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The presence of quasiparticles in superconducting qubits emerges as an intrinsic constraint on
their coherence. While it is difficult to prevent the generation of quasiparticles, keeping them away
from active elements of the qubit provides a viable way of improving the device performance. Here
we develop theoretically and validate experimentally a model for the effect of a single small trap
on the dynamics of the excess quasiparticles injected in a transmon-type qubit. The model allows
one to evaluate the time it takes to evacuate the injected quasiparticles from the transmon as a
function of trap parameters. With the increase of the trap size, this time decreases monotonically,
saturating at the level determined by the quasiparticles diffusion constant and the qubit geometry.
We determine the characteristic trap size needed for the relaxation time to approach that saturation
value.

PACS numbers: 74.50.+r, 85.25.Cp

I. INTRODUCTION

Ideal superconducting devices rely on dissipationless
tunneling of Cooper pairs across a Josephson junction.
For example, in a Cooper pair pump [1], the controlled
transport of Cooper pairs across two or more junctions
can in principle make it possible to relate frequency and
current and hence enable metrological applications of
such a device [2]. For quantum information purposes,
the non-linear relation between the supercurrent and the
phase difference across a junction makes the junction an
ideal non-linear element to build a qubit [3]. However,
in addition to the pairs tunneling, single-particle exci-
tations known as quasiparticles can also tunnel. In the
pumps this leads to “counting errors”, limiting the accu-
racy of the current-frequency relation [1, 2]. In qubits,
quasiparticles interact with the phase degree of freedom,
providing an unwanted channel for the qubit energy re-
laxation [4, 5]. While in many cases it is impossible to
prevent the creation of quasiparticles, one may keep them
away from the Josephson junctions by trapping. Evacua-
tion of the quasiparticles from the vicinity of the junction
provides a way to extend the energy relaxation time (T1)
in the steady state, and to restore the steady state after a
perturbation, whether caused by qubit operation or some
uncontrolled environmental effect.

Quasiparticle trapping has been explored for a long
time, and various proposal exists on how to implement
such a trapping. For example, gap engineering takes ad-
vantage of the fact that quasiparticles accumulate in re-
gions of lower gap to steer them into or away from cer-
tain parts of the device. Gap engineering was used suc-
cessfully to limit quasiparticle “poisoning” in a Cooper
pair transistor [6], while proved ineffective in a transmon
qubit [7]. A vortex in a superconducting film can also act
as a well-localized trap, since the gap is completely sup-
pressed at the vortex position. Trapping by vortices has

been demonstrated [8–11], but vortex motion may induce
an unwanted dissipation. An island of a normal metal
in contact with the superconductor may also serve as a
quasiparticles trap [12, 13]. In the limit of weak electron
tunneling across the contact, the proximity effect is negli-
gible. The quasiparticles tunneled into the normal metal
are trapped there upon losing their energy by phonon
emission or inelastic electron-electron scattering.

The majority of previous works concentrated on the
control of a steady-state quasiparticle population [2, 12,
13]. In contrast, we are interested in the effect of a
normal-metal trap on the dynamics of the quasiparticle
density. Traps accelerate the evacuation of the excess
quasiparticles injected in a qubit in the process of its
operation. Our main goal is to determine how the char-
acteristic time of the evacuation depends on the param-
eters of a small normal-metal island in contact with the
superconducting qubit. The characteristic time shortens
with the increase of the trap size, saturating at a value
dependent on the qubit geometry and the quasiparticle
diffusion coefficient. The size at which a trap becomes
effective depends on the contact resistance, the energy
relaxation rate in the normal-metal island, and the ef-
fective temperature of the quasiparticles. We develop a
simple model allowing to evaluate the time evolution of
the quasiparticle density and find the characteristic evac-
uation time as a function of the trap parameters. The
model is validated by measurements of the qubit T1 re-
laxation time performed on a series of transmons with
normal-metal traps of various sizes.

The paper is organized as follows: in Sec. II we develop
a phenomenological quasiparticle diffusion and trapping
model which includes the effect of a normal-metal trap.
In Sec. III we study the dynamics of the density dur-
ing injection and trapping in a simple configuration, and
in Sec. IV we provide experimental data supporting our
approach. We summarize the present work in Sec. V.
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II. THE DIFFUSION AND TRAPPING MODEL

Let us consider a quasiparticle trap made of a nor-
mal (N) metal covering part of a superconducting (S)
qubit. The contact between the two superconductor and
the normal trap is provided by an insulating (I) layer
characterized by a small electron transmission coefficient.
In order to relate the quasiparticle tunneling rate to the
conductance of the contact, we use the tunneling Hamil-
tonian formalism applied to a model N -I-S system, see
Fig. 1,

H = Hqp +HN +HT , (1)

Hqp =
∑

nσ

ǫnγ
†
nσγnσ , (2)

HN =
∑

mσ

ξmc†mσcmσ , (3)

HT =
t̃√

ΩNΩS

∑

m,n,σ

(
c†mσdnσ + d†nσcmσ

)
. (4)

We denote with ΩN,S = A × dN,S the volumes of the
N and S layers, respectively (A is the area of interface,
and dN,S are the layers thicknesses); c†mσ and d†nσ are the
creation operators for electrons in the normal metal (en-
ergy ξm and spin σ) and superconductor. The electron
operators in the superconductor are related by Bogoli-
ubov’s transformation to the quasiparticle annihilation

(creation) operators γ
(†)
nσ ,

dn↑ = unγn↑ + vnγ
†
n↓ (5)

d†n↓ = −vnγn↑ + unγ
†
n↓ (6)

u2
n = 1− v2n =

1

2

(
1 +

ξn
ǫn

)
. (7)

Here ǫn =
√
ξ2n +∆2 is the energy of a quasiparticle,

and ξn is the energy of electron in the normal state of
the superconductor. The tunneling constant t̃ can be
related, by Fermi’s golden rule, to the resistance RT of
the contact,

Rq

2πRT
= 4π

∣∣t̃
∣∣2 νS0νN0 , Rq =

2π~

e2
, (8)

where νN0 and νS0 are the densities of states in the nor-
mal metal and in the (normal state of the) supercon-
ductor, respectively. The tunnel conductance, 1/RT , is
proportional to the area A of the junction; the intensive
quantity characterizing the insulating layer is its conduc-
tance per unit area, 1/RTA.
We may use Fermi’s golden rule to evaluate also the

rates of tunneling-induced change of the occupation fac-
tors of electrons, f(ξm) =

∑
σ〈c†mσcmσ〉, and quasipar-

ticles, fqp(ǫn) =
∑

σ〈γ†
nσγnσ〉. We can distinguish two

processes. Quasiparticles tunnel from the superconduc-

tor into the normal metal with rate Γtr = 2π
∣∣t̃
∣∣2 νN0/ΩS.

