MADs are approximately double compared to
TPSS-D3. While the errors could be reduced with the
D3(0) scheme, this would simultaneously deteriorate the
accurate geometries. Consistent with the geometry anal-
ysis, SCAN is more repulsive compared to MO6L and the
performance even slightly worse, especially for the L7 test

set. Addition of the D3 correction significantly improves
the SCAN results yielding a MAD for the L7 set of 2.5
kcal/mol (15% of the mean binding), which is still not
quite as good as some of the other methods. It has been
noted several times in the literature that for the high-
est accuracy on noncovalent energies between molecules,
the D3 and related semi-classical dispersion corrections
have to be combined with intrinsically more repulsive
DFAs.8%:86 However, it is still notable that SCAN can
profit from the dispersion correction and overall yields
reasonably accurate noncovalent binding energies.

2. Molecular crystals

Molecular crystals are an increasingly important class
of materials that require an accurate description from
efficient methods. This is especially important for “in
silico” crystal structure prediction.37 89

To investigate this class of systems, we analyze the
X23 set of (mostly) organic molecular crystals?®?! that
can be considered as a periodic extension of S22 where
the asymptotic parts of the non-covalent interaction may
dominate. In order to decrease the computational ef-
fort, we compiled a subset consisting of the crystals cy-
clohexanedione, acetic acid, adamantane, benzene, CO»,
cyanamide, ethylcarbanate, oxalic acid, pyrazine, pyra-
zole, succinic acid, and uracil. The subset is constructed
to maintain the MAD of TPSS-D3 for both the crystal
density and the lattice energy within 0.5%.

The statistical performance is summarized in Table III
and the potential energy surfaces of two selected crystals
are shown in Figure 3. We show the potential energy
surface (PES) of unpolar benzene, and the « polymorph
of oxalic acid that contains significant hydrogen bonds.
As such, the relative impact of London dispersion on the
binding energy should be reduced for oxalic acid while
that from electrostatic and induction effects will be more
prominent.  The PES of the benzene crystal in Fig-
ure 3 (a) shows again that both SCAN and MO6L already
cover some part of the medium range dispersion interac-
tion. While the corresponding potentials show a clear
minimum, the crystal is still underbound. The minimum
of SCAN-D3 is very close to the reference after adding
the D3 correction and is within “chemical accuracy” of
1 keal/mol, similar to the TPSS-D3 and PBE0-D3 re-
sults. The equilibrium is more dense by about 3% than
experimentally observed.

The oxalic acid crystal is one of the crystals within
the X23 set with the strongest hydrogen bond contribu-
tions. It is therefore much more challenging for a semilo-
cal DFA to describe the induction effects accurately as
shown in Figure 3 (b). MO6L is still underbound, but
SCAN already computes a lattice energy close to the ref-
erence. Adding the D3 correction leads to a 4 kcal/mol
overbinding with significantly too small unit cell vol-
ume. Similarly to PBE, SCAN seems to overpolarize
hydrogen bond networks leading to a too attractive in-
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FIG. 3: Lattice energy of the (a) benzene and (b) oxalic acid
« crystal based on constrained volume optimizations (TPSS-
D3 level) with single-point evaluations of various dispersion
corrected DFAs. For each method, the cross shows the posi-
tion of the energy minimum and the arrow indicates the effect
of the added dispersion correction.

duction interaction. Adding the physically correct dis-
persion interaction enhances the overbinding tendency,
which leads to the comparably poor performance for the
oxalic acid crystal. A similar effect is seen for water
clusters (WATER27,%2 see below), and ice polymorphs
(ICE10%%). Another study recently reported analogous
behavior for SCAN on another set of ice polymporphs.®*
TPSS-D3 has smaller errors and is even bound too weakly
and as expected the best results are computed with the
hybrid PBE0-D3.

