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We study a recently proposed quantum dimer model for the pseudogap metal state of the cuprates. The
model contains bosonic dimers, representing a spin-singlet valence bond between a pair of electrons, and
fermionic dimers, representing a quasiparticle with spin-1/2 and charge +e. By density matrix renormalization
group calculations on a long but finite cylinder, we obtain the ground state density distribution of the fermionic
dimers for a number of different total densities. From the Friedel oscillations at open boundaries, we deduce
that the Fermi surface consists of small hole pockets near (π/2, π/2), and this feature persists up to doping
density 1/16. We also compute the entanglement entropy and find that it closely matches the sum of the
entanglement entropies of a critical boson and a low density of free fermions. Our results support the existence
of a fractionalized Fermi liquid (FL*) in this model.

PACS numbers:

I. INTRODUCTION

A recent paper [1] has proposed a simple quantum dimer
model for the pseudogap metal state of the hole-doped
cuprates. The objective of this model is to describe a metal
with electron-like quasiparticles, carrying spin 1/2 and charge
e, but with a Fermi volume which violates the Luttinger theo-
rem for a Fermi liquid (FL). In particular, doping a density of
p holes away from a half-filled insulator should yield, in Fermi
liquid theory, a hole Fermi surface of size 1 + p. And indeed,
just such a Fermi surface is observed at large p [2]. However,
for p ≈ 0.1, in the pseudogap metals, many physical proper-
ties are well described by a model of electron-like quasiparti-
cles with a Fermi surface of size p [3]. Such a Fermi surface
can be obtained in a ‘fractionalized Fermi liquid’ (FL*) [4, 5].
The model of Ref. 1 was designed to yield a FL* state with a
Fermi surface of size p using ingredients that are appropriate
for a single-band model of cuprate physics.

Our paper will present density matrix renormalization
group (DMRG) results on the dimer model. The exact di-
agonalization results in Ref. 1 were limited to a lattice size of
8×8 and a single fermionic dimer. Here we study significantly
larger systems with up to 8 fermions, and obtain results on the
density distribution of the fermionic dimers and the entangle-
ment entropy. As we shall see below, all of our results are
consistent with the appearance of a FL* metal in this dimer
model.

II. MODEL AND DMRG SETUP

The quantum dimer model of Ref. 1 has bosonic dimers and
spin 1/2 fermionic dimers, which close pack a square lattice
with an even number of sites: see Fig. 1. The bosonic sector of
this model is identical to that of the original study of Rokhsar
and Kivelson (RK) [6], with potential and resonating term for
dimers within a plaquette. In addition, fermionic dimers may
move via hopping terms whose form will be specified below.
Interaction between the fermionic dimers can in principle be
present, but are not expected to be important when the den-
sity of fermions is low; we will not include fermion-fermion
interactions here.

Now we state the Hamiltonian for this model. Let us
first define the operators creating (annihilating) bosonic and
fermionic dimers as D†ix(Dix) and F†ixα(Fixα), respectively. The
extra indices i and x(y) indicates the created or annihilated
dimer resides on the link between i = (ix, iy) and i + x̂(ŷ),
where x̂ = (1, 0) and ŷ = (0, 1) are unit vectors and α =↑, ↓ is
spin index. Note that we set the lattice spacing to 1. In the lan-
guage of the t-J model, D and F operators have the following
correspondence to the electron creation and annihilation oper-
ators c†, c,

D†iη ∼
(−1)i

√
2

(
c†i↑c

†

i+η̂,↓ + c†i↓c
†

i+η̂,↑

)
,

F†iηα ∼
(−1)i

√
2

(
c†iα + c†i+η̂,α

)
. (1)



2

= (|" �i + |� "i) /
p

2

= (|"#i � |#"i) /
p

2

FIG. 1: A state in the Hilbert state of the dimer model. The blue
dimers are bosons representing a spin-singlet pair of electrons. The
green dimers are spin 1/2 fermions representing an electron in a
bonding orbital between a pair of sites.