The transition rate is proportional to the density of
the final states involved in the transition, therefore the

FIG. 1. Left: a small superconductor S of thickness dS sepa-
rated from a normal metal N of thickness dN by an insulating
layer. Right: depiction of the processes leading to trapping:
tunneling from S to N with rate Γtr and from N to S with
rate Γesc(ǫ), and relaxation in N with rate Γr.

quasiparticle trapping rate does not have a pronounced
energy dependence. The complementary process of a
non-equilibrium electron escape into the superconductor,
however, does display a strong energy dependence asso-
ciated with the BCS singularity in the density of final

states, Γesc (ǫ) = 2π
∣∣t̃
∣∣2 νS0νS(ǫ)/ΩN ; here

νS(ǫ) =
ǫ√

ǫ2 −∆2
(9)

is the normalized BCS density of states.
One can see from Eq. (8) that the rates Γtr and Γesc (ǫ)

are independent of the area A at fixed conductance per
unit area of the insulating layer. We may express the
rates as

Γtr = γ̃tr/dS , Γesc(ǫ) = γ̃esc(ǫ)/dN (10)

in terms of quantities independent of geometry, γ̃tr and
γ̃esc,

γ̃tr =
Rq

4π(RTA)νS0
, γ̃esc =

RqνS(ǫ)

4π(RTA)νN0
. (11)

with (RTA) being the contact resistance times the area of
the contact. This product, with units of Ω·cm2, is inde-
pendent of A, being inversely proportional to the trans-
mission coefficient through the insulating barrier.
The above formulas enable us to estimate the trap-

ping and escape rates for an aluminum-copper interface
for a typical experimental setup (cf. Sec. IV): aluminum
has a density of states νS0 = 0.73 × 1047/Jm3 [14] and
a direct measurement of the contact resistance yields
(RTA) ∼ 430Ωµm2 (this corresponds to the transmission
coefficient of order 10−5). Taking dS ∼ 80 nm we find, us-
ing Eqs. (10) and (11), Γtr ∼ 8 · 106 s−1. The escape rate
saturates at an energy-independent value, Γesc(ǫ) → Γesc

at energies ǫ ≫ ∆. Since dS ≈ dN and νS0 ≈ νN0 in a
typical experiment, one has Γesc ≈ Γtr.
In writing the rate equations for the energy distribu-

tion functions of electrons and quasiparticles, we assume
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the continuum limit for energies ξm and ǫn. It is con-
venient to define the probability density to find an elec-
tron (quasiparticle) in the normal metal (superconduc-
tor) with energy ǫ ≥ ∆ as

pN (ǫ) =
νN0ΩN

νS0ΩS
f(ǫ) (12)

pS(ǫ) =νS(ǫ)fqp(ǫ) . (13)

Without loss of generality, we normalize the probability
with respect to νS0ΩS . Note that eventually, the experi-
mentally accessible quantity is the normalized quasipar-
ticle density, which can be derived from pS as

xqp =
2

∆

∫ ∞

∆

dǫ pS(ǫ) . (14)

In the absence of spatial dispersion of the distribution
functions, the rate equations read (see Appendix A)

ṗN (ǫ) =ΓtrpS (ǫ)− Γesc (ǫ) pN (ǫ)− ΓrpN (ǫ) , (15)

ṗS (ǫ) =Γesc (ǫ) pN (ǫ)− ΓtrpS (ǫ) . (16)

The terms proportional to Γtr describe trapping of quasi-
particle excitations in the normal metal, and those pro-
portional to Γesc(ǫ) the possible escape of electron excita-
tions back to the superconductor; these events take place
with rates described by Eqs. (10)-(11).
Since the tunneling process is elastic, excitations ap-

pear in the normal metal at energies close to the gap
∆. At low temperature T ≪ ∆, there are many unoccu-
pied states below ∆ in the normal metal, into which the
excitations can decay. These inelastic processes are me-
diated by electron-electron and electron-phonon interac-
tions and lead to relaxation, which we capture in Eq. (15)
with the phenomenological rate Γr. All the processes in-
cluded in the rate equations (15)-(16) are represented in
the right panel of Fig. 1.
If the relaxation is immediate, the quasiparticles get

trapped in the normal metal with rate Γtr. However, the
relaxation rate Γr due to electron-electron and electron-
phonon interactions in the normal metal is of course fi-
nite. It has been estimated in the supplementary to
Ref. 10 to be Γr ∼ 107 s−1; the measurements reported
in Ref. [15] lead to a relaxation rate for electron-phonon
interaction of the same order of magnitude, while an es-
timate based on Ref. 16 yields the faster relaxation rate
Γr ∼ 108 s−1. In all cases, relaxation cannot be assumed
immediate in comparison with the trapping and escape
rates estimated above, especially taking into account that
the escape rate quickly increases for energies approach-
ing the gap due to the divergent BCS density of states
in Eq. (9). In fact, for some energy interval close to the
gap, the escape rate dominates the quasiparticle dynam-
ics, such that the excitations do not have enough time
to relax. Therefore, we cannot in general neglect the
backflow of excitations from the normal trap to the su-
perconductor.
The backflow may result in an effective rate which is

slower than Γtr. Assuming a steady-state distribution

of non-equilibrium electrons in the normal layer, we set
ṗN = 0 in Eq. (15) and solve for pN in terms of pS (see
also Appendix B). Substituting the solution into Eq. (16)
and integrating over energy, we arrive at

