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Magnetic phenomena in itinerant electron systems has been at the forefront in material science.
Here we show that the Weyl spin-orbit couplings (SOC) in 3 dimensional repulsively interacting
itinerant Fermi systems opens up a platform to host new itinerant magnetic phases, excitations
and phase transitions. A putative Ferromagnetic state (FM) is always unstable against a stripe
Spiral spin density wave (S-SDW) or a stripe Longitudinal-SDW at small or large SOC strengths
respectively. The stripe ordering wavevector is given by the nesting momentum of the two SOC split
Fermi surfaces with the same or opposite helicities at small or large SOC strengths respectively. The
LSDW is accompanied by a charge density wave (CDW) with half of its pitch. The transition from
the paramagnet to the SSDW or LSDW+CDW is described by quantum Lifshitz type actions, in
sharp contrast to the Hertz-Millis types for itinerant electron systems without SOC. The collective
excitations and FS re-constructions inside the SSDW and LSDW+CDW are also studied. The effects
of a harmonic trap in cold atom experiments are briefly discussed. In view of recent groundbreaking
experimental advances in generating 2d SOC in cold atoms, these phenomena can be observed in
current or near future cold atom experiments even at very weak interactions. They may also be
relevant to some itinerant magnetic materials with a strong SOC.

I. INTRODUCTION

The investigation and control of spin-orbit coupling
(SOC) [1] have become subjects of intensive research in
condensed matter and cold atoms since the discovery of
the topological insulators [2, 3]. It was found to be a criti-
cal factor leading to a whole new class of electronic states
in correlated electron materials [4]. In cold atom systems,
since the experimental realizations of 1d SOC 6 years ago
[5, 6], there are recent ground breaking experimental ad-
vances in generating 2d Rashba SOC in both 40K Fermi
gas [7–9] and 87Rb spinor BEC [10]. The possible heating
issues in these experiments are well under control, many
body phenomena due to the interplay between SOC and
interactions are being investigated. Generating the 2d
SOC is a tremendous advance over the 1d SOC gener-
ated in previous experiments ( for a review, see [11] ),
while generalizing 2d SOC to 3d SOC in these experi-
ments is straightforward. So the 3d isotropic (Weyl) SOC
is expected to be implemented in very near future exper-
iments. So far, there were extensive theoretical investi-
gations on various effects of SOC on the pairing physics
of attractively interacting Fermi gases [12, 13]. However,
there are still relatively few works in the repulsive side.
In view of the tunability of weak to strong repulsive in-
teraction in the current experiments [7–10], it becomes
topical and important to investigate possible new many
body phenomena due to the interplay between the SOC
and the repulsive interactions [14–19].

On the other forefront, magnetic phases and phase
transitions in itinerant electron systems has been a vigor-

ous research field in material science. It dates back to the
Stoner’s ferromagnetic (FM) instability [20], Hertz-Millis
theory [21, 22] to describe magnetic transition in itiner-
ant Fermi systems without SOC, upto recent doping de-
pendent charge and spin orderings in high temperature
superconductors [23, 24]. In cold atom systems, there
were both experimental [25] and theoretical work [26] on
possible itinerant FM in a purely repulsively interact-
ing two component Fermi systems. But so far, possible
dramatic effects of the SOC on the magnetic orders and
transitions in the itinerant fermionic systems have not
been discussed.
In this paper, we address this outstanding problem by

studying repulsively interacting Fermi gas with the Weyl
SOC. We show that the SOC leads to new classes of itin-
erant magnetic phases, excitations and phase transitions.
We classify the symmetries of the SOC Hamiltonian and
find their exact constraints on the density-spin response
functions. In the para-magnet (PM) side, we identify one
gapless mode and three gapped modes ( one longitudinal
and two transverse modes). The SOC leads to the split-
ting of two transverse modes at any finite momentum.
A putative Ferromagnetic state (FM) is always unstable
against a stripe co-planar Spiral spin density wave (S-
SDW) or a stripe collinear Longitudinal-SDW at small
or large SOC strengths respectively. Their stripe order-
ing wavervector is given by the nesting momentum of the
two Fermi surfaces split by the SOC with the same helic-
ity or opposite helicities at small or large SOC strengths
respectively. There is an accompanying charge density
wave (CDW) to the LSDW with half of its pitch. We
also construct a unified quantum Ginzburg-Landau ac-
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tion to study the PM to the putative FM, SSDW or
LSDW+CDW transition and find it is of quantum Lif-
shitz type which is in sharp contrast to Hertz-Millis type
for itinerant electron systems without SOC. The collec-
tive excitations and FS re-constructions inside the SSDW
and LSDW+CDW are also studied. At a relatively large
SOC ( or dilute Fermi gas ), even a very weak interaction
can drive the system into the SSDW or LSDW+CDW
due to the nearly flat band structure near the bottom
(Weyl shell) of the spectrum. This salient feature makes
these novel itinerant magnetic phases easily experimen-
tally accessible even at weak interactions. Near to the
end of the paper, we briefly discuss the effects of the har-
monic trap in observing these phenomena. In view of
recent ground breaking experimental realizations of a 2d
SOC [7–10], these new phenomena could be probed [27–
33] in near future cold atom experiments and may also
be relevant to some materials with SOC [4, 18].

The Hamiltonian for a repulsively interacting two-
component Fermi gas with the isotropic Weyl SOC

VSO = λ~k · ~σ is:

H =

∫

d3~r[Ψ†(
−~

2∇2

2m
− µ+ VSO)Ψ

+ g

∫

d3~rΨ†
↑(~r)Ψ

†
↓(~r)Ψ↓(~r)Ψ↑(~r)], (1)

where the SOC strength λ = gFµB∇B
3m~

can be tuned by the
magnetic field gradient ∇B in the scheme [34, 35], gF the
Landé factor and µB the Bohr magneton, g = 4π~2as/m
with as the s-wave scattering length. The chemical po-
tential µ is determined by the density of atoms. In the
cold atom experiments [7–10], the density is fixed, so it
is convenient to take kR = mλ as the momentum unit
and ER = k2R/2m as the energy unit. We characterize
the SOC strength by the dimensionless ratio γ = kR/kF
where kF = (6π2n)1/3 is the Fermi momentum of the
system without SOC at the same density n. We set
~ = kB = 1.

The rest of the paper is organized as follows. Before
performing any analytical or numerical calculations, it is
important to investigate the symmetries of the Hamilto-
nian and find their exact constraints on experimentally
observable physical quantities. This will be achieved in
Sec.II. In Sec.III, we will calculate the collective modes
and the particle-hole (P-H ) excitations in the param-
agnet state. There are one gapless density-longitudinal
spin mode, one gapped density-longitudinal spin mode
and two gapped transverse modes. We also analyze why
it is the SOC which leads to the splittings of the two
transverse modes at any non-zero wavevector. The lower
branch of the two split transverse modes indicates a tran-
sition into a transverse spiral spin density wave (SSDW)
as the interaction strength increases. In Sec.IV, assum-
ing the ferromagnetic (FM) state is a possible ground
state when the interaction is above a critical strength,
we construct a Hertz-Millis type action to describe the
transition from the paramagnet to the putative FM state.

However, we identify a non-positive definite transverse
propagator which indicates the putative FM state is al-
ways pre-emptied by a transverse SSDW. Then in Sec.V,
we construct an effective action to describe the param-
agnet to the SSDW at a small SOC and show that the
transition is of bosonic quantum Lifshitz type with the in-
stability happening at a finite momentum [36, 37]. So it
is a first order one, in sharp contrast to second order one
in itinerant Fermi system without SOC. This maybe the
first quantum Lifshitz transition in any itinerant Fermi
systems. Similar types of bosonic Lifshitz transition ex-
ist in various condensed matter systems such as the su-
perfluid 4He [40], exciton superfluids in bilayer quantum
Hall or electron-hole bilayer [41] and superconductor in a
Zeeman field [38, 42]. We analyze the symmetry breaking
pattern of the SSDW and work out its one gapless spin-
lattice coupled Goldstone mode. In Sec.VI, we construct
the quantum Lifshitz type action to describe the param-
agnet to the LSDW at a large SOC and show that there is
always an accompanying charge density wave with half
of its pitch. We analyze the symmetry breaking pat-
tern of the LSDW + CDW and work out its one gapless
lattice phonon mode. Combining the results achieved
in Sec.IV-VI, we reach the zero temperature phase di-
agram in the interaction versus the SOC strength and
also the finite temperature phase diagrams in the SSDW
and LSDW+CDW phase. In Sec.VII, we show that it
is the FS nestings at a small and large SOC with the
opposite or the same helicities which lead to the SSDW
and LSDW+CDW at a small and large SOC respectively.
This is in sharp contrast to continuous itinerant Fermi
systems without SOC where there is no FS nestings at
3d, so the FM becomes a valid instability. In Sec.VIII,
we work out the corresponding FS re-constructions in-
side the SSDW and LSDW+CDW and also stress their
different structures within the Brillioun Zone (BZ). In
the final conclusion section IX, we contrast the results
achieved in the continuum with those on lattice systems
at a half filling. We also argue that the dominant roles
played by the SOC may make the magnetic transitions
in itinerant Fermi systems with the SOC simpler than
its counterpart without it. We discuss the experimen-
tal detections of the itinerant magnetic phases and phase
transitions in the cold atom systems and also briefly out-
line the effects of a harmonic trap. The novel phenomena
may also be observed in some itinerant magnetic materi-
als with a strong SOC. Several technical details are left
to the three appendices.