(−1)i is due to a gauge choice which we follow from Ref. 6.
We can observe that the quantum numbers of states D†i |0〉 and
F†iα|0〉 are the same as c†i↑c

†

i↓|0〉 and c†iα|0〉, setting aside the fact
that the degrees of freedom of the former lives between two
sites (i and i + η̂) and the latter resides on each site. This
fact will be useful in our DMRG setup. We can now write
the Hamiltonian for the model in terms of dimer creation and
annihilation operators, [1]

H = HRK + H1

HRK =
∑

i

[
−J D†ixD†i+ŷ,xDiyDi+x̂,y + 1 term

+V D†ixD†i+ŷ,xDixDi+ŷ,x + 1 term
]

H1 =
∑
i,α

[
−t1 D†ixF†i+ŷ,xαFixαDi+ŷ,x + 3 terms

−t2 D†i+x̂,yF†iyαFixαDi+ŷ,x + 7 terms

−t3 D†i+x̂+ŷ,xF†iyαFi+x̂+ŷ,xαDiy + 7 terms

−t3 D†i+2ŷ,xF†iyαFi+2ŷ,xαDiy + 7 terms
]
. (2)

The terms we have not explicitly written down are connected
with the previous term through a symmetry transformation of
the square lattice. HRK is the pure bosonic sector mentioned
above; J is the coupling for the resonant term, and V is the
coupling for the potential term. H1 contains the hopping terms
of the fermionic dimers; t1, t2, and t3 correspond to three dis-
tinct types of hoppings.

In the absence of the fermions, the undoped dimer model
has an exactly solvable point (the RK point) at V = J, with a
spin liquid ground state given by the equal superposition state
of all allowed Di dimer configurations [6]. But away from this

point, bipartite dimer models are described by a dual compact
U(1) gauge theory [7], and have been argued to have only con-
fining valence bond solid ground states [8–10]. Adding a fi-
nite density of fermions, is not expected to change the basic
structure of the bosonic dimer model, apart from modifying
their short-distance effective action [11]. However, the con-
finement length scale is large near the RK point and at small
fermion density, and a spin-liquid U(1)-FL* state should be
effectively realized when the confinement scale is larger than
the system size. We study such a regime in the present pa-
per, and for our system sizes, our results are consistent with
deconfinement. We expect such results to apply to the higher
temperature pseudogap in the cuprates, where a thermal scale
cuts-off the crossover to confinement. At lower temperature,
there will be a crossover to confinement and translational sym-
metry breaking, as has been discussed in recent work [11].
Alternatively, deconfinement can survive in quantum dimer
models without a sublattice structure [12] with Z2 topological
order, but we will not consider such dimer models here.

In our DMRG calculation, we consider a lattice with ge-
ometry of a finite cylinder. The circumference of the cylin-
der consists of four lattice sites, and the length of the cylin-
der is up to 32 sites. In the second part of this paper, we
also compute entanglement entropies in 64× 2 cylinder to ob-
serve one-dimensional effects. We repeat our calculation in
different fermionic dimer densities, from one to 8 fermionic
dimers. Note that in our lattice configuration, 8 fermionic
dimers correspond to 1/16 doping in the typical cuprate phase
diagram. We use two sets of parameters for the couplings in
Eq. (2). One is the parameters which is relevant to the physical
model for the cuprates in the pseudogap regime: t1 = −1.05J,
t2 = 1.95J, and t3 = −0.6J, near the RK point (V = 0.9J).
The other is the parameter which we choose for comparison:
t1 = t2 = t3 = J, also with V = 0.9J. The single fermion study
in Ref. 1 suggests the different hopping parameters change the
dispersion of the fermionic dimer: the Fermi surface consists
of four hole pockets near (±π/2, ±π/2) in the former parame-
ter regime, and a single Fermi surface centered at (0, 0) in the
latter. We will confirm this behavior in our DMRG calculation
below, while studying a multiple fermion system.

The fact that we are interested in observing the hole pock-
ets, is closely related to the reason we chose the circumference
as four lattice site for the first part of our calculation. The cen-
ter of the four hole pockets are at ~k ∼ (±π/2, ±π/2), and the
minimum number of sites in y-direction needed to get infor-
mation about ky = ±π/2 is four. This is why we could not
choose two sites in the circumference when our focus is in the
fermion dispersion. Later when we concentrate on the one-
dimensional scaling properties of the entanglement entropies,
we study the case of a cylinder of two sites along the circum-
ference, which allows us to calculate much longer system.