ẋqp = −Γeffxqp , (17)

with the effective trapping rate defined by

Γeff =
1∫∞

∆
dǫ pS(ǫ)

∫ ∞

∆

dǫ
ΓtrΓr

Γesc(ǫ) + Γr
pS(ǫ) . (18)

It is clear that Γeff is suppressed to a level below Γtr.
The level of suppression depends on the typical width of
the quasiparticle distribution function in energy space.
Assuming pS(ǫ) is characterized by an effective temper-
ature, T ≪ ∆, we find that the trapping is not sup-
pressed, Γeff ≈ Γtr, only if the energy relaxation is fast
enough (Γr ≫ (∆/T )1/2Γesc); in this case excitations in
the normal metal quickly relax to energies below the gap
and cannot return into the superconductor. In the oppo-
site case (Γr . (∆/T )1/2Γesc), the effective rate becomes
T -dependent and suppressed below the nominal trapping
rate, Γeff ≈ (2T/π∆)1/2ΓtrΓr/Γesc. Note that in the slow
relaxation regime the effective trapping rate Γeff is inde-
pendent of the tunneling probability between supercon-
ductor and normal metal, the limiting value of Γeff being
proportional to the relaxation rate.
The quasi-static approximation (ṗN = 0) we used

above becomes justified once we move from the model
system of Fig. 1 to a more realistic geometry of a long
superconducting strip in contact with a metallic trap,
see Fig. 2a. In that geometry, the time variation of
the quasiparticle distribution function pS is controlled
by the diffusion time in the strip, which is typically sub-
stantially longer than 1/Γr. The generalization of the
rate equations (15) and (16) to include diffusion is per-
formed in Appendix B. In addition to diffusion, other
processes such as quasiparticle recombination, genera-
tion, and trapping in the bulk must be generally taken
into account. For sufficiently thin normal and supercon-
ducting layers, we find a generalized diffusion equation
for the quasiparticle density xqp,

ẋqp =Dqp∇2xqp − a(x, y)Γeffxqp (19)

− rx2
qp − sbxqp + g ,

where xqp(x, y) depends only on coordinates in the plane
of the superconducting strip (and is assumed constant
across its thickness) and the area function a(x, y) equals
1 for x and y where the trap and the superconductor are
in contact, and 0 elsewhere, see Fig. 2(a).
The diffusion constant Dqp in Eq. (19) is proportional

to the normal-state diffusion constant for the electrons in
the superconductor – the proportionality coefficient can
in principle be calculated from the detailed information
on the energy distribution of quasiparticles that we dis-
card in using the phenomenological Eq. (19). The recom-
bination term rx2

qp accounts for processes in which two
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quasiparticles recombine into a Cooper pair [17], again
neglecting the details of the quasiparticle distribution.
The relationship between recombination time, quasipar-
ticle energy, and electron-phonon interaction strength
can be found in Ref. 18. Moreover, there is a background
trapping term sbxqp that describes any process that can
localize a quasiparticle and hence remove its contribu-
tion to the bulk density xqp. Trapping by vortices is
an example of such a process, recently characterized in
Ref. 10. The generation rate g describes pair-breaking
processes, both thermal and non-thermal; at low tem-
peratures, non-equilibrium processes of unknown origin
lead to a quasiparticle density orders of magnitude larger
than the thermal equilibrium one [19, 20].

In what follows we will neglect both background trap-
ping and recombination: according to the measurements
in Ref. 10 we expect sb < 0.2 · 103 s−1 as well as rxqp <
1.25 · 103 s−1 (having assumed xqp < 10−4). Both pro-
cesses are orders of magnitudes slower than the effective
trapping rate Γeff, even when the latter is highly reduced
by backflow. Indeed, even for a low effective temperature
T = 10mK, using Γr ∼ 107 s−1 and ∆/h = 44GHz for
aluminum, we find Γeff ∼ 0.55 · 106 s−1. Finally, we as-
sume a long wire geometry, where the dimensions of the
system in the x and z directions are sufficiently small such
that the superconductor can be treated as (quasi)one-
dimensional, and we consider traps that are small (in a
sense to be specified below), so that they are effectively
zero-dimensional. In this case, from Eq. (19) we obtain

ẋqp = Dqp∂
2
yxqp − γδ(y − l)xqp + g , (20)

where the trap is at position y = l and γ = Γeff d, with d
the length of the trap in y direction. To estimate when
the trap is sufficiently small, we note that the trapping
length

λtr ≡
√

Dqp/Γeff (21)

gives the scale over which the density decays due to trap-
ping, so the smallness condition is d ≪ λtr. In the next
section we study the dynamics of the quasiparticle den-
sity by solving Eq. (20) in various regimes.

III. QUASIPARTICLE DYNAMICS DURING

INJECTION AND TRAPPING

In this section we compute the dynamics of the
quasiparticle density in a simple geometry depicted in
Fig. 2(b). It models a transmon qubit in Fig. 2(a) by
neglecting for simplicity both the gap capacitor near the
Josephson junction and the square pad at the opposite
end of the long wire. Note that because of the spatial
symmetry, it is sufficient to consider only half of the sys-
tem, 0 ≤ y ≤ L. After separating out the steady-state
background density due to the finite generation rate g,

FIG. 2. a) Figure of a realistic transmon qubit device close
to the proportions of experiment. The Josephson junction is
indicated with the crossed box, in grey is the superconductor,
and in red the normal metal trap. Shown is half the qubit
(the dashed lines indicate that the superconducting structure
including trap is mirrored on the left hand side of the junc-
tion). b) Simplified model of a 1D superconducting strip with
small trap, described by Eq. (22).

the equation controlling the evolution of the excess den-
sity of quasiparticles takes the form

∂xqp (y, t)

∂t
=

[
Dqp

∂2

∂y2
− γδ (y − l)

]
xqp (y, t)

+jδ
(
y − 0+

)
θ (−t) θ (t+ tinj) .