II. SYMMETRY ANALYSIS OF THE SOC

HAMILTONIAN AND EXACT RELATIONS OF

DENSITY-SPIN SUSCEPTIBILITIES

In the presence of Weyl SOC, it is convenient to define
a helical basis (Fig.1a) with respect to the momentum

where we can define two transverse spin modes (T̂1 ·~S, T̂2 ·
~S) and one longitudinal L spin mode (q̂·~S). The Hamilto-
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FIG. 1. (Color online) (a) The helicity basis shows one lon-

gitudinal mode along the q̂ = ~q

q
direction and two transverse

modes along the two transverse directions T̂1, T̂2. (b) The
collective modes in the normal state at γ = 0.21. The pink
(green) regime represents the intra-(inter) band particle-hole
excitation. The split T± modes indicate possible SSDW at
~q = ±QT ẑ.

nian Eqn.1 has the following symmetries: 1. The transla-
tional symmetry and the [SU(2)spin×SO(3)orbit]D sym-
metry where the D means the simultaneous ( diagonal
) rotation in spin and orbit space. 2. Time reversal
symmetry T : Tc~k,↑T

−1 = c−~k,↓, T c~k,↓T
−1 = −c−~k,↑. 3.

Three Spin-orbital coupled Reflection symmetries: (a)
Px: σx → σx, ky → −ky, σy → −σy, kz → −kz, σz →
−σz. (b) Py : σy → σy , kx → −kx, σx → −σx, kz →
−kz, σz → −σz . (c) Pz: σz → σz , kx → −kx, σx →
−σx, ky → −ky, σy → −σy. The Pz symmetry is equiva-
lent to a joint π rotation of orbital and spin around the
ẑ axis. The Py can also be taken as Px combined with
[U(1)spin × U(1)orbit]D around the ẑ axis by an angle
π/2. These symmetries can be used to establish exact
relations on the spin-density correlation functions.
In the helicity basis Fig.1a, pick up ~q as the ẑ axis,

then qx = qy = 0, qz > 0, ~q = qz ẑ in this helicity basis.
The [SU(2)spin×SO(3)orbit]D symmetry along this ẑ axis
dictates that

RT
z χ

µνRz = χµν (2)

which dictates that the dynamical 4× 4 density-spin re-
sponse function χµν(~q, ω) can be split into two 2×2 sub-
spaces: i) the density-longitudinal n−L subspace ii) the
two transverse T1 − T2 subspace with χxx = χyy, χxy =
−χyx.

A. In the T1 − T2 subspace

After a unitary transformation, it can be shown that
in the T1 − T2 subspace:

χ =

(

χ+− 0
0 χ−+

)

(3)

where χ+− = 2(χxx−iχxy), χ−+ = 2(χxx+iχxy). χ++ =
χ−− = 0.

The Px ( or Py ) symmetry dictates

χ+−(~q, ω) = χ−+(−~q, ω) (4)

The T symmetry also leads to Eqn.4.

Eqn.4 leads to χxx = χyy is an even function of qz,
χxy = −χyx is an odd function of qz.

Directly taking complex conjugate leads to:

[χ+−(~q, ω)]∗ = χ−+(−~q,−ω) (5)

which, combining with Eqn.4, leads to

Reχ+−(~q, ω) = Reχ+−(~q,−ω)

Imχ+−(~q, ω) = −Imχ+−(~q,−ω) (6)

(a) Outside the Particle-hole ( P-H ) continuum

The χ+−, χ−+ are real, so Eqn.6 leads to the fact that
χxx = χyy and χxy = −χyx are all even function of ω.
The poles of χ+−, χ−+ lead to the two gapped transverse
modes T± respectively.

(b) Inside the P-H continuum

The χ+−, χ−+ have both real and imaginary parts,
Eqn.6 leads to Reχ+−(~q, ω) is an even function of
ω, while Imχ+−(~q, ω) is an odd function of ω.
Imχ+−(~q, ω) 6= 0 leads to the particle hole excitation
spectrum in the T1 − T2 subspace.

B. In the n− L subspace

The Px ( or Py ) symmetry dictates

χii(~q, ω) = χii(−~q, ω), i = n, L

χij(~q, ω) = −χij(−~q, i 6= j (7)

which shows χnn, χLL are even function of qz, while
χnL, χnL are an odd function of qz.

The T symmetry leads to

χii(~q, ω) = χii(−~q, ω), i = n, L

χij(~q, ω) = −χji(−~q, ω), i 6= j (8)

Note that Px and T leads to two different equations
in the nL component only. Combining Eqn.7 and Eqn.8
leads to χnL(~q, ω) = χLn(~q, ω).

Directly taking complex conjugate leads to:

[χij(~q, ω)]∗ = χij(−~q,−ω), i, j = n, L (9)

which combining with Eqn.7 leads to

Reχii(~q, ω) = Reχii(~q,−ω), i = n, L

Imχii(~q, ω) = −Imχii(~q,−ω) (10)

and

ReχnL(~q, ω) = −ReχnL(~q,−ω)

ImχnL(~q, ω) = ImχnL(~q,−ω) (11)
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FIG. 2. (Color online) The Zero temperature phase diagram
achieved by the RPA calculations (a) The critical interac-
tion strength from the PM Fermi liquid to SSDW (blue line,
Fig.3a), LSDW+CDW (red dashed dotted line, Fig.3b) or a
putative FM (black dashed line) transition. The FM is al-
ways unstable against the SSDW. (b) The ordering wavevec-
tor QT ( blue circles ) of the SSDW and QL ( red squares
) of the LSDW as a function of SOC strength γ. The green
dot-dashed line represents the kF2 − kF1. When γ < 0.5,
QT ∼ kF2 − kF1 = 2kR is dominated by the nearly FS nest-
ing between outer FS and inner FS with the opposite helicity.
When 0.5 < γ < 1.5, QT is determined by multiple momen-
tum transfer processes. The phase in this regime could be
some SSDW with multi-momenta orderings. When γ > 1.5,
QL ∼ kF2 − kF1 is dominated by the nearly FS nesting be-
tween outer FS and inner FS with the same helicity [45].
See Fig.3 for the spin-orbital configurations of SSDW and
LSDW+CDW, Fig.4 for the finite temperature phase transi-
tions and Fig.6 for the Fermi surface reconstructions in the
SSDW and LSDW+CDW respectively.

(a) Outside the P-H continuum,
The χnn, χLL, χnL are real. Eqn.10 leads to

χnn(~q, ω), χLL(~q, ω) are even function of ω. However,
Eqn.11 leads to χnL(~q, ω) is an odd function of ω, there-
fore χnL(~q, 0) = 0. The poles of the 2 × 2 matrix deter-
minant lead to one gapless sound mode and a gapped L
mode.
(b) Inside the P-H continuum,
The χnn, χLL, χnL have both real and imaginary parts,

Eqn.10,11 lead to Reχii(~q, ω), i = n, L ( ReχnL(~q, ω) )
is an even ( odd ) function of ω. While Imχii(~q, ω)
( ImχnL(~q, ω) ) is an odd ( even ) function of ω.
ImχnL(~q, ω) 6= 0 leads to the particle hole excitation
spectrum in the n− L subspace.
These exact relations can be used to simplify consider-

ably the following analytical and numerical calculations
to find the 4 collective modes and the P-H excitations.
Any approximations such as RPA should respect these
exact relations.

III. COLLECTIVE MODES AND THE P-H

EXCITATIONS IN THE PARAMAGNET STATE

In this section, we will perform a concrete calculation
on all the response functions at the RPA level whose
poles lead to the collective modes . We also ensured that

they all satisfy the exact relations established in the last
section.
The interaction term in Eq.1 can be divided into the

density and spin channel HI = g
8

∫

d~r[ρ(~r)2 − ~S(~r)2],

where ρ(~r) = Ψ†Ψ(~r) and ~S(~r) = Ψ†~σΨ(~r). In the pres-
ence of SOC, the density fluctuation is coupled with the
spin fluctuation[15]. We introduce the density-spin or-
der parameter φµ, µ = n, x, y, z to decouple the inter-
action term via a Hubbard-Stratonovich transformation.
Integrating out the fermionic fields leads to the effective
action for φµ:

S =

∫

d3~r

∫ 1/T

0

dτ
1

2g
φ2
µ − Tr ln

(

−G−1
0 +M

)

, (12)

where G−1
0 = −∂τ −H0 + µ, M = i

2φnσ
0 + 1

2
~φ · ~σ.