Now we comment on the topological sectors of the Hamil-
tonian. The Hilbert space we are considering consists of
closely packed configurations of dimers. For each configu-
ration, we can define an integer quantity

wx =

Nx∑
ix=1

(−1)ix (D†(ix,iy)yD(ix,iy)y + F†(ix,iy)yαF(ix,iy)yα), (3)
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for any 1 ≤ iy ≤ Ny, where Nx(Ny) is the number of sites in
the x(y) direction and the spin α implicitly summed. One can
observe that every term in Eq. (2) preserves this quantity, so
the possible configurations of the dimers spanning the Hilbert
space can be divided in different sectors with different val-
ues of wx. The integer wx is the topological winding number
associated with loops in the transition graph that circles the
x-axis, similar to that of the RK model on a torus [6]. The
integer wy can be defined in an analogous manner, but it is
not meaningful since we do not have periodic boundary con-
dition in x-direction. In principle, we would like to restrict
ourselves in the zero winding number sector, wx = 0. Right
at the RK point, J = V , each topological sector has a unique
ground state with zero energy, which is an equal superposition
of all configurations [6]. Since the number of configurations
are largest at wx = 0, sectors with large absolute value of
wx have lower entanglement and will be preferred by DMRG.
One way of imposing the wx = 0 condition is to add a poten-
tial term proportional to w2

x to the Hamiltonian, at the price of
more computation. Another method is to tune V to be slightly
smaller than J and penalize states moving away from wx = 0.
In this case, the amount of computation is similar to that with-
out the constraint, because we do not add any additional terms
to the Hamiltonian. However, we have to choose an optimal
value for the V/J. We adopt the latter method, since moving
away from the fine-tuned RK point is beneficial for us, and in
all of our calculations, we have used V = 0.9J. The confine-
ment length scales are large enough at this coupling so that we
don’t observe valence bond solid order, even in the undoped
case.

Each bond in the square lattice can have four states: oc-
cupied by a bosonic dimer, occupied by a spin up or down
fermionic dimer, or empty. As mentioned previously, one use-
ful observation is that the quantum numbers of the bonds are
the same as the quantum numbers of the sites in a spin-half
fermion model, with the bosonic dimer occupied state corre-
sponding to the filled (spin up and down) state. Therefore we
can map our dimer model to a fermionic Hubbard model on
the links, with dimer constraints. The dimer constraint is to
ensure each site is part of only one dimer, and this is achieved
in our DMRG as an additional potential term. We use a po-
tential of ∼ 20J to penalize overlapping dimers.

All DMRG calculations in this paper were performed with
the ITensor library [23]. We kept up to ∼ 600 states to keep
the truncation error per step to be ∼ 10−8.

III. DENSITY MODULATION

Now we show the results of the DMRG calculations where
we can observe the change in dispersions with different hop-
ping parameters, and especially the existence of a dispersion
with Fermi pockets centered near ~k = (±π/2,±π/2). Extract-
ing momentum information from DMRG is not trivial since
it is a real-space calculation. (For few fermions, one can use
techniques used in Ref. 13 to achieve this. Also, there are
more recent schemes for DMRG in mixed real and momen-
tum space proposed in Ref. 14). However, we may observe

FIG. 2: The log scale density of fermionic dimers on a 16 × 4 lat-
tice. The configuration consists with a single fermionic dimer and
31 bosonic dimers. The dashed line indicates the periodic boundary
condition in the y-direction; the top dashed line is identified to the
bottom solid line. The hopping parameters used are (a) t1 = −1.05J,
t2 = 1.95J, t3 = −0.6J; (b) t1 = t2 = t3 = J. In (a), one can observe
the density oscillation with period of roughly two lattice sites, which
corresponds to crystal momenta of π/2. Note that the Hilbert space
is closely packed dimer configuration, and sites without fermionic
dimers are occupied by bosonic dimers.

Friedel oscillations from the open boundaries of our system,
and these will reveal information of the fermionic dimer’s mo-
mentum in the cylinder direction.

First we check whether the Friedel oscillation observed in
the case of a single fermionic dimer is consistent with Ref. 1.
Fig. 2 is the density profile of the fermionic dimers when a
single fermionic dimer is present among bosonic dimers on a
16 × 4 lattice, for the two parameter sets we use. From Fig. 2
(a), which is the parameter set expected to have hole pock-
ets, we can observe an oscillation of the profile starting from
the open boundary to the x-direction. This is especially clear
when looking at the vertical dimers. The period of the oscil-
lation is roughly two lattice sites. Since the Friedel oscilla-
tion has a wavevector of 2kF , this indicates that the fermionic
dimer in the ground state has crystal momentum of kx ∼ π/2.
This fact is consistent with the exact diagonalization study in
Ref. 1, which found the energy minima of the single fermion
spectrum to be near ~k = (π/2, π/2). On the other hand, Fig. 2
(b) does not show any prominent oscillation near the bound-
ary. This calculation has been done with the parameters which
is expected to have a single band with the dispersion minima
at ~k = (0, 0), so the absence of Friedel oscillation is expected.
We have performed the same calculation for a single fermionic
dimer while increasing the x-direction of lattice size, up to
32 × 4 lattice and observed the same behavior, in both cases
with dispersion minima at kx = π/2 (Fig. 2a) and kx = 0
(Fig. 2b). A more quantitative analysis for the 32×4 lattice by
Fourier transform will follow below, together with the higher
density calculation.