(22)

This diffusion equation is supplemented by the boundary
conditions ∂yxqp (L, t) = 0 and ∂yxqp (0, t) = 0. The
former condition ensures that no quasiparticles leave the
device (hard wall condition), while the latter reflects the
spatial symmetry of the system.
In the experiments, quasiparticles are generated at

the Josephson junction when injecting a high-power mi-
crowave pulse into the cavity hosting the qubit [10], re-
sulting in a time-dependent source of quasiparticles lo-
calized at y = 0. In Eq. (22), this source is modeled by
a term with a generation rate proportional to j active
over the time interval −tinj < t < 0. Clearly, there are
two stages of time evolution: first, during the injection
process, when the source term is switched on, the quasi-
particle density will start to rise and distribute across the
wire. Once the source term is switched off, the presence
of the normal-metal trap ensures the decay of the excess
density back to zero. In the following, we provide an-
alytical results for the time-dependent dynamics of the
quasiparticle density, where we focus predominantly on
the experimentally accessible [10] density at the junction,
y = 0.
The time-dependent diffusion equation (22) can be

solved via a decomposition in the modes eλktnk (y) of the
homogeneous equation (i.e., Eq. (22) without the source
term), with λk being the eigenvalue and nk satisfying
equation

λknk (y) =

[
Dqp

∂2

∂y2
− γδ (y − l)

]
nk (y) . (23)



5

For a strip of finite length L, the eigenvalues are discrete
and the eigenmodes form an orthonormal basis,

∫ L

0

dy

L
nk (y)nk′ (y) = δkk′ . (24)

In presence of the trap at y = l, the eigenmodes are
defined piecewise as

nk (y) =
1√
Nk

{
cos (ky) y < l

ak cos (ky) + bk sin (ky) y > l,
(25)

with the normalization constant Nk (which will be pro-
vided explicitly later in some limiting cases) and the co-
efficients

ak = 1− γ

Dqpk
cos (kl) sin (kl)

bk =
γ

Dqpk
cos2 (kl) . (26)

The eigenvalue corresponding to eigenmode k is λk =
−Dqpk

2. The boundary condition at y = 0 is satisfied
by Eq. (25), while the one at y = L gives the equation

cot (kL) =
1− γ

Dqpk
cos (kl) sin (kl)

γ
Dqpk

cos2 (kl)
. (27)

which fixes the wave vector k to discrete values.
In terms of the eigenbasis introduced above, by solv-

ing Eq. (22) we find that the excess quasiparticle density
immediately after the injection, at time t = 0, is given
by

xqp (y, 0) =
∑

k

ck
eλktinj − 1

λk
nk (y) (28)

with

ck = j

∫ L

0

dy

L
nk (y) δ

(
y − 0+

)
=

j

L
nk (0) . (29)

where we assumed that at times t < −tinj, there were no
excess quasiparticles in the system. Once the injection
stage is finished, the subsequent trapping of the quasi-
particles controls the evolution of their density,

xqp (y, t) =
j

L

∑

k

nk (0) e
−Dqpk

2t 1− e−Dqpk
2tinj

Dqpk2
nk (y) .

(30)
The expressions for xqp (y, t) derived here are general and
do not rely on any further simplifying assumption. Next,
we consider in more detail several limiting cases.

A. The long-strip limit

If both the injection time tinj and the time t after in-
jection are short compared to the diffusion time scale
∼ L2/Dqp, the generated quasiparticles do not reach the

far end of the strip, and we may take the limit L → ∞.
In this limit, all values of k are allowed and sums over
k are replaced by an integral, 1

L

∑
k →

∫
dk
2π . Moreover,

when letting L → ∞ while keeping the distance l between
trap and junction finite, the normalization constant Nk

is dominated by the part of the mode with y > l, so that
Nk ≃ (a2k + b2k)/2. Clearly, a single trap suppresses the
excess quasiparticle density at the junction best if the
distance l is short. For simplicity, from now on we as-
sume l → 0+. That leaves us with only one characteristic
time scale, the saturation time

tsat = Dqp/γ
2 . (31)

It gives the time scale over which the density near the
junction approaches its steady-state value x0 = j/γ,
prescribed by the balance between generation and trap-
ping, during the injection process. Indeed, after time
τ from the start of the injection, quasiparticles have
spread over a distance ∼

√
Dqpτ and the diffusive cur-

rent at that time can be estimated as Dqp∂yxqp(0) ∼
Dqpxqp(0)/

√
Dqpτ . For τ = tsat the diffusive current is

therefore of the order of the trapping current γxqp(0);
as quasiparticles spread further out, the diffusive cur-
rent will decrease, indicating that indeed a steady-state
is (asymptotically) reached. It is important to note that
the total number of quasiparticles in the device keeps
growing for the entire duration of injection, despite the
saturation of xqp(0) at τ ∼ tsat.
The evolution in the relaxation stage, t > 0, depends

on the ratio tsat/tinj. A straightforward use of Eq. (30)
yields for the quasiparticle density close to the trap, y →
0, in the long-time limit t ≫ tsat

xqp(0, t) ≈
x0√
π

(√
tsat
t

−
√

tsat
t+ tinj

)
. (32)

This asymptote is valid for any value of tsat/tinj. If
tinj ≫ tsat, one may distinguish between an interme-

diate asymptotic behavior, xqp(0, t) ∝ 1/t−1/2, valid
at times tsat ≪ t ≪ tinj, and a long-time asymptote,

xqp(0, t) ∝ t−3/2, at t ≫ tinj. Only the latter behavior is
present for short injection times tinj . tsat.