Now we can expand Eqn.12 S[φµ] = S(0) + S(2) + · · ·
in terms of φµ. The density channel φn has a non-zero
imaginary saddle point value due to the finite particle
density of the fermions which could be eliminated by re-
defining φn as the deviation from its saddle point value.
To the second order of φµ, we obtain

S(2) =
1

2

∫

d3~k

(2π)3
T
∑

n

(

1

g
δµν − 1

4
χ̄µν(~k, iωn)

)

× φµ(~k, iωn)φ
ν(−~k,−iωn), (13)

where χ̄µν is related to the density-spin susceptibility
χµν(q, iωn) = 〈sµ(q, iωn)s

ν(−q,−iωn)〉 via χ̄00 = −χ00,
χ̄0i = iχ0i, χ̄i0 = iχi0, χ̄ij = χij with i, j,= x, y, z. The
non-interacting density-spin susceptibility is given by:

χµν
0 (~q, iωn) =

1

V

∑

k,sr

Fµν
sr (k+q, k)

nF (ξk+q,s)− nF (ξk,r)

iωn − (ξk+q,s − ξk,r)
,

(14)
where the ξk,s is the fermion spectrum with s the he-
licity p̂ · ~σ|ps〉 = s|ps〉, the nF (ξk,s) is the Fermi dis-
tribution function, the ξk+q,s − ξk,r is the particle-hole
excitation energy and the overlap factor Fµν

sr (p, q) =
〈ps|σµ|qr〉〈qr|σν |ps〉.
We check that Eqn.13 satisfy all the exact relations

derived in the last section. One can extract collective
modes through the poles of density-spin response func-
tions at the RPA level. In the n− L subspace, the mix-
ing of density and longitudinal mode leads to one gapless
sound ( black ) mode ωs

~q = vsq and one gapped (called L)

(green ) mode ωL(~q) = ∆ + αq2 where α < 0 in Fig.1b.
In the T1 − T2 subspace, there are two split transverse
modes ωT+/−

(~q) = ∆ ± βqz in Fig.1b. The T+ mode (

red ) is the pole of χ+−, while T− ( blue ) is the pole
of χ−+. The exact symmetry Eqn.3 indicates T+ and
T− exchanges under qz → −qz. The restored SU(2)spin
symmetry at ~q = 0 dictates that the three gapped modes
must have the same gap ∆ at q = 0. The level repulsion
in the n−L space pushes the sound mode quite close to
the intra-band P-H continuum (Fig.1b). Similarly, the
level repulsion in the T1, T2 space will also split the two
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transverse modes T±. So at finite, but small q, the three
modes split with the order ωT+

> ωL > ωT−
.

In principle, Imχ+−(~q, ω) 6= 0 need not to happen at
the same time as ImχnL(~q, ω) 6= 0. However, at the RPA
level Eqn.14 employed here, they happen at the same
time. So the P-H excitation spectrum in the (T1, T2)
space is the same as that in (n, L) space at the RPA
level. Very similarly, the P-H excitation spectrum in the
density channel is the same as that in the spin channel
at the RPA level in the conventional Fermi gas discussed
in Appendix A-2.
We find ∆ vanishes when g > gs = 24π2kR/m(k2F2 −

k2F1) where kF2 > kF1 are the two Fermi momenta split
due to the SOC. This corresponds to an instability driven
by the collective modes at q = 0. However, Fig.1b in-
dicates that ωT+/−

(~q) = ∆ ± βqz may become nega-
tive simultaneously at ±QT ẑ before ∆ = 0 at q = 0.
This indicate a transverse ( spiral, chiral and co-planar
) SDW transition at ±QT ẑ with the order parameter
~φT = φ0(cosQz, sinQz, 0). Such an instability is con-
firmed further in the P-H channel to be discussed in the
following section.
1. The mechanism why T+ and T− splits.
In fact, in order to guarantee the two T+, T− modes to

be degenerate, one need to have both T symmetry and
the inversion symmetry I: ~q → −~q. The I symmetry
dictates that

χ+−(~q, ω) = χ+−(−~q, ω), χ−+(~q, ω) = χ−+(−~q, ω) (15)

Combining Eqn.4 with Eqn.15 lead to:

χ+−(~q, ω) = χ−+(~q, ω) (16)

Alternatively, if assuming Sx symmetry: σx →
σx, σy,z → −σy,z, one also find Eqn.16. Here, it
is the SOC which breaks the Inversion symmetry, so
χ+−(~q, ω) 6= χ−+(~q, ω) for ~q 6= 0 which leads to the split-
ting of the two transverse modes even in the normal phase
at any ~q 6= 0. Only at ~q = 0, the SOC vanishes, the three
modes have the same gap.
Similar mechanisms happens in the 3d Dirac fermions

[4]. If keeping both the TR and inversion symmetry, one
gets the 4 component Dirac fermions. When breaking
only one of the two symmetries, the 4-component Dirac
fermion splits into 2 two-component Weyl fermions. The
splitting in the bulk also generates the corresponding
Fermi-arc states on the 2d surfaces.

IV. INSTABILITY OF THE FERROMAGNETIC

STATE.

There is a Stoner FM instability when δ = 1
gc

− χ0

4 = 0

where χ0(~q → 0, ω = 0) = m
6π2 (

k2
F1+k2

F2

K +
k2
F2−k2

F1

kR
),K =

√

k2R + 2mµ is the static spin susceptibility of 3D non-
interacting Fermi gas with the Weyl SOC. We obtain the
critical value of dimensionless interaction strength kFa

c
s

2π/Q
T

(a)  SSDW (b)  LSDW+CDW

2π/Q
L

FIG. 3. (Color online) The spin-orbital configurations along
the stripe direction z of (a) Itinerant Spiral spin density wave (
SSDW ) with a uniform density and (b) Itinerant Longitudinal
spin density wave ( LSDW ) with the accompanying charge
density wave ( CDW ). In (b), the background with varying
colors shows the CDW background induced by the LSDW
order, whose spatial period is half of that of the LSDW. Yellow
( blue ) means high ( low ) density. Fermionic degree of
freedoms are not shown.

(black dashed line) shown in Fig.2a. As γ increases, F (γ)
has a maximum at γ ≃ 0.63 corresponding to the chemi-
cal potential µ ∼ 0, after which, kF a

c
s decreases quickly.

At a strong SOC, the µ approaches the bottom of the

spectrum (the Weyl shell at |~k| = kR) where the den-
sity of states diverges as 1√

ǫ
( See Fig.7a ). The effects

of an interaction are dramatically enhanced, even a weak
interaction may drive the system into the putative itiner-
ant FM state. Indeed, in the strong SOC limit µ → −1,
the critical interaction strength to reach the putative FM
gc = 12π2

√
1 + µ+O((1+µ)3/2) reduces to zero. Because

gc < gs calculated in the last section, the FM instability
happens before that driven by the q = 0 instability of the
collective modes.

Following Hertz-Millis [21, 22] to study FM onset tran-
sition in itinerant Fermi system without SOC, taking the
~q → 0, ω/vF q → 0 limit and integrating out the non-
critical density mode, we obtain the effective action in

terms of the spin fluctuation order parameters ~φ ( See
appendix B ):

S =

∫

d3~q

(2π)3
T
∑

n

1

2
G−1
s P̂ ij

s φiφj + u

∫

d3~rdτ(~φ2)2, (17)

where P̂ ij
s = n̂i

sn̂
j
s (n̂s = T̂+, T̂−, L̂) is the projection op-

erator into the helical basis, G−1
T±

= δ+γ0
T |y|±βT q+αT q

2

and G−1
L = δ + γ0

Ly
2 + αLq

2 where y = ωn/vF q are the
propagators of the helical spin modes. Note that the
SU(2)spin symmetry at ~q = 0 dictates that there is only
one tuning parameter δ from the PM to the putative FM
transition. When δ > 0 ( δ < 0 ), it is in the PM ( FM
) phase. However, we observe that the ±q terms in the
transverse propagators are dictated by the exact symme-
try Eqn.3 and 4. They indicate that the putative FM
is pre-emptied by the spiral spin density wave (SSDW)
(Fig.3a) at a finite q determined by the divergence of the
static transverse susceptibility χ+−(QT ẑ, ω = 0) [43].
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V. QUANTUM LIFSHITZ TRANSITION FROM

THE PARAMAGNET TO SSDW TRANSITION

AT A SMALL SOC.