Note that Fig. 2a seems to break the translation symmetry in
the y-direction. However, this is just a spontaneous symme-
try breaking between the two degenerate ground states; one
being Fig. 2a and the other being Fig. 2a translated by one
lattice site in the y-direction. One can check this by comput-
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ing the ground state several times and obtaining both states,
or by adding a small perturbation acting as a chemical poten-
tial on vertical bonds with particular y-coordinate, and observ-
ing the absence of the symmetry. The fact that Fig. 2b does
not break the symmetry is also in accordance with our claim.
Since the state of Fig. 2b has only one Fermi surface centered
at ~k = (0, 0), there is no degeneracy in the ground state.

We would like to study the Friedel oscillation more quanti-
tatively and verify whether this feature survives when we in-
crease the number of fermionic dimers, n. We keep the lattice
size as 32 × 4 and increase n up to 8, which corresponds to
1/16 doping. Since the ‘defects’ of the system are the open
boundaries, the Friedel oscillation is in the cylinder direction.
From the density profile ρ(x, y), we define ρx(x) =

∑
y ρ(x, y)

and perform Fourier transformation. The result is shown in
Fig. 3. Note that we have normalized the data by 1/n, and
the magnitude 1 peak at kx = 0 indicates the total density is
n. Other than the kx = 0 peak, we can observe that there is
a peak at kx = 7π/8 in n = 1, 3, 4, 5 of Fig. 3a, where the
parameter set used is the same as Fig. 2 (a). This peak is
due to the Friedel oscillation, and indicates that kx = 7π/16
at the Fermi level. Ref. 1 showed the energy minimum is at
~k = (q, q) for q slightly less than π/2, and this is in good
agreement with our result. Based on experiments and previ-
ous works one can argue the energy minimum should be either
at the origin (~k = (0, 0)) or along the diagonal (~k = (q, q)).
Therefore, we can conclude the dispersion of the dimer model
in our cylinder will have a minimum at ~k = (7π/16, π/2), and
in the large system limit this will converge to a diagonal point
~k = (q, q) with 7π/16 ≤ q ≤ π/2. Moreover, from n = 7, 8
data of Fig. 3a, we can observe the expansion of the Fermi
surface as we increase the fermionic dimer density. The new
peak at kx = 13π/16 indicates that the Friedel oscillation is
now from the new Fermi level at kx = 13π/32.

For Fig. 3b, which used the same parameter set as Fig. 2 (b),
there is no peak at kx = 7π/8 for any n. This is in accordance
with our expectation that the state has dispersion minimum at
~k = (0, 0), and also with the qualitative result we have seen
in Fig. 2 (b). There is a signal at kx = π, however the origin
of this signal is not the Friedel oscillation. Fig. 4 shows the
density of the fermionic dimer as a function of x. The plot-
ted one-dimensional density ρ(x) =

∑
y ρ(x, y) is the Fourier

transform of ρ(kx), which is the quantity plotted in Fig. 3. The
x-axis of the plot is the position in the unit of lattice constant.
Integer values are for the vertical bonds and half-integers are
for the horizontal bonds. Looking at only the vertical bonds
does not show any modulation in the density and looks very
much like a particle in a box. On the other hand, the horizon-
tal bond shows some modulation with two lattice sites. This
density modulation clearly has a wavevector of π, and is the
reason of the signal at kx = π in Fig. 3b. Although the precise
reason for this oscillation is unclear, we can clearly see that
this modulation is present throughout the bulk and the signal
at kx = π does not indicate Friedel oscillation from kF = π/2:
it appears to be simply a lattice commensuration effect.

Note that we have not included the data obtained for n
which mod (n, 4) = 2. The calculations with such n had a

FIG. 3: Fourier transform of the density of fermionic dimers with
various total densities. n denotes the number of fermionic dimers
in the system. Note that in our 32 × 4 lattice, n = 8 corresponds
to 1/16 doping. The hopping parameters used are (a) t1 = −1.05J,
t2 = 1.95J, t3 = −0.6J; (b) t1 = t2 = t3 = J. In (a), there are
peaks at 13π/16 and 7π/8 which indicates the fermionic dimer with
kx = 13π/32 and 7π/16 are at the Fermi level, which is a feature
missing in (b). The central peak at 0 is due to the total density and is
normalized to 1.

stronger tendency towards wx , 0 topological sector, and we
had to decrease V further to keep the state in wx = 0. (For
n = 2, we needed V < 0.8) This seems to be an artifact of
our system which is effectively one-dimensional and can only
have four values of ky.