B. The effect of finite diffusion time

We now turn to the case of a finite-length strip, so that
the diffusion time across the whole device,

tL = 4L2/(π2Dqp) , (33)

provides yet another scale for the relaxation dynamics
of xqp. The comparison of the two time scales, tL and
tsat, allows us to introduce the notion of a weak versus a
strong trap. A weak trap corresponds to tsat ≫ tL. The
diffusion through the device occurs much faster than the
local saturation at the trap, and consequently, the quasi-
particle distribution is almost homogeneous throughout
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the device. A strong trap, tsat ≪ tL, leads to a highly-
inhomogeneous spatial distribution of the quasiparticle
density. Recalling that γ = Γeffd, this distinction can
also be expressed in terms of a comparison of the trap
length d with the length scale

l0 ≡ π

2

Dqp

LΓeff
=

π

2

λ2
tr

L
, (34)

with λtr of Eq. (21); a weak (strong) trap is characterized
by d ≪ l0 (d ≫ l0). Note that if λtr ≪ L, l0 is much
smaller than λtr, so the crossover between the two limits
occurs while the trap length remains short, d ≪ λtr, and
we can still use Eq. (22).
For a weak trap, d ≪ l0, we may neglect the y-

dependence of xqp(y, t) in Eq. (22), and integrating it
over y we find

xqp(y, t) ≈ x0

(
1− e−tinj/τw

)
e−t/τw , (35)

where

1

τw
=

d

L
Γeff . (36)

As long as xqp can be considered y-independent, the ex-
pression (36) for the density decay rate may be easily
generalized: the ratio d/L in the right hand side should
be replaced by Atr/Adev, where Atr is the total area of
the trap and Adev is the area of the entire device. Impor-
tantly, the decay rate here depends merely on the ratio
of the total areas, whereas details of the geometry of the
trap and device are unimportant.
In the opposite case of a strong trap, d ≫ l0, the ap-

proximation of a constant xqp(x, y) is no longer valid,
and the decay rate will depend on the details of the trap
geometry and placement. For simplicity, we concentrate
again on the strip geometry. To obtain the eigenmodes,
one may replace the right hand side of Eqs. (27) by zero.
Therefore, k is simply given by k = π

2Lp, where p is an
odd integer (up to small corrections of order l0/d – cf.
Eq. (39)). In contrast to the case of a weak trap, the
relaxation is now limited by the diffusion time. From
Eq. (30) we find the time-dependent quasiparticle den-
sity at the junction to be

xqp (0, t) ≈
4

π
x0

√
tsat
tL

∑

p

[
e
− t

tL
p2

− e
−

t+tinj
tL

p2

]
, (37)

with x0 = j/γ, and the sum over the odd integer p. For
short times, t ≪ tL, the time evolution is insensitive to
the boundary condition at x = L, and indeed we re-
cover the results given in Sec. III A. (Note that of course,
being able to observe the transition from a t−1/2 to a
t−3/2 power law decay is contingent upon tinj being much
smaller than tL.) For times exceeding the diffusion time,
t & tL, the time-evolution is dominated by the single
exponential of the slowest mode, and we can write

xqp (0, t) ≈
4

π
x0

√
tsat
tL

(
1− e−tinj/τw

)
e−t/τw (38)

where the decay time constant is now determined by the
diffusion time (33), τw = tL [21].
Concentrating on the long-time evolution, we can more

generally relate the time constant τw to the wave number
of the slowest mode. Thus, we are able to investigate the
full crossover in τw from weak to strong trap as a function
of d/l0. Setting l → 0 in Eq. (27), we may re-write it as

cot
(π
2
k̃
)
=

l0
d
k̃ , k̃ =

2

π
kL . (39)

The time constant can be expressed in terms of the small-

est positive solution k̃0 of Eq. (39) as τw = tL/k̃
2
0 . There-

fore, the ratio tL/τw is a function of a single variable,
d/l0. The full crossover function between the linear de-
pendence at small d/l0 and saturation at d/l0 ≫ 1 can
be found by solving Eq. (39) numerically. In Fig. 5, we
show tL/τw as a function of d/l0, together with exper-
imental data that we discuss in the next section. The
introduction of scaled variables tL/τw and d/l0 allows us
to compare the trapping for a number of devices and for
a set of different temperatures.

IV. EXPERIMENTAL DATA

In this section we compare the model developed in
the previous sections with experiments measuring the
dynamics of injected quasiparticles in 3D transmon
qubits [5]. The qubit, similar to the device sketched in
Fig. 2, consists of a single Al/AlOx/Al Josephson junc-
tion shunted by a coplanar gap capacitor, with long (∼1
mm), narrow antenna leads which connect to a pair of
small (80 × 80µm2) pads, see Fig. 3. One or two chips
containing qubits are mounted in a superconducting alu-
minum rectangular waveguide cavity. All measurements
are performed in an Oxford cryogen-free dilution refrig-
erator, with magnetic field shielding, infrared shielding
and filtering described in Ref. [22].
After fabrication of the qubits, normal-metal traps are

patterned via optical lithography, which gives control of
trap location and size to better than 1 µm. The heavily
oxidized aluminum surface of the qubit is treated with an
ion etch, and 100 nm of copper is deposited in a liftoff pro-
cess thereafter. Through independent DC measurements,
we find the Al-Cu interface resistance to be between 200
and 430Ω·µm2. As shown in Fig. 3c, one edge of the trap
is located a short, fixed distance (∼ 35µm) away from the
junction. The trap has a width of 8µm, and it is placed
symmetrically on the 12µm wide lead. For this study, we
focus on devices in which the trap length, d, along the
lead is varied from 20 to 400 µm. The qubits’ T1 times
measured at 13 mK vary (non-monotonically) between
10 and 22 µs for d between 20 and 80 µm, while the two
devices with longer traps (d = 200 and 400 µm) have
shorter relaxation times (5 and 7 µs, respectively). Com-
parisons with a control device without traps (T1 = 19 µs)
and with earlier experiments [10] indicate that that short
traps do not negatively affect the qubit coherence, while
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FIG. 3. a) Photograph of a 3D aluminium cavity loaded with
a transmon qubit. b) Optical image of an example of the
devices used for this study. c) Zoomed-in image of the Cu-
trap deposited near the junction

longer traps might be somewhat detrimental. Here we fo-
cus on the effect of traps on quasiparticle dynamics and
do not give further consideration to the possible trap-
induced loss mechanism.
The QP dynamics of these devices is studied using the

contactless, in-situ method described in Ref. [10], where
QPs are introduced into the qubit by applying a large
microwave tone at the bare cavity resonance. This injec-
tion pulse creates a voltage across the Josephson junction
greater than 2∆, generating many (& 105 per µs) quasi-
particles near the junction. The subsequent decay of xqp

is probed by monitoring the recovery of the qubit relax-
ation time T1 measured as a function of time after the
injection, in light of the simple relation