Due to the exact relation Eqn.3, one also gets the
pole at χ−+(−QT ẑ, ω = 0) due to the T− mode. So
±QT has to appear in pair, indicating the SSDW 〈S+〉 =
ei(QT z+θ), 〈S−〉 = e−i(QT z+θ) shown in Fig.3a. The criti-
cal interaction strength kFa

c
s and its orbital momentum

QT are shown in Fig.2a and 2b respectively.
In Eqn.17, when γ < 1.5, near the PM to the SSDW

transition, the critical T− propagator is given by

G−1
T−

= δT−
+ γT |ωn|+ αT (q −QT )

2 (18)

where δT−
= δ − β2

T

4αT
, γT = γ0

T /vFQT , QT = βT

2αT
=

kF2 − kF1 = 2kR. The propagator plus the interaction u
term in Eq.17 leads to the quantum version of the classi-
cal Lifshitz type of action to describe the transition from
a paramagnet state to a modulated state [36, 37]. It was
shown in [38] that the interaction u term favors a stripe
state, which is confirmed here by the calculations at the
RPA level. When δT−

> 0, it is in the PM state where
〈φ−〉 = 0. When δT−

< 0, it is in the stripe SSDW state

where 〈φ−〉 = φ0e
−i(QT z+θ). It is a first order quan-

tum Lifshitz type of transition [38–42], so the dynamic
exponent z can not be defined. This is in sharp con-
trast to the second order transition with the z = 3 (FM)
or z = 2 (AFM) in the Hertz-Millis action Eqn.B1 to
describe magnetic phase transitions in itinerant electron
systems without SOC.
The symmetry breaking from the PM to the SSDW

is [SU(2)spin × SO(3)orbit]D × Tran → [U(1)zspin ×
U(1)orbit]

α
D × (z → z + α/QT ) where α is the rotation

angle. Of course, when α = 2π, the order parameter
gets back to itself, it reduces to just a translation by a
lattice constant z → z + a. It leads to one gapless Gold-

stone mode θ in ~φT = φ0(cos(Qz+θ), sin(Qz+θ), 0). By
a symmetry analysis, we get the effective action of the
Goldstone mode

LT [θ] = (∂τθ)
2 + aT (∂zθ)

2 + bT (∂⊥θ)
2 (19)

There is a finite temperature 3d XY transition driven by
the vortex un-binding in the phase of the Goldstone mode
θ where the SSDW also melts simultaneously ( Fig.4a ).

VI. QUANTUM LIFSHITZ TRANSITION

FROM THE PARAMAGNET TO LSDW + CDW

TRANSITION AT A LARGE SOC.

When γ > 1.5, the chemical potential approaches
the bottom of the Weyl shell, the divergence of the
static longitudinal susceptibility χLL(±QLẑ, ω = 0) hap-
pens first before that of transverse one, indicating the

LSDW in Fig.3b: ~φL = φ0(0, 0, cos(QLz + θ)) where the
QL = kF2 − kF1 is the FS nesting ordering wavevector

PM SSDW

3d  XY
T

0 k  a sF 0

T

PM

k  aF s

Algebraic
LSDW+CDW

(a) (b)

Melting
xyT

Tm

γ < 1.5 γ > 1.5

FIG. 4. (Color online) Finite temperature phase diagram of
itinerant Fermi gas with Weyl SOC. Blue ( red ) dot stand
for the first order bosonic Lifshitz transition to the SSDW
( LSDW+CDW). (a) The SSDW will survive upto a 3d XY
transition temperature Txy driven by the phase fluctuations.
(b) Any T > 0 will transfer the LSDW+CDW into a algebraic
one, which, in turn will melt through a melting transition at
Tm driven by lattice dislocations.

to be shown in the next section. The critical interaction
strength kFa

c
s and its orbital momentum QL are shown

in Fig.2a and 2b respectively.

In Eqn.17, near the PM to the LSDW +CDW transi-
tion, αL < 0 in the L propagator, so one need to expand
it to the q4 order: G−1

L = δ + γ0
Ly

2 + αLq
2 + uLq

4 with
uL > 0, the critical L propagator becomes:

G−1
L = δL + γLω

2
n + uL(q

2 −Q2
L)

2 (20)

where δL = δ− α2
L

4uL
, γL = γ0

L/(vFQL)
2, QL = ( |αL|

2uL
)1/2 =

kF2 − kF1. It was shown [38] that the interaction u term
in Eq.17 favors a stripe state, which is confirmed here by
the calculations at the RPA level. When δL > 0, it is in
the PM state where 〈φL〉 = 0. When δL < 0, it is in the
stripe [38] LSDW state where 〈φL〉 = φ0 cos(QLz + θ).
This is also a first order quantum Lifshitz type of tran-
sition [39]. There is also a cubic coupling [44] between
the charge and spin S3 = λ3δφnφ

2
L which leads to an

accompanying CDW with Qc = 2QL inside the LSDW:
δφn = φ2

0 cos(2QLz + 2θ) inside the LSDW, consistent
with the numerical calculations shown in Fig.3b.

The symmetry breaking from the PM to the LSDW +
CDW [SU(2)spin × SO(3)orbit]D × Tran → [U(1)zspin ×
U(1)orbit]D×(z → z+2π/QL) leads to one gapless lattice
phonon mode θ. By symmetry analysis and drawing the
analogy from the smectic liquid crystal [37], we get the
effective action of the lattice phonon mode:

LL[θ] = (∂τθ)
2 + aL(∂zθ)

2 + bL(∂
2
⊥θ)

2 (21)

At any finite temperatures, it becomes an algebraic or-
dered spin nematic state( Fig.4b ), its longitudinal spin
structure factor [17] shows a power law rather than a δ
function singularity at ~q = ±QLẑ:

SLL(~q ±QLẑ) ∼
{

φ2
0(qz ±QL)

−2+ηL , if q⊥ = 0

φ2
0q

−4+2ηL

⊥ , if qz = 0
(22)

where ηL = T
8π(aLbL)1/2

. There is also an associated

power law singularity for the density structure factor at
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~q = ±2QLẑ.
In the γ → ∞ limit, or equivalently zero density limit,

the system may become a Wigner crystal. In this limit,
the RPA approach, which in principle, works for high
density limit only, breaks down. A strong coupling ap-
proach to treat the interaction non-perturbatively may
be needed to work out the true ground state in such a
zero density limit.
Fig.4 is dramatically different than the corresponding

phase diagrams without SOC studied by Hertz, Millis
and others [21, 22] in all the physical quantities such as
the quantum phases, excitations spectra and universality
classes of quantum and classical phase transitions. It is
easy to see that both SSDW and LSDW+CDW carry the

density current ~jT/L = λ~φT/L which is absent in the PM,
putative FM or any itinerant states without SOC. This
feature maybe useful in their experimental detections.

k
z

k
x

θ

k
z

k
x

θ

Q

a                                                b 

Q=k
F2

-k
F1 Q=k

F2
-k

F1

c                                                       d

Q

Tips: the angles                  in c/d refer to θ shown in a/b.

FIG. 5. (Color online) Fermi surface nesting and overlap fac-
tor. (a) The Fermi surfaces shown by the solid circles for small
SOC (γ ≪ 1), where the two Fermi surfaces have different he-
licities (different colors). The dashed circles are the ones after
translation with the nesting momentum Q = kF2−kF1 = 2kR
with kF1,2 the Fermi momenta. The angle θ shows the po-
sition at the Fermi surface. The Fermi surfaces inside the
shaded regime around θ = 0, π are well nested, i.e., the trans-
lated Fermi surfaces nearly overlap with the original ones. (b)
The Fermi surfaces shown by the solid circles for large SOC
(γ ≫ 1), where the two Fermi surfaces have the same helici-
ties (blue colors). The conventions are the same as above. (c)
The overlap factor as a function of θ (denoting the position on
the Fermi surface shown in a) in the transverse (F−+

s;−s with

s = ±1)and longitudinal (FLL
s;−s with s = ±1) channels for

small SOC in (a), where the length of the three arrow lines
ending at the red dashed line, black dotted line and the blue
solid line correspond to the value of overlap factors as labeled
nearby. The angles between the three arrows and Q corre-
spond to the position on the Fermi surface shown by a. (d)
The overlap factor in the transverse (F−+

−1;−1) and longitudinal

(FLL
−1;−1) channels for large SOC in (b). All the conventions

are the same as in (c).

VII. NEARLY FERMI SURFACE NESTING

CONDITIONS BETWEEN OUTER AND INNER

FERMI SURFACE AT SMALL AND LARGE SOC

As we have shown above, the SSDW order turns into
the LSDW order as the SOC strength γ > 1.5, which is
a spin flop transition. This change of the favorite SDW
patterns for different SOC strengths can be understood
by the different helicity of Fermi surfaces in two limit-
ing cases with small and large SOC, where the helicity

is defined as the eigenvalue of the SOC term ~s · ~k/|~k|.
In both cases, the two Fermi surfaces are nearly nested

with the nesting wavevector ~Q = (kF2 − kF1)êz (actu-

ally the direction of wavevector ~Q is arbitrary). And this
nesting condition is best satisfied near θ = 0, π where

θ is the angle between the Fermi wavevector ~kF and ~Q
(schematically shown in Fig. 5 a and b). With SOC, the
density and spin susceptibility is anisotropic due to the
overlap factor Fµν

sr defined in Eq.(14). For small SOC
γ ≪ 1, the two Fermi surfaces have different helicities
(±1). We find the overlap factor for the transverse sus-
ceptibility is F−+

1;−1 = cos4(θ/2), F−+
−1;1 = sin4(θ/2) which

takes its maximum at θ = 0, π, i.e., the place where the
nesting condition is best satisfied; the overlap factor for
the longitudinal susceptibility is FLL

−1;1 = FLL
1;−1 = sin2 θ

which is suppressed at θ = 0, π (see Fig.5 c). As a result,
the susceptibility is significantly enhanced in the trans-

verse channel at the wavevector | ~Q| = kF2 − kF1, but
suppressed in the longitudinal channel.