Benzene and oxalic acid are two borderline cases as
the other X23 systems are typically in between them as
shown by the statistics given in Table III. The SCAN-D3
MAD of 4.2% for the unit cell volumes is worse com-
pared to the uncorrected SCAN result. We attribute
this mainly to the intrinsic errors of SCAN for hydrogen
bonded systems. At the same time the standard devia-
tion is slightly decreased indicating that though the D3
contribution is physically meaningful, the final SCAN-D3
method systematically underestimates the cell volumes.
The geometries at the MO6L level are systematically too

TABLE III: Deviations of unit cell volumes and interaction
energies from the back-corrected exp. reference for the X23
organic crystal set.

measure SCAN-D3 SCAN MO6L TPSS-D3
X23 (unit cell volume in %)*
MD® -4.2 -0.5 -3.7 1.0
MAD*® 4.2 2.2 5.1 2.8
SD4 1.6 2.5 4.1 4.0
MAX* 6.6 4.7 8.4 15.0
X23 (Lattice energy in kcal/mol)
MD 1.5 -3.7 -1.2 -0.7
MAD 1.9 4.0 1.7 1.1
SD 2.0 3.2 1.7 1.1
MAX 5.0 10.5 3.4 2.2

aSee Ref.66:90:91 for details.

bMean deviation, > 0 denotes too large distances.
“Mean absolute deviation.

dStandard deviation.

¢Maximum absolute deviation.

dense by about 3.7% leading to an MAD larger than 5%.
An additional dispersion correction would increase this
systematic error even further. TPSS-D3 yielded accurate
unit cell volumes with an MAD below 3%, the largest er-
ror occurring for the COs crystal that is problematic for
all dispersion corrected DFA methods. The SCAN-D3
lattice energies have a reasonable MAD of 1.9 kcal/mol,
the dispersion correction clearly improving the perfor-
mance and lowering the MAD of SCAN by more than
50%. While the performance of MO6L is similar, TPSS-
D3 is significantly more accurate with an MAD close to 1
kcal/mol. Other more repulsive DFAs have been shown
to yield analogous, highly accurate lattice energies on
this X23 set, the most successful ones being PBE0O-D3,
PBEO-MBD, and BS6PBE-XDM.2:90:91

C. Thermochemistry and kinetics

In this final section we analyze the performance of the
SCAN-D3 functional for general main group chemistry.
In 2011, Goerigk and Grimme compiled a meta database
of several benchmark sets, dubbed general main group
thermochemistry, kinetics, and noncovalent interactions
(GMTKN30).2895 Tt consists of three main subgroups
testing basic properties (e.g., atomization energies, ion-
ization potentials, electron and proton affinities, and re-
action barriers), reaction energies (including isomeriza-
tions), and both intra and intermolecular noncovalent in-
teractions of light and heavy molecules, including molec-
ular conformations. This set has been extensively used to
benchmark the large menagerie of DFAs from all differ-
ent functional classes.?® A transferable scheme to weight
the different sets has been designed to compute an overall
weighted mean absolute deviation (WTMAD), enabling
a direct comparison of all methods. We compute the full
GMTKN30 database with SCAN(-D3) and compare it



to the meta-GGAs MO6L and TPSS-D3 and the hybrid
functional PBE0-D3 in Table IV. The WTMADs of the
three subgroups are shown in Figure 4.

TABLE IV: Mean absolute deviations (MAD, in kcal/mol) for
all 30 subsets of the GMTKN30 database. Errors for MO6L,
TPSS-D3, PBE-D3 PBE0-D3 are taken from Ref. 96. For
comparison, the overall WTMAD for the local spin density
approximation is 11.9 kcal/mol®®.

subset SCAN SCAN MO6L TPSS PBE PBEO
-D3 -D3  -D3 -D3
basic properties
MBO08-165 8.1 79 133 9.5 92 8.6
W4-08 4.8 4.8 4.6 5.3 13.0 4.0
G211P 4.9 4.9 4.5 4.0 3.9 3.7
G21EA 3.6 3.6 4.0 2.2 34 2.5
PA 3.2 3.2 4.6 4.7 2.2 2.8
SIE11 10.2 10.0 10.1 11.6 124 7.8
BHPERI 3.8 3.2 3.5 3.1 4.2 1.6
BH76 7.9 7.8 3.8 9.0 95 4.4