Γ(t) = 1/T1(t) = Cxqp(0, t) + Γ0 , (40)

where Γ0 is the steady-state relaxation rate of the qubit,
which includes the effects of residual quasiparticle popu-
lation and other relaxation mechanisms such as dielectric
losses, and C is a known proportionality constant [23]
(whose value we do not need here). In other words, we
exploit the fact that the time-dependent part of the qubit
decay rate Γ is directly proportional to the excess quasi-
particle density at the junction, y = 0.
Figure 4 shows a typical measurement of the qubit de-

cay rate in a device with a small normal-metal trap. The
decay time constant τw is estimated by fitting the data
with a single exponential of the form

Γ(t) = Ae−t/τw + Γ0 . (41)

As discussed in Sec. III B, we are considering only the
slowest decay mode of xqp, so we fit the data to the above
expression at long times t & tL [with tL of Eq. (33)],
where we find good agreement between the data and the
predicted single-exponential decay.
Repeating the measurement for several trap lengths d,

we find that the experimental decay rate 1/τw varies with
the length of the trap in qualitative agreement with the

FIG. 4. Qubit energy relaxation rate Γ after quasiparticle
injection. The solid line is a fit to the data by a single expo-
nential with time constant τw, see Eq. (41). The inset shows
the relaxation rate after subtracting a constant background
in logarithmic scale, displaying good agreement with the pre-
dicted functional form.

rate calculated by solving Eq. (39), see Fig. 5. Indeed, for
short traps we approximately find the linear dependence
of 1/τw on the trap length predicted by Eq. (36), while for
longer traps the rate saturates to the the diffusion limit,
1/τw ≈ 1/tL. To scale the experimental data so that
they can be compared to the theoretical expectation, we
use l0 and tL as fitting parameters, and allow them to be
different for data taken at different fridge temperatures
Tfr, thus assuming that both Dqp as well as Γeff depend
on Tfr. The fitting parameters are l0 = 41.2 ± 17.1µm
and tL = 184 ± 29µs for Tfr = 13mK and l0 = 45.8 ±
16.7µm and tL = 125± 20µs for Tfr = 50mK [24]. Note

d/l0

tL

τw

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  2  4  6  8  10

FIG. 5. Dimensionless density decay rate 1/τw normalized by
the diffusion time tL, cf. Eq. (33), as a function of trap length
d measured in units of l0, see Eq. (34) for the definition. The
solid line is calculated by solving Eq. (39) numerically. The
experimental data are taken at two different fridge tempera-
tures: the blue symbol “x” is used for Tfr = 13mK and the
red symbol “+” for Tfr = 50mK. Note the transition from a
linear dependence to the saturated diffusive limit at d ∼ l0.
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that the relative change in l0 is smaller than that in tL
and that this is in qualitative agreement with theoretical
expectations: since l0 is proportional to Dqp/Γeff, the
expected increases of both Dqp and Γeff with effective
temperature can partially compensate each other, while
no such compensation is possible for tL ∝ 1/Dqp.
As discussed after Eq. (36), in the linear regime we

can take into account the actual geometry of the trans-
mon by modifying that expression for the decay rate,
which becomes 1/τw = ΓeffAtr/Adev. We use this for-
mula to estimate Γeff using the short-trap data and find
Γeff ≈ 2.42 ·105 s−1 for Tfr = 13mK (corresponding to
the blue data points in Fig. 5) and Γeff ≈ 3.74 ·105 s−1

for Tfr = 50mK (red points). These numbers are close
to the order-of-magnitude estimate for Γeff given at the
end of Sec. II, where we assumed that the backflow of
quasiparticles must be taken into account and strongly
suppresses the effective trapping rate. In that Section we
have also shown that Γeff ∼ Γr(T/∆)1/2, indicating that
Γeff should grow with temperature. While we observe an
increase in the Γeff extracted from the data with increas-
ing fridge temperature, this increase is smaller than the
factor of 2 expected from theory. This discrepancy is not
surprising, since it is known that at low temperatures
the quasiparticles are not in thermal equilibrium at the
fridge temperature [19]. Moreover, the injection pulse
can cause additional heating in the qubit [25], further
weakening the relationship between fridge temperature
and quasiparticle effective temperature.

V. SUMMARY

In this work we develop a basic model enabling us
to predict the effect of a normal-metal trap on the dy-
namics of the nonequilibrium quasiparticles population
in a superconducting qubit. The model accounts for the
tunneling between the superconductor and the trap, as
well as for the electron energy relaxation in the trap,
see Eq. (18). The surprising finding is that the effective
trapping rate Γeff is sensitive to the energy of the quasi-
particles and is constrained by their backflow from the
normal-metal trap on time scales shorter than the elec-
tron energy relaxation rate. Furthermore, we find the
dependence of the time needed to evacuate the injected
quasiparticles on the trap size. The evacuation time sat-
urates at the lowest, diffusion-limited value upon extend-
ing the trap above a certain characteristic length l0; the
dependence of l0 on the parameters of the trap and qubit
is given in Eq. (34).
The experimental findings reported in Sec. IV validate