For large SOC γ ≫ 1, the inner Fermi surface changes
its helicity from 1 to −1, the overlap factor for trans-
verse susceptibility is F−+

−1;−1 = 1
4 sin

2 θ and that for

the longitudinal susceptibility is FLL
−1;−1 = cos2 θ (see

Fig.5d). In this case, the susceptibility is significantly
enhanced in the longitudinal channel at the wave vector

| ~Q| = kF2 − kF1 but suppressed in the transverse chan-
nel. This is consistent with the numerical calculations of
the static susceptibility for different SOC strengths: the
transverse susceptibility χ−+ reaches the maximum at

| ~Q| = kF2−kF1 for small SOC while the longitudinal sus-

ceptibility χLL reaches the maximum at | ~Q| = kF2−kF1

for large SOC.

The nearly FS nesting conditions due to 3d SOC is a
new feature of the SOC. It is the SOC which splits one
FS into two with the Fermi momentum kF2 and kF1 ( see
Fig.7a ). which, in turn, leads to 4 possible FS nesting
momenta kF2−kF1, kF2+kF1, 2kF1, 2kF2. Here, we find
that in the a 3d Weyl SOC system, the stripe SSDW and
LSDW+CDW takes the FS nesting momentum kF2 −
kF1 as their ordering wavevector at a small or large SOC
where the two Fermi surfaces have the same or opposite
helicities respectively ( Fig.5 ). In a sharp contrast, there
could only be a 2kF SDW due to FS nesting in some one
or quasi-one dimensional metals without SOC [45]. There
are no phenomena due to FS nestings in 2d or 3d itinerant
systems without SOC. We expect that due to the FS
nesting mechanism, the existences of the stripe SSDW
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FIG. 6. (Color online) The Fermi surface at γ = 0.82 and
Q = 1.8 inside (a) the SSDW and (b) LSDW+CDW [46].
Due to the rotation symmetry about the kz axis, we only
show the ky = 0 cross-sections. From up to down, the order
parameter is increasing as φ = 0, 1, 2. The fermion occupation
number in the red, yellow, white regime are 2,1,0 respectively.
The intersections of FS at the BZ boundary split inside the
SSDW, but not inside the LSDW+CDW. The intersections
between large and small FS inside the BZ boundary split in
both phases.

and LSDW+CDW at small and large SOC strengths are
robust and independent of the RPA approximations.

However, in the intermediate SOC strengths 0.5 <
γ < 1.5 in Fig.2, the χ+−(~q, ω = 0) is relatively
flat in a finite momentum regime due to the compe-
titions from the multi-momenta transfer processes, so
it may lead to a co-planar SSDW with multi-momenta
ordering wavevectors. If so, the residual symmetry
[U(1)zspin × U(1)orbit]

α
D × (z → z + α/QT ) left in the

one momentum SSDW at γ < 0.5 discussed in Sec. V
is also broken. Then the symmetry breaking pattern
from the PM to this kind of multi-momentum SSDW is
[SU(2)spin × SO(3)orbit]D × Tran → 1, so there are two
Goldstone modes in this kind of SSDW state: one due to
the symmetry breaking of [U(1)zspin × U(1)orbit] and the
other due to the translational symmetry breaking along
the ẑ axis.

VIII. FERMI SURFACE RE-CONSTRUCTIONS

IN THE SSDW AND LSDW+CDW.

From Eqn.12, if ignoring the Goldstone mode, one can

see that the static SSDW 〈~φT 〉 = φ0(cosQT z, sinQT z, 0)
provides a periodic potential with a reciprocal lattice
vector QT ẑ to the fermions. Fig.6a shows the evolu-
tion of the FS as the SSDW turns on near the PM
to SSDW transition. There is a gap ∆T

BZ opening at
the BZ boundary. First order degenerate perturbation
shows that ∆T

BZ = φ0 cos
2 θ

2 where θ is the polar an-
gle of the crossing point between the FS and the 1st
BZ boundary. There is also a gap ∆T

I opening at the
crossing between the outer FS and the inner FS inside
the BZ. First order degenerate perturbation shows that
∆T

I = φ0| cos θ1
2 cos θ2

2 | where the θ1,2 are the two polar

angles of the two crossing FS momenta ~kF1, ~kF2 respec-

tively satisfying ~kF2 − ~kF1 = QT ẑ.
Similarly, Fig.6b shows the evolution of the FS as the

LSDW turns on near the PM to LSDW transition. How-
ever, in sharp contrast to the SSDW, there is no gap
opening at the BZ boundary ∆L

BZ = 0 which is also con-
firmed by the numerical calculations. There is still a
gap ∆T

I opening at the crossing between the outer FS
and the inner FS inside the BZ. First order degener-
ate perturbation shows that ∆L

I = φ0

2 | sin θ1−θ2
2 | where

~kF2 − ~kF1 = QLẑ. The gap opening at Qc = 2QL due
to the CDW can be similarly evaluated by degenerate
perturbations and numerical calculations.

IX. SUMMARIES AND DISCUSSIONS.

In a recent work[19], we studied interacting fermions at
a half filling in a 2d square lattice subject to Rashba SOC
interaction (α = β). In strong coupling limit, we find a
collinear Y-y state ( with ordering wavevector (0, π) ) at
a large SOC near α = β = π/2, a series of stripe com-
mensurate co-planar spiral phases at a small SOC. The
former maybe the analog of the LSDW+CDW in the con-
tinuum limit at γ > 1.5. The latter maybe the analog
of the SSDW in the continuum limit at γ < 0.5. We
also found there are multi-momenta In-commensurate co-
planar spiral phases intervening between the commen-
surate co-planar spiral phases. As briefly discussed at
the end of Sec.VII, they maybe the analog of the multi-
momenta SSDW in the continuum limit at 0.5 < γ < 1.5.
In addition to the above collinear and co-planar phases
in a 2d square lattice at the half filling, we also find
some non-coplanar commensurate or in-commensurate
Skyrmion crystal (IC-SkX ) in the neighborhood of the
collinear Y-y state. There are quantum commensurate to
In-commensurate ( C-IC ) Lifshitz transitions between
the Y-y and the IC-SkX. However, these quantum Lif-
shitz transitions are driven by the touchdowns of the C-
IC magnons at isolated ordering wavevectors, in contrast
to the continuous manifold in Eq.18,20. In the weak cou-
pling limit, one gets a mixed phase of a spin-orbital cor-
related magnetic ordering co-existing with gapless Dirac
fermions. So there must be some quantum phase transi-
tions from the weak to the string coupling limit. Here,
in the continuum limit, due to the FS nesting conditions
at small and large SOC, we established that it is the co-
planar SSDW at small SOC γ < 0.5 and the collinear
LSDW + CDW at large SOC γ > 1.5. There could
be some multi-momenta coplanar SSDW sandwiched be-
tween the two phases.
Note that the quantum critical theory from the nor-

mal to FM ( or AFM ) transition even without SOC is
still not completely understood. There are alternative
scenarios in itinerant Fermi systems without SOC [47–
49]. A more refined GL theory than Hertz-Millis the-
ory should treat both the order parameter fluctuations
and the gapless fermions [50, 51] on the same footing
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and remain to be constructed. However, we expect that
the dramatic SOC effects discovered in this work, es-
pecially due to the FS nesting effects at small or large
SOC, dominates over all the subtle effects discussed in
[47, 48], so the quantum Lifshitz theory and associated
Fermi-surface re-constructions remain robust against all
these subtle effects. This is to say: the dominant roles
played by the SOC may make the magnetic transitions
in itinerant Fermi systems with the SOC simpler than its
counterpart without it.

We achieved the global phase diagram Fig.2 by ex-
act symmetry statements, followed by the RPA calcu-
lations. However, we neglect possible competition from
non-magnetic states or even possible fractionalized Fermi
liquid FL∗ or SDW∗ states [47, 48]. In Fermi systems
without SOC, non-magnetic states with strong local cor-
relations have been constructed to suppress the exchange
energy [52]. These non-magnetic states may compete
with the FM, SSDW or LSDW+CDW state. In the pres-
ence of SOC, it remains interesting to construct suitable
non-magnetic states incorporating the short range cor-
relations to compete with all the states studied in this
paper. We expect the new mechanism, some exact state-
ments and appealing physical picture discussed here to
realize the itinerant SSDW or LSDW+CDW maybe ro-
bust against these possible non-magnetic states. We ex-
pect the dramatic SOC effects dominates over possible
non-magnetic states, especially at the small and large
SOC strengths leading to the LSDW+CDW phase. How-
ever, the SSDW with multiple momenta orderings in the
intermediate SOC 0.5 < γ < 1.5 may be more vulner-
able to these non-magnetic or even fractionalized FL∗

or SDW∗ states. Different methods or approaches are
needed to confirm or dispute the expectations. Unfor-
tunately, the SOC makes the sign problem in the QMC
much more serious than that without SOC.