IV. ENTANGLEMENT ENTROPY

We present the result for the computation of Rényi entropy
to gain more information about the ground state of the dimer
model. First recall the definition of the α-th Rényi entangle-
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FIG. 4: One dimensional plot for fermionic dimer density (ρ(x) =∑
y ρ(x, y)) as a function of distance in x direction, when n = 1.

The x-axis unit is the lattice constant. Vertical bonds have integer x
and colored yellow; horizontal bonds have half-integer x and colored
blue. Notice the modulation is only present in the horizontal dimers.
The system is a 32 × 4 cylinder with parameters t1 = t2 = t3 = J.

ment entropy:

S α =
1

1 − α
ln

[
Tr ραA

]
. (4)

Here, ρA is the reduced density matrix of partition A, i.e.
ρA = TrB ρ, where A ∪ B is the total system. Note that α-
th Rényi entropy becomes the von Neumann entropy in the
α→ 1 limit.

In a one-dimensional gapless system, conformal field the-
ory (CFT) has a result for the scaling of the Rényi en-
tropy: [15, 16]

S α =
c

12

(
1 +

1
α

)
ln

(
2L
π

sin
πl
L

)
+ g + c′α. (5)

This is the case for a finite system of length L with open
boundary condition, divided into two pieces which length of
one piece is l. g is the boundary entropy [17], and c′α is a non-
universal constant. Considering our system as quasi-1D, we
can extract the central charge c, of the system from this equa-
tion. For the entanglement entropy calculation, we consider
both 32 × 4 and 64 × 2 cylinder to see any scaling behav-
ior as the system approaches to one-dimension. We partition
the system into two cylinders, each of length l and L − l in
the context of Eq. 5, by a single cut in the cylinder direction.
Moreover, now we concentrate on the parameters which gives
a single Fermi surface, t1 = t2 = t3 = J. The results for
the other parameter are expected to be four copies of the pre-
sented results, in the thermodynamic limit. However, the den-
sity modulations resulting from the open boundaries prevent
the entanglement entropy data having a nice one-dimensional
scaling form for L = 32.

First we show the comparison of the von Neumann entropy
of the pure RK model, with n = 0 fermions, with the CFT
result (5) in Fig. 5. An excellent fit is found for c = 1. The
fermion-free dimer model is dual to a sine-Gordon model [7,

FIG. 5: von Neumann entropy of the pure RK model, calculated on a
64 × 2 cylinder. The red solid line is not the interpolation of the data
points, but the exact CFT result of Eq. (5) with c = 1 and g + c′α = 1.

FIG. 6: von Neumann entropy of the FL* phase with different
fermionic dimer densities. The system is a 64 × 2 cylinder with pa-
rameters t1 = t2 = t3 = J. L is the length of the system, and l is
the length of the subsystem. In the case of n = 0, which is a pure
bosonic dimer model near the RK point, we get a nice fit to Eq. (5)
with central charge 1.

8], and in 1+1 dimension this has a gapless phase described
by a massless relativistic boson with c = 1. The results of
Fig. 5 are in accord with this expectation.

Turning to the case with fermions, the von Neumann en-
tropy when the fermion hopping parameters are set to t1 =

t2 = t3 = J is shown in Fig. 6. The results are for 64 × 2
lattice. Data for 32 × 4 lattice are not shown, but are very
similar to the presented data (32 × 4 results are included in
Fig. 7). We also include the data from Fig. 5 for the case
without any fermions. It is clear that these is an additional
contribution from the presence of the fermions, but it cannot
be accounted for by changing the central charge of the CFT.
Fermions at non-zero density in an infinite system should form
a Fermi surface, and in the quasi-one dimensions geometry,
each Fermi point should yield an additional contribution of
c = 1/2 of a chiral fermion. It is clear that the data in Fig. 6
are not of this form.