WTMAD (bp) 6.7 6.6 7.9 75 9.1 5.7

reaction energies

BH76RC 3.7 3.7 3.1 3.7 44 2.5
RSE43 1.9 1.9 3.1 22 33 1.8
0O3ADDG6 7.4 7.1 3.4 4.4 5.0 5.7
G2RC 6.8 6.6 5.9 6.8 6.5 6.8
AL2X 2.9 2.2 1.4 22 23 1.9
NBPRC 2.9 2.4 3.9 1.7 23 3.3
1SO34 1.3 1.4 2.2 21 16 1.6
ISOL22 4.2 4.6 74 70 5.6 2.9
DC9 8.6 8.8 115 9.7 10.1 9.2
DARC 2.6 3.0 8.0 6.6 4.3 3.1
ALK6 3.8 3.4 8.1 3.3 3.6 3.6
BSR36 1.7 3.2 6.0 6.3 4.8 4.6

WTMAD (re) 2.9 3.2 4.8 44 40 3.4

non-covalent interactions

IDISP 3.2 5.9 6.6 4.5 4.8 3.5
WATER27 9.4 7.4 2.8 4.9 8.6 6.4
S22 0.44 093 0.80 032 048 0.57
ADIM6 0.23 1.68 0.28 040 0.58 0.36
RG6 0.19 0.27 043 004 0.05 0.03
HEAVY28 0.28 0.40 0.65 020 0.24 017
PCONF 0.50 1.13 097 110 1.51 0.94
ACONF 0.16 0.32 0.46 005 0.09 0.10
SCONF 0.37 027 039 068 044 0.25
CYCONF 0.47 0.42 040 082 084 0.55

WTMAD (nci) 1.3 17 1.3 12 16 12
WTMAD (al) 3.9 41 49 46 52 3.6

The effect of dispersion on the basic properties of
mostly small molecules is minor. The SCAN-D3 WT-
MAD of 6.7 kcal/mol is very good and in between the
accuracy of a typical GGA and a hybrid functional. Of
this subgroup, the mindless benchmark (MB08-165) con-
sisting of artificial molecules stands out. The set has been
designed to explore the breadth of chemical space and

basic properties

reaction energies NCIs

WTMAD [kcal mol™1]

FIG. 4: Weighted mean absolute deviations (WTMADs) for
the three categories (basic properties, reaction energies, and
noncovalent interactions) of the large GMTKN30 database
composed of 30 individual benchmarks sets given in Ta-
ble TV.?%:9 For SCAN, we show both the plain functional
(gray bar) and the dispersion corrected variant in order to
highlight the influence of the long-range correction.

specifically analyze the DFAs far away from any training
set to test their robustness.

The WTMAD of SCAN-D3 for the reaction energies is
excellent at 2.9 kcal/mol and surpases any other meta-
GGA to date. Even typical hybrid functionals like PBEO-
D3 and B3LYP-D3 are worse with WTMADs of 3.4 and
4.7 kecal/mol, respectively. The SCAN results for iso-
merization (ISO34, ISOL22) are particularly outstand-
ing, and in the subgroup of reaction energies the D3 dis-
persion correction leads to only small improvements.

For the group of mnoncovalent interactions the dis-
persion correction has the largest impact by reducing
the SCAN WTMAD from 1.7 kcal/mol to 1.3 kcal/mol.
Compared to other functionals this reduction is moder-
ate, and especially intrinsically more repulsive DFAs can
reduce the WITMAD below 1 kcal/mol (e.g. revPBE-
D3°7). The most problematic systems are the water clus-
ters in WATER27 where the plain SCAN functional al-
ready overestimates the binding energies. This is then en-
hanced by the attractive dispersion contribution resulting
in the worst performance of the selected methods. Hao
et al. applied the meta-GGA made simple (MGGA-MS)
with a D3 correction to the GMTKN30 set and found
that it delivers top-notch performance for WATER27,
with an MAD below 2 kcal/mol.?® This illustrates that
it is possible to describe hydrogen bonds in water accu-
rately via a nonempirical construction. Similar problems
for water containing systems have been recognized for
the PBE functional,”® and are probably connected to an
overpolarization problem in strong hydrogen bond net-
works related to intrinsic self-interaction error. On the
other hand, SCAN-D3 is very accurate for molecular con-
formations with MADs below 0.5 kcal/mol for all 4 sets
(PCONF, ACONF, SCONF, CYCONF).