In view of very recent experimental realizations of
the 2d Rashba SOC [7–10], the 3d Weyl SOC can be
straightforwardly realized in near future experiments. In
a 6Li system, the two hyperfine sublevels |1/2,−1/2〉 and
|1/2, 1/2〉 can be chosen as two pseudo-spin 1/2 states.
With N ∼ 104 6Li atoms inside an isotropic trap with
a trap frequency 2π × 10Hz, and a typical magnetic
field gradient strength ∇B = 0.09G/µm (within prac-
tical range [53]), we estimate γ ∼ 1.82. It falls into
the LSDW regime ( Fig.2b ) with the orbital momen-
tum QL ∼ 0.13kR. The critical interaction strength
kFac ∼ 0.12 is order of magnitude smaller than the value
π (Fig.2a at γ = 0) for a possible FM at the same density
without the SOC [21, 26].

Finally, it is simple to incorporate the effects of a har-
monic trap. Taking the local density approximation, the
chemical potential ( or equivalently the local density )
will decreases from the trap center to zero to the bound-
ary, so the γ = kR/kF will also decreases from the center
to the edge. Assuming γ = 1.82 at the center, then one
will observe the shell structures of LSDW+CDW near
the trap center surrounded by SSDW near the edge. So

experiments could reach SSDW or LSDW+CDW at weak
interactions which can make heating issues [7–10] un-
der even better control. This fact maybe important for
the experimental observation of the phenomena discussed
here in the
In short, the SOC leads to dramatic changes in es-

sentially all the physical quantities such as the quan-
tum phases, excitations spectra and universality classes
of quantum and classical phase transitions. All the novel
phenomena can be probed by various established experi-
mental techniques[27–33]. For example, the collective ex-
citations in the PM (Fig1b), SSDW and LSDW+CDW
can be detected by the angle-resolved Bragg spectroscopy

[31, 32], the order parameters ~φT/L in Fig.3 may be di-
rectly measured by the time of flight experiments, the
evolution of the FS topology in Fig.6 can be monitored
by spin-injection RF spectroscopy [33],
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In the appendix A, we contrast the collective modes in

the paramagnet with the SOC which breaks the inversion
symmetry and those in the conventional FM state with-
out SOC which breaks the Time reversal symmetry. In
the appendix B, we contrast the Hertz-Millis type of ac-
tion to describe magnetic transitions in itinerant Fermi
systems without SOC with that in the itinerant Fermi
systems with SOC to describe the magnetic transition
from the paramagnet to a putative FM. We identify the
mechanism to lead to the quantum Lifshitz action to de-
scribe the transition from the paramagnet to’ the SSDW
discussed in the main text. In the appendix C, we con-
trast the Fermi surface reconstruction inside the SSDW
with that in the LSDW+CDW.

Appendix A: Collective modes and P-H excitations

for 3D Fermi gas with and without SOC at the RPA

level

In this appendix, we apply the RPA formalism to cal-
culate the collective modes in the paramagnet side with
the Weyl SOC and also those in the FM side of Fermi
gas without SOC. It is instructive to compare the two
cases: the former has explicit inversion symmetry break-
ing, the latter the spontaneous Time reversal symmetry
breaking. It is also shown in the main text that the FM
state is always superseded by SSDW or LSDW+CDW, so
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FIG. 7. (Color online) (a) The Density of states ρ(ǫ) (per
volume) in units of 2mkR at the chemical potential µ. The
green dashed line denotes µ = 0 ( equivalent to γ = 0.63 ) as
shown by the inset. (b) Collective modes for 3D Fermi gas
with Weyl type SOC in the normal side. The parameter here
are: µ/ER = 20 (equivalent to γ = 0.21) which corresponds to
the case iii in Fig.8 and as = 0.9ac

s. The green (yellow) region
is the intra-band (inter-band) particle-hole excitation contin-
uum. ωmin denotes the lower edge of inter-band particle-hold
continuum, which is taken as the unit in Fig.8(d). In fact, (b)
is re-drawing of Fig.M1b in the helicity basis. Namely, folding
Fig.M1b left qz < 0 back to the right qz > 0 and changing
the qz axis to the q axis lead to (b). Alternatively, picking ~q
along the ẑ axis and inverting with respect to the origin gives
back to Fig.1b.

never a ground state in the former system, but it maybe
a ground state in the latter.

1. Collective modes in the paramagnet side with

SOC: Inversion symmetry breaking

As shown in the Sec.II, the [SU(2)spin × SO(3)orbit]D
symmetry [13, 17] dictates that the dynamical 4 × 4
density-spin susceptibility Eqn.14 can be split into two
2 × 2 subspaces: i) n − L subspace formed by the den-
sity and the longitudinal spin mode ii) T1 − T2 subspace
formed by the two transverse modes. This exact decom-
position simplifies the following analytical and numerical
calculations considerably.

The gapless sound mode in the n− L subspace, ωs =
vsq in Fig.7b is determined by the pole of 2× 2 density-
spin susceptibility: det(1 + g

4σzχnL) = 0 with

χnL
0 (~q, ω) =

m(k21 + k22)

2π2κ

(

F (y) βyF (y)

βyF (y) 1
3 +

√
k2
R+2mµ

3kR
β + y2F (y)

)

,(A1)

where k2 > k1 are the two Fermi momenta in Fig.8a,

2κ = k1+k2 (k2−k1 ) for µ > 0 (µ < 0 ), β =
k2
2−k2

1

k2
2
+k2

1

and

y = ω/vF q, vF the Fermi velocity, F (y) = 1− yarccothy.
It is easy to see that Eqn.A1 indeed satisfies the con-
straints Eqn.10 and 11. We numerically determined the
velocity vs of this gapless sound mode at µ/ER = 20
shown in Fig.8b. This sound mode corresponds to a cou-
pled density-longitudinal spin fluctuation.
At the RPA level, from Eqn.3, the two transverse

(a) (b)

(c) (d)

FIG. 8. (Color online) (a) Two split Fermi surfaces due to the
Weyl SOC at the non-interacting limit. Shown are different
filling cases by the dashed lines i, ii and iii. (b) The ratio
vs/vF of gapless sound mode (c) The ∆/ER and (d) ∆/ωmin

show the energy gap at q = 0 for the three gapped modes. The
three different colors represent different interaction strengths,
i.e., Black (critical interaction strength gc for the putative FM
phase transition), Red (g = 4/5gc), Blue (g = 2/3gc).

modes are determined by

1− g

2
χ+−
0 (~q, ω) = 0, 1− g

2
χ−+
0 (~q, ω) = 0 (A2)

where χ+−
0 (~q, ω) = 2(χxx − iχxy) is given by Eqn.14.

Eqn.A2 lead to the T± mode in Fig.7b.
In all, there are three branches of gapped mode, one L

mode within the n − L subspace and the other two T±
modes within the T1−T2 subspace. Due to the SU(2)spin
symmetry at ~q = 0, the three gapped modes are de-
generate at ~q = 0 where the gap ∆ is determined by
det[1− g

4χspin(ω, ~q = 0)] = 0, with

χij
spin(ω, ~q = 0) =

m

6π2kR

(

k22 − k21 +
m2ω2

4k2R
ln

[

4k2Rk
2
2 −m2ω2

4k2Rk
2
1 −m2ω2

])

δij , i, j = x, y, z, (A3)

The numerical result of this energy gap ∆ at different µ/ER is shown in Fig.8c (in units of the recoil energy
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ER = k2R/2m) and Fig.8d (in units of the lower edge of
inter-band particle-hole excitation energy ωmin shown in
Fig.7b ).
In Fig.8a, we plot three typical filling cases shown by

the dashed lines: i) dilute density case with µ < 0; ii)
µ > 0 but close to the Dirac point (µ = 0), iii) dense den-
sity case. Fig.7b belongs to the case iii. In Fig.8(b), as
the filling tends to the Dirac point from above µ > 0, the
vs/vF decreases close to 1. After passing the Dirac point,
the ratio increases. In Fig.8(c), the ∆/ER decreases close
to zero around the Dirac point ( Note that at the Dirac
point, the blank regime between the inter-band and intra-
band particle-hole excitation shown in Fig.7b which is
the regime free of PH excitations shrinks to zero). Af-
ter passing the Dirac point, the ratio increases also. To
show the relationship between the energy gap ∆ and the
P-H excitation, in Fig.8d we show ∆/ωmin with ωmin

the lower edge of the inter-band particle-hole excitation
energy shown in Fig.7b. We find as the chemical poten-
tial decreases from iii to i, the ratios approaches 1 from
below, namely, the gapped collective modes move more
closer to the edge of inter-band particle-hole excitation
continuum in Fig.7b. Indeed, in the strong SOC limit
µ → −1, the sound velocity saturates vs/vF ≃ 1.102,
the energy gap ∆ increases and moves close to the P-H
continuum ∆/ER ≃ 4(1−√

1 + µ).