the theoretical model. The relaxation rate 1/T1 of a
transmon qubit is proportional to the quasiparticle den-
sity in the vicinity of the Josephson junction, making
it possible to measure the dynamics of the quasiparti-
cle population. We find that the population decay rate
increases with the length of the normal-metal traps, in
agreement with the predicted cross-over from weak to

strong trapping, see Fig. 5. For small traps we can es-
timate the effective trapping rate Γeff: both its order-
of-magnitude and its increase with temperature indicate
indeed a limitation due to the backflow of quasiparticles.
Utilizing traps is a viable strategy of mitigating the

detrimental effect of quasiparticles on the qubits T1 time.
Further improvement of normal-metal traps may ben-
efit from finding ways to shorten the electron energy
relaxation time in them. Based on the experiments of
Refs. [15, 16], using a different pure metal (e.g., silver
or gold) for the trap is unlikely to result in substantially
shorter relaxation time; metals hosting magnetic impuri-
ties might be helpful in this regard, but such impurities
could harm the qubit by opening other relaxation chan-
nels.
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Appendix A: Tunneling rate equations.

In this Appendix, we derive the rate equations for
quasiparticles and electrons accounting for tunneling be-
tween a superconductor and a normal metal. Here we
assume that both the superconductor and the normal
metal are sufficiently small volumes (ΩS and ΩN , respec-
tively), such that the diffusion of excitations occurs on a
fast time scale and the occupation probabilities are hence
uniform in space. Within these volumes we define the
probabilities

f (ξm) =
∑

σ

〈
c†mσcmσ

〉
(A1)

fqp (ǫn) =
∑

σ

〈
γ†
nσγnσ

〉
(A2)

of finding an electron excitation of energy ξm in the nor-
mal metal and a quasiparticle excitation of energy ǫn in
the superconductor, respectively. The tunnel coupling
between the two, see Eq. (4), gives rise to a change in
both occupation probabilities for energies above the gap,
via processes whose rates can be computed using Fermi’s
Golden Rule:

ḟ (ξm) =
∑

nσ

[Wnσ→mσ −Wmσ→nσ (A3)

+W0→mσ,n−σ −Wmσ,n−σ→0] ,

ḟqp (ǫn) =
∑

mσ

[−Wnσ→mσ +Wmσ→nσ (A4)

+W0→mσ,n−σ −Wmσ,n−σ→0] ,
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with

Wnσ→mσ =
2π

~

∣∣t̃
∣∣2

ΩSΩN
u2
nfqp (ǫn) [1− f (ξm)] (A5)

× δ (ǫn − ξm) ,

W0→mσ,n−σ =
2π

~

∣∣t̃
∣∣2

ΩSΩN
v2n [1− fqp (ǫn)] (A6)

× [1− f (ξm)] δ (ǫn + ξm) .

The reverse processes are found by replacing f(qp) →
1 − f(qp). Assuming particle-hole symmetry, f (−ξ) =
1− f (ξ), we summarize the rate equations as

ḟ (ξm) =
2π

~

∣∣t̃
∣∣2

ΩSΩN

∑

n

[fqp (ǫn)− f (ξm)] δ (ǫn − ξm)

(A7)

ḟqp (ǫn) =
2π

~

∣∣t̃
∣∣2

ΩSΩN

∑

m

[f (ξm)− fqp (ǫn)] δ (ǫn − ξm) .

(A8)

The tunneling processes considered above are elastic.
In the normal metal, for temperatures T ≪ ∆ there is
a large interval of unoccupied states below the gap. In-
elastic processes, such as electron-phonon and electron-
electron interactions, can relax the excitations in the nor-
mal metal to energies below the gap, so that they cannot
return to the superconductor. We phenomenologically
account for this relaxation by adding the term −Γrf (ξm)
to the right-hand side of Eq. (A7). The relaxation rate Γr

is assumed energy-independent, which is justified if the
interval of non-zero excitations above the gap is within a
narrow energy strip of width ≪ ∆.

In the next step, we are interested in the probabilities
to find excitations in the states within a small energy
interval δǫ. We define the probability densities

pN (ǫ) =
1

NS

∑

ǫ<ξm<ǫ+δǫ

f (ξm) (A9)

pS (ǫ) =
1

NS

∑

ǫ<ǫn<ǫ+δǫ

fqp (ǫn) (A10)

which are normalized with respect to the normal-state
number of states in the superconductor NS = νS0ΩSδǫ.
In the continuum limit δǫ → 0 these definitions lead
to Eqs. (12) and (13), respectively. From Eqs. (A7)-
(A8) plus the phenomenological relaxation term dis-
cussed above, we obtain Eqs. (15)-(16) with the rates

Γesc (ǫ) =
2π

~

∣∣t̃
∣∣2 νS0

ΩN

ǫ√
ǫ2 −∆2

, (A11)

Γtr =
2π

~

∣∣t̃
∣∣2 νN0

ΩS
. (A12)

Appendix B: Generalized diffusion equation and

effective trapping rate

In this Appendix we discuss the generalization of the
rate equations (15)-(16) to include diffusion. In disor-
dered metals, the effect of elastic impurity scattering on
the distribution function is accounted for by a diffusion
term; for quasiparticles in superconductor, the diffusion
constant in the so-called “hydrodynamical approach” [26]
is energy-dependent:

ṗN (ǫ, ~r, t) = DN
~∇2pN (ǫ, ~r, t) + a (x, y) δ (z − dS)

× [γ̃trpS (ǫ, ~r, t)− γ̃esc (ǫ) pN (ǫ, ~r, t)]− ΓrpN (ǫ, ~r, t) ,
(B1)

ṗS (ǫ, ~r, t) = DS (ǫ) ~∇2pS (ǫ, ~r, t)− a (x, y) δ (z − dS)

× [γ̃trpS (ǫ, ~r, t)− γ̃esc (ǫ) pN (ǫ, ~r, t)] . (B2)

where DN is the diffusion constant in the normal-metal
trap, and

DS(ǫ) = DS/νS(ǫ) (B3)

with DS being the normal-state diffusion constant in the
superconductor; γ̃tr, γ̃esc, and Γr are defined in Sec. II.
The function a(x, y) is 1 if coordinates x, y belong to the
normal-superconductor contact, 0 otherwise. For the z
coordinate, we assume that the superconductor occupies
the interval 0 < z < dS and the interval dS < z < dS+dN
corresponds to the normal metal.
The above is a set of coupled linear differential equa-

tions that, for each energy ǫ, can be in principle solved
in terms of eigenmodes, as done in Sec. III for Eq. (22).
Here, to justify that equation we consider the conditions
under which Eqs. (B1)-(B2) can be simplified, starting
with the assumption that the normal metal is a thin layer.