Instead, we found that an excellent understanding of Fig. 6
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FIG. 7: Fermion contribution to von Neumann entropy of the dimer
model and the Lifshitz transition. ∆S 1 equals S 1(n = 1) − S 1(n = 0)
in the left, S 1(n = 3) − S 1(n = 0) in the right, where n is the number
of fermionic dimers. The system is 64 × 2 and 32 × 4 cylinder with
parameters t1 = t2 = t3 = J for the dimer model, and free fermions
on a 200 site chain for the Lifshitz transition. The n = 1 and n = 3
cases for Lifshitz transition corresponds to the number of occupied
state in the new band.

is obtained by thinking about the limit of a very low den-
sity of fermions at the bottom of a quadratically dispers-
ing band. This is the case of a “Lifshitz” transition in one
dimension, when the chemical potential crosses the bottom
of a band. Ref. 18, studied the entanglement entropy near
such a Lifshitz transition. In their Fig. 11, they present
the entanglement entropy of a half-filled free fermion sys-
tem with 200 sites, as the next-nearest hopping t is tuned to
go across the Lifshitz transition. (The Hamiltonian used is
H = −

∑
i(c
†

i ci+1 + tc†i ci+2) + h.c.) Different graphs are labeled
by different values of t, but basically what is changing is the
number of occupied states above the Lifshitz transition. For
example, when t = 0.5, only the large Fermi surface is occu-
pied; when t = 0.51, the system has just gone through Lifshitz
transition and one state is occupied from the new band; when
t = 0.52, two states are occupied above the Lifshitz transi-
tion. The number of modulations in the entanglement entropy
exactly matches the number of states filled above the Lifshitz
transition.

We reproduced the data of Fig. 11 in Ref. 18 to compare

with the behavior of the entanglement entropy with our own
system of fermionic and bosonic dimers. Fig. 7 shows the
fermionic contribution ∆S 1 of the entanglement entropy. This
is obtained by subtracting the entanglement entropy of n = 0,
which was shown in Fig. 5 to be due to a c = 1 boson field. To
compare with the case of Lifshitz transition, we also subtract
the entanglement entropy of the system with only one large
band occupied, which is t = 0.50 in the specific model, from
the system with one (three) state(s) occupied in the new band,
corresponding to t = 0.51 (0.53); in this case, the gapless
fermions from the occupied large band contribute as a c = 1
field. As seen in Fig. 7, ∆S 1 for n = 1 is nearly identical to
the corresponding entanglement entropy for the Lifshitz tran-
sition for free fermions with two different lattice sizes. For
n = 3, the value of ∆S 1 decreases slightly as the length of the
system decreases, but the qualitative features remain the same.
Note that in these data, only the total length of the system was
scaled to unity.

The above results provide strong evidence that the dimer
model can be viewed as two approximately independent sys-
tems: a background c = 1 boson corresponding to the reso-
nance between the dimers (both blue and green [11]), and a
dilute gas (of density p) of free fermions. These are precisely
the characteristics of the FL* state, which has an emergent
gauge field (represented here by the c = 1 boson) and a Fermi
surface of electron-like quasiparticles.

V. OUTLOOK

The combination of our results on the density distribution
and the entanglement entropy confirm the expected appear-
ance of a FL* state in the dimer model of Ref. 1. By general
arguments [5, 19], the violation of the Luttinger theorem for
a Fermi liquid requires that the emergent gauge fields appear
in the spectrum of the theory. Our results on the entanglement
entropy in a quasi-one-dimensional geometry are in accord
with this requirement, showing a background c = 1 boson
that is expected from the gauge theory of the dimer model
[7, 8]; the boson represents the modes associated with the
“resonance” between the dimers around a plaquette. Above
this gauge field background, we obtained evidence for a gas
of nearly-free fermions of density p, both in the density mod-
ulations and in the entanglement entropy: in particular, the
fermionic contribution to the entanglement entropy closely
matched that of a dilute gas of free fermions near the bottom
of a quadratically dispersing band.

We can extend our calculation to wider systems which can
reveal the properties of the model in two-dimensions and also
provide us with a better momentum resolution in the ky di-
rection. With the off-diagonal measurement between different
particle number states on these wider cylinders [13], we can
measure Fermi surface and quasiparticle residue with good
resolution. Another possible approach is to use the recent
proposal of DMRG in mixed real and momentum space [14].
By this method we will be able to determine ky more di-
rectly, which can be complimentary to the off-diagonal mea-
surements. Moreover, Ref. 14 claims the computation time is
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reduced by more than an order of magnitude, so this may al-
low us to include even more sites in y-direction (in this case,
equivalently, more ky points), resulting in better ky resolution.
Moreover, dynamical information of the model can be calcu-
lated from time-dependent DMRG calculation [20–22].
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