2. Collective modes in the FM without SOC: Time

reversal symmetry breaking

As analyzed in Sec.III, in the normal phase of SOC,
it is the I symmetry breaking in the SOC Hamiltonian
which leads to the T± split shown in Fig.7b. However, in
the FM of conventional system, it is the spontaneous T
symmetry breaking which leads to the split T± in Fig3b
where only T+ is shown. So the two splitting mechanisms
are complementary to each other. Here it is instructive to
perform a detailed calculation on the T± mode in the FM
of conventional system. Very surprisingly, to the best of
the authors knowledge, there are no previous literatures
to discuss this important and tricky physical picture.
In the normal side, due to the SU(2)spin × SO(3)orbit

symmetry, the density and spin are decoupled, the den-
sity and spin susceptibility are χµν = χ0δ

µν where
µ, ν = n, sx, sy, sz. Since the interaction is repulsive (at-
tractive) in the density (spin) channel, there is only one
gapless density mode with linear dispersion ωq = vsq,
i.e., zero sound in the density channel, no stable collec-
tive modes in the spin channel (Fig.9a).

In the FM side, there is a spin polarization ~M along
ẑ, the symmetry breaking pattern is SU(2)spin → U(1)z
which leads to Eqn.3 for any ~q. One still has inversion
symmetry I which leads to Eqn.15. The fermion propa-
gator takes the form:

G(iωn, ~k) =
1

2

∑

s=±1

σ0 + sσz

iωn − ~k2/2m+ sgM/4
. (A4)
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FIG. 9. (Color online) The particle-hole continuum and col-
lective modes in traditional Fermi gas without SOC (a) zero
sound in the normal side and (b) only the T+ mode is shown
in the FM side.

As said above, the remaining symmetry U(1)z dic-
tates that the density-spin susceptibility χµν , µ, ν =
n, sx, sy, sz can be decoupled to two 2× 2 matrixes: one

for the density and longitudinal spin mode L̂ = ~M/M ,

another for the two transverse spin modes T̂1 · ~M =

T̂2 · ~M = 0. In the density-longitudinal subspace, the
density fluctuation is strongly coupled with the longitu-
dinal spin fluctuation, the 2 × 2 susceptibility takes the
form:

χnL = χ0

(

1 −1
−1 1

)

, (A5)

where χ0 =
mk2

F

4π2 (2 + y ln y−1
y+1 ) with y = mω/kF q. Due

to the absence of any poles in det[1+ g
4σzχ

nL] = 0, there
are no collective modes in the n− L subspace.
However, in the transverse (T1, T2) subspace, Eqn.3

still holds, there is only one low energy collective mode:
the T+ mode ωq = Dq2 at small ~q from the pole of χ+−,
which couples only to the inter-band P-H excitations at
higher q(Fig.9b). While the T− mode from the pole of
χ−+ has higher energy and also at higher threshold mo-
mentum, can be dropped ( not shown in Fig.9b).
In short, in the paramagnetic phase with the SOC, it

is the explicit I symmetry breaking of the SOC Hamilto-
nian which leads to the T± split shown in Fig.7b. How-
ever, in the FM of conventional system, it is the sponta-
neous T symmetry breaking which leads to the T± split
in Fig3b. So the two splitting mechanisms are comple-
mentary to each other.

Appendix B: Contrast Hertz-Millis theory without

SOC with the Quantum Lifshitz transitions with

SOC

In this section, we first review the Hertz-Millis the-
ory with the symmetry group SU(2)spin × O(3)orbit to
describe the magnetic transitions in itinerant electron
systems without SOC. Then we construct the quantum
bosonic Lifshitz theory with SOC and the reduced sym-
metry group [SU(2)spin × O(3)orbit]D to describe the
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paramagent to the putative FM transition which is dra-
matically different than the Hertz-Millis theory.

1. Hertz-Millis theory to describe magnetic phase

transition without SOC

The possible Ferromagnetism ( FM ) in an itinerant
fermion system with an repulsive interaction is a long-
standing problem in condensed matter physics dating
back to the Stoner’s FM instability. Hertz [21] con-
structed a quantum Ginzburg-Landau theory to study
magnetic fluctuations near the itinerant para-magnet to
itinerant FM transition. The quadratic term in the
Hertz’s action reproduces the Stoner’s FM instability.
Millis [22] performed RG calculations on the Hertz the-
ory at finite T and mapped out rich quantum-classical
crossover regimes at T − δ phase diagram where δ is the
tuning parameter of the transition.

In Fermi systems without SOC, the density and spin
channels are de-coupled. There are collective excitations
in the density channel only, but none in the spin chan-
nel. So in discussing possible magnetic orders, one only
need to focus on the possible instability in the PH chan-
nel, this is what Hertz and Millis did in [21, 22]. So
when looking at the long wavelength, long energy limit,
Hertz and Millis studied ~q → 0 limit, then ω/qvF → 0.
This limit is justified, because it captures the dominant
spin-spin correlation spectral weights near the magnetic
transition. In this ~q → 0, ω/qvF → 0, Hertz derived the
following action in terms of the spin fluctuation order

parameter ~φ:

S[~φ] = 1

2β

∑

n

∫

d~k

(2π)2
(δ + γy + αq2)~φ2 + u

∫

d~rdτ(~φ2)2(B1)

where y = |ωn|/vF q for FM and y = c|ωn| for the (π, π)
AFM where all the momenta are measured relative to
(π, π), the δ = 1/g−χspin(~q → 0, ω/qvF → 0) is the con-
trolling parameter tuning the para-magnet to the ferro-
magnet transition. When δs > 0, it is in the paramagnet
side, when δs < 0, it is in the Ferromagnetic side.
Under the scaling transformation q → q′/b, T → T ′/bz

where the dynamic exponent z = 3 for the FM and z =
2 for the AFM, it is easy to see that at the tree level,
δ′ = δb2, γ′

T = γT , u
′ = ub4−d−z. Because 4− (d+ z) < 0

in 3d, so d = 3 is above the upper critical dimension,
the u is always ( dangerously ) irrelevant which may lead
to violations of scalings near a quantum critical point
[54]. However, it is the dangerously irrelevant coupling
u which leads to interesting quantum-classical crossover
regimes at T − δ phase diagram.
2. The effective action to describe the PM to the

putative FM transition Eqn.17.

However, as stated in the main text, the above Hertz-
Millis theory completely breaks down in the presence of
SOC. Indeed, in the effective Hertz-Millis action Eqn.B1,
all the three spin components are the same due to the
SU(2)spin ×O(3)orbit symmetry in the paramagnet side.
However, as shown in the main text, the symmetry with
the Weyl SOC is reduced to [SU(2)spin ×O(3)orbit]D, so
one has to distinguish not only the longitudinal mode,
but also the two split transverse modes T+ and T−.
As stated in the main text, in constructing a quan-

tum Ginburg-landau action to describe the paramagnet
to the putative FM transition, one need to take the
q → 0, ω/vF q → 0 limit to capture the dominant critical
spin-fluctuation spectral weights. Taking this limit in the
n− L space in Eqn.A1 leads to:

χnL
0 (~q, iωn) =

m(k21 + k22)

2π2κ

(

1− π
2 |yn| − αnq

2 −iβyn

−iβyn
1
3 +

√
k2
R+2mµ

3kR
β − y2n − αLq

2

)

, (B2)

where all the parameters are listed below Eqn.A1. Be-
cause the density fluctuation is non-critical across the
phase transition point. Integrating it out leads to:

S(2)
L =

1

2

∫

d3~q

(2π)3
T
∑

n

(

δ + γLy
2
n + αLq

2
)

|φL(~q, iωn)|2,(B3)

where δ = 1
g − χ0

4 is the tuning parameter of

the transition, γL =
m(k2

1+k2
2)

8π2κ (1− η) with η =
gm(k2

1+k2
2)

8π2κ+gm(k2
1
+k2

2
)
β2 < 1 as the modification from the den-

sity fluctuations. One can extract the longitudinal prop-
agator G−1

L = δ + γLy
2
n + αLq

2.

In the q → 0, ω/vF q → 0 limit, the action in the trans-
verse spin subspace is reduced to:
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S(2)
T =

1

2

∫

d3~q

(2π)3
T
∑

n

(φ∗
+, φ

∗
−)

(

δ + γ0
T |yn|+ βT q + αT q

2 0
0 δ + γ0

T |yn| − βT q + αT q
2

)(

φ+

φ−

)

(B4)

where γ0
T =

m(k2
1+k2

2)
32πκ and one can extract the transverse

propagators G−1
T±

= δ + γ0
T |y| ± βT q + αT q

2.