Overall, SCAN-D3 performs very well for the
GMTKN30 with a WTMAD of 3.9 kcal/mol, one of the
lowest for the meta-GGA class. Interestingly, SCAN-
D3 delivers superior performance compared to the MOG6L
functional even though parts of GMTKN30 are included
in the training set of the Minnesota functionals. A sim-
ilar picture can be seen when comparing error statistics
of molecular and atomic energies with the method of
atomic equivalents. The root mean square error on 592
species are 7.5, 4.7, and 4.2 kcal/mol for LSDA, MO6L,
and SCAN, respectively,”® reproducing closely the trend
shown by the GMTKN30 database.

IV. CONCLUSIONS

In this work we have combined the SCAN meta-GGA
with a long-range correction for London dispersion inter-
actions. We provide default damping parameters for the
D3 scheme with zero and rational damping, and VV10
dispersion corrections. The resulting SCAN-D3 method
was tested on a broad set of systems with the main fo-
cus on accurate geometries, as this represents the most
advantageous aspect of the meta-GGA functional class.
Even considering hardware improvements, DFT will be
the leading method to compute ab initio equilibrium
structures in the foreseeable future.

The molecular geometries of SCAN-D3 exceed the ac-
curacy of all other (meta-)GGAs thus far, while nonco-
valent binding energies are good (L7, X23) to very good
(S22), producing high quality potential energy surfaces
of molecular dimers and organic crystals. Due to the
self-interaction error intrinsic in semilocal functionals,
SCAN, and thus SCAN-D3, overestimates the strength
of hydrogen bonds. Thermochemistry and kinetics were
shown to be in excellent agreement with reference values
as demonstrated on the large GMTKN30 database, re-
sulting in a WTMAD of 3.9 kcal/mol. Overall, SCAN-D3
delivers accurate properties that are close to the results of
more computationally demanding methods. Importantly,
this has been achieved by a nonempirical semilocal func-
tional. SCAN-D3 overall outperforms both the empirical
MO6L and the most widely used PBE-D3 functionals in
about 80% of the considered test sets.

The long-range dispersion correction to SCAN is most
important in systems that bind through long-range dis-
persion, such as the benzene crystal and the L7 set of
large molecular complexes. As a consequence of the lack
of structure in the long-range correction, SCAN without

D3 can be reasonably good for the geometry, but not the
binding energy, of even the benzene crystal.

V. COMPUTATIONAL DETAILS

For all molecular computations, we used a developer ver-
sion of TURBOMOLE 7.0."°° The MO6L functional is com-
puted via the XCfun interface.!® We use converged single-
particle basis sets of quadruple-¢ quality (def2-QZVP).102:103
Additional diffuse functions are used for the WATER27 and
G21EA benchmark sets.'%* For heavy elements these are com-
bined with the Stuttgart-Dresden effective core potentials,
that effectively include scalar relativistic effects.!%® Only some
hybrid PBEO results that have been taken from previous work
were evaluated with the slightly smaller def2-TZVP basis.
For the semi-local exchange-correlation part the numerical
quadrature grids m4 (4 for SCAN) are used. For geometry
optimizations with SCAN, the radial grid size must be sub-
stantially increased to radsize 60 or 70, see the Supporting
Information. The RI-J approximation was used!°67198 with
default auxiliary basis sets.'®? Standard convergence thresh-
old for SCF convergence (10~" a.u.) and tight thresholds for
geometry convergence (1074 a.u.) were applied. Solid state
calculations were conducted with a modified VASP5.3 pro-
gram suite.!'%1! To approach the single-particle basis set
limit, a projector-augmented plane-wave (PAW!'%!13) basis
set with a large energy cutoff of 1000eV was applied. The
PBEO hybrid single-point energies (Figure 3 (b)) are calcu-
lated with a smaller energy cutoff of 500eV. The Brillouin
zone is sampled with dense k grids of approximately 1/40 At
generated via the Monkhorst-Pack scheme. For efficient ge-
ometry relaxations and three-body gradients of the D3 scheme
in periodic boundary conditions, we use a developer version
of the CRYSTAL14 program.!*

In the current Turbomole implementation, the require-
ments of SCAN’s exchange-correlation functional on the nu-
merical integration grid are unusually high, leading to an in-
creased computational cost compared to TPSS by a factor of
2 to 10. However, SCAN has decreased numerical problems
in VASP, where SCAN only requires slightly denser Fourier
grids compared to the PBE GGA.

We thank Stefan Grimme for helpful discussions con-
cerning the D3 correction scheme and the importance of
SCAN’s numerical stability, and F. Furche for insight on
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