Note that the SU(2)spin symmetry at ~q = 0 dictates
that there is only one tuning parameter δ from the PM
to the putative FM transition in the actions Eqn.B3 and
B4. When δ > 0, it is in the PM phase. When δ < 0, it is
in the putative FM phase. Eqn.B3 and Eqn.B4 reached
at the RPA level satisfy the exact relations Eqn.3,4 and
Eqn.7,8 respectively. The combination of Eqn.B3 and
Eqn.B4 lead to the quadratic part of the effective action
Eqn.17 in the main text. As argued in the main text, it
is the −βT q term in the φ− propagator which leads to
the instability of the putative FM state and the quantum
Lifshitz type transition from the PM to the SSDW.
The most relevant interaction is the fourth order

term with the general form Uijklφ
iφjφkφl. We expect

that the leading relevant coupling among all the pos-
sible fourth order terms should be momentum and fre-
quency independent (~φ2)2 which has an enlarged sym-
metry SU(2)spin × O(3)orbit than the kinetic terms. We
checked this expectation through direct calculations of
the coefficient Uijkl, which are found to be given by linear
combinations of factors such as δijδkl, δikδjl, and δilδkj .
All of these factors lead to the SU(2)spin × O(3)orbit in-

variant fourth order term u
∫

d3~r(~φ2(~r))2 in the Eqn.17.

Appendix C: Fermi Surface re-constructions in the

presence of SDW order

In this appendix, we first analyze the symmetries of
the SSDW and the LSDW+CDW states and their impli-
cations on the degeneracy at bote the BZ boundary and

at the Dirac point ~k = 0 in Fig.8a. Then we will evalu-
ate the gap openings at the BZ boundary by degenerate
perturbation theory.

1. Symmetry analysis at the BZ boundaries and

the Dirac point

We first summarize the remaining symmetries of two
types of SDW orders. Both the SSDW and L-SDW or-
der are invariant under a combined transformation of
1)[U(1)zspin × U(1)orbit]D 2) Px,Py, Pz; 3) the time re-
versal symmetry with a translation Tr(a) where a is a
suitably chosen distance along the ẑ.

For the SSDW ~φT = φ0 (cosQz, sinQz, 0), the
[U(1)zspin ×U(1)orbit]

α
D × (z → z+α/QT ) symmetry dic-

tates that the spectrum is rotational symmetric about
the kz axis. So we can set ky = 0. The SSDW order pre-

serves the Px and the P ′

y = Py +Tr(
π
Q ) symmetry where

the prime in the subscript indicates an combined transla-
tion. Under Px (P ′

y), the single particle eigenstates with

a given momentum ~k belonging to the first Brillouin zone

(BZ) is mapped to the same ~k only when kz = −Q/2 (BZ
boundary) or kz = 0. Any eigen-wave function at the BZ
boundary can be written as:

|Ψ〉BZ =
∑

n,σ

anσ|(n+ 1/2)Q, σ〉, (C1)

where (n+1/2)Q represents the kz component of ~k, σ =
1, 2 the index of spin component. Here and after, we

dropped the kx, ky = 0 component in |~k, σ〉 unless it is
specialized. By the same convention, the wavefunction
at kz = 0 can be written as:

|Ψ〉0 =
∑

n,σ

bnσ|nQ, σ〉. (C2)

Since the Hamiltonian is real, the coefficients anσ and
bnσ can be chosen to be real values. Applying Px to
|Ψ〉BZ and |Ψ〉0 twice leads to: P2

x|Ψ〉BZ = |Ψ〉BZ and
P2
x|Ψ〉0 = |Ψ〉0. This property is not sufficient to guaran-

tee the two-fold degeneracy at both the BZ boundary and
~k = 0. When applying P ′

y, we also set kx = 0 (namely

at the center of the BZ boundary and ~k = ~0) and find

P ′2
y |Ψ〉BZ = |Ψ〉BZ and P ′2

y |Ψ〉0 = −|Ψ〉0. The later re-
lation ensure the two-fold degeneracy of the energy spec-

trum at ~k = 0. So the Dirac cone at ~k = 0 remains inside
the SSDW.

The LSDW with ~φL = φ0 (0, 0, cosQz) preserves the

P ′

x = Px + Tr(
π
Q ) and P ′

y = Py + Tr(
π
Q ) symmetry. Any

eigen-wave functions at the BZ boundary and ~k = 0 are
also given by Eqn.C1 and C2 respectively. Since the
Hamiltonian is real, all of coefficients anσ and bnσ can
be chosen to be real. Applying the P ′

x symmetry lead

to P ′2
x |Ψ〉BZ = −|Ψ〉BZ and P ′2

x |Ψ〉0 = |Ψ〉0. The for-
mer relation ensure the two-fold degeneracy of the energy
spectrum at the BZ boundary. Similar to the case for
the SSDW discussed above, applying the P ′

y symmetry

ensures the two-fold degeneracy at ~k = 0. So the Dirac

cone at ~k = 0 remains inside the LSDW.

As we have shown in the main text, the LSDW order
would induce a CDW order with the orbital momentum
2QL. Because the density order is invariant under the
above symmetry operations, all of these results would
not change.
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2. Gap opening at the BZ boundary and inside

the BZ by the degenerate perturbation theory

(1) At the BZ boundaries
At the BZ boundary, the |

(

n+ 1
2

)

Q, s〉 and | −
(

n+ 1
2

)

Q, s〉 withe same helicity s form a degenerate
pair. For the SSDW, the 2 × 2 matrix in the two lowest
bands with n = 0, s = −1 is given by:

HSSDW =

(

µ −φ0

2 sin2 θ
2e

−iϕ

−φ0

2 sin2 θ
2e

iϕ µ

)

, (C3)

where µ = ξQ/2,−, θ, ϕ is the azimuthal angle of k =
(kx, 0, Q/2) with θ < π/2. The spectrum is given by

ξs = ξQ/2,− + s
φ0

2
sin2

θ

2
, (C4)

with the band gap ∆ = φ0 sin
2 θ

2 , θ < π/2.
Similarly for k = (kx, 0,−Q/2) with θ > π/2, we ob-

tain the band gap ∆ = φ0 cos
2 θ

2 , θ > π/2. By contrast,
for the LSDW order, there is no matrix element between
|
(

n+ 1
2

)

Q, s〉 and | −
(

n+ 1
2

)

Q, s〉 is always zero. So
there is no band gap opening to this order. In fact, the
above exact symmetry dictates there is no gap opening

to any order of perturbations.

(2) At the intersections between the large and small
FS inside the BZ

The SOC leads to the splitting of FS into two with
opposite helicities. When there is an intersection between
them inside the BZ, the states |k+nQ, r〉 and |k+mQ, s〉
are coupled together. If m−n = ±1, the 2× 2 matrix in
the two degenerate levels is

HT/L−SDW =

(

µ φ0M
φ0M

∗ µ

)

, (C5)

where µ is the Fermi energy, M = 1
2 〈k1, s|σ+|k2, r〉 for

the SSDW. While M = 1
4 〈k1, s|σz |k2, r〉 for the LSDW.

The band gap is given by ∆ = 2φ0|M |.
At small γ, the two intersecting FS have opposite

helicities s = −r = 1. For the SSDW order, M =
− 1

2 cos
θ1
2 cos θ2

2 e
iϕ2 where θ1,2, ϕ1 = ϕ2 are the polar

and azimuth angles of k1,2. While for LSDW, M =
1
4 (cos

θ1
2 sin θ2

2 − sin θ1
2 cos θ2

2 ) = − 1
4 sin

θ1−θ2
2 .

At large γ, the two intersecting FS have the same
helicities s = r = −1. For the SSDW, M =
− 1

2 sin
θ1
2 cos θ2

2 e
iϕ2 . While for the LSDW, M =

1
4 (sin

θ1
2 sin θ2

2 − cos θ1
2 cos θ2

2 ) = − 1
4 cos

θ1+θ2
2 .
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and P. Öhberg, Rev. Mod. Phys. 83, 1523 (2011).

[6] There is a recent experimental investigation of magnetic
phases of spin-1 87Rb spinor BEC subject to a 1d SOC in
the presence of both vector and tensor Zeeman couplings,
arXiv;1501.05984.

[7] Lianghui Huang, et.al, Nature Phys. (DOI:
10.1038/NPHYS3672)(arXiv:1506.02861)(2016).

[8] Zengming Meng, et.al, Experimental observation of topo-
logical band gap opening in ultracold Fermi gases with
two-dimensional spin-orbit coupling, arXiv:1511.08492.

[9] Michael L. Wall, et.al, Phys. Rev. Lett. 116, 035301
(2016).

[10] Zhan Wu, et.al, arXiv:1511.08170

[11] J. Dalibard, F. Gerbier, G. Juzeliūnas, and P. Öhberg,
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