1. Thin normal metal

In a sufficiently thin trap, the electron density within
the normal metal should not change significantly in z-
direction. This is the case if the length scale on which pN
varies in the z direction is much larger than the thickness
of the trap dN . Then we can expand pN as a function of
the distance z − dN − dS from the upper surface:

pN (ǫ, ~r, t) =
1

dN
p̃N (ǫ, x, y, t)

+
(z − dN − dS)

2

2d3N
p
(2)
N (ǫ, x, y, t) + . . .

(B4)

The linear term is absent as to satisfy the boundary con-
dition ∂zpN = 0 at z = dS + dN . For the expansion to

be applicable, we require p
(2)
N ≪ p̃N ; this condition will

lead to a limit on the thickness dN , as we show in what
follows.
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The diffusion equation (B1) for the normal metal may
be alternatively expressed as

ṗN (ǫ, ~r, t) = DN
~∇2pN (ǫ, ~r, t)− ΓrpN (ǫ, ~r, t) (B5)

for z > dS , with the boundary condition at z = dS

DN∂zpN (ǫ, x, y, dS , t) + γ̃trpS (ǫ, x, y, dS , t)

−γ̃esc (ǫ) pN (ǫ, x, y, dS , t) = 0 .
(B6)

Using the Ansatz (B4), from the two equations above we
find in the leading order

˙̃pN = DN
~∇2p̃N +

DN

d2N
p
(2)
N − Γrp̃N , (B7)

and

− DN

dN
p
(2)
N + dN γ̃trpS − γ̃esc (ǫ) p̃N = 0 . (B8)

Solving Eq. (B8) for p
(2)
N and substituting it into Eq. (B7)

we arrive at

˙̃pN = DN
~∇2p̃N + γ̃trpS − Γesc (ǫ) p̃N − Γrp̃N ; (B9)

here the energy-dependent escape rate Γesc(ǫ) is defined
by Eqs. (9) and (10). We can formally solve this equation
for p̃N by introducing an appropriate set of eigenmodes,
which are discrete due to the finite size of the normal
metal. Choosing for simplicity a rectangular trap with
0 < x < dx and 0 < y < dy, we have eigenmodes of the
form

n(kx, ky) =
√
NxNy cos(kxx) cos(kyy) , (B10)

with kx,y = πnx,y/dx,y, nx,y ∈ N, the normalisation con-
stantNx,y = 1+δ0nx,y , and the corresponding eigenvalues

λ(kx, ky) = −DNk2x −DNk2y − Γesc(ǫ)− Γr . (B11)

We can now write the solution to Eq. (B9) as

p̃N (x, y, t) = Γtr

∫
dω

2π

∑

kx,ky

e−iωt

−iω − λ(kx, ky)

×n(kx, ky)p̃S(kx, ky, ω) ,

(B12)

where we introduced the Fourier transform of pS at the
interface,

p̃S(kx, ky, ω) =

∫ dx

0

dx

dx

∫ dy

0

dy

dy
n(kx, ky)

×
∫

dt eiωtpS(x, y, dS , t) .

(B13)

In the solution given in Eq. (B12) we discarded any tran-
sient terms, which are exponentially suppressed for times
t ≫ (Γesc(ǫ) + Γr)

−1.
Let us assume that the length L of the (largest) part of

the superconductor not covered by the trap is sufficiently

long (see end of Sec. B 2); then at the long times relevant
to experiments, the time scale for the evolution of pS is
determined by diffusion in the uncovered part. Similarly,
diffusion in the region under the trap makes the long-time
part of pS a smooth function of x and y. This means that
in Eq. (B12) we can neglect all but the lowest mode and
set ω = 0 and kx = ky = 0 in the denominator. We thus
arrive at

p̃N ≈ γ̃trpS
Γesc(ǫ) + Γr

. (B14)

Using this estimate and the solution to Eq. (B8), the

condition p
(2)
N ≪ p̃N can be written as a condition on the

normal-metal thickness,

dN ≪
√

DN

Γr
. (B15)

Even for diffusion as slow as that of quasiparticles (Dqp >
10 cm2/s [10]), using Γr ∼ 107 s−1 (see Sec. II), the right
hand side is of order 10µm, much thicker than the film
thickness in the experiments.

2. Effective trapping rate

We are interested in finding the equation governing
the dynamics of pS . To this end, we substitute equations
(B4) and (B14) into Eq. (B2) to get at leading order the
following equation:

ṗS (ǫ, ~r, t) = DS (ǫ) ~∇2pS (ǫ, ~r, t)

− a (x, y) δ (z − dS) γ̃eff (ǫ) pS (ǫ, ~r, t)
(B16)

with

γ̃eff (ǫ) = γ̃tr
Γr

Γesc (ǫ) + Γr
. (B17)

Let us concentrate on the experimentally relevant case
of a thin superconductor in which pS varies slowly in
the z direction with respect to the thickness dS . In
analogy to the normal-metal case of the previous sec-
tion, the z dependence may be neglected if dS ≪√
DS (ǫ) /Γeff (ǫ) with Γeff = γ̃eff/dS . Using the inequal-

ity DS (ǫ) /Γeff (ǫ) > DSΓesc/ΓtrΓr (we remind that pa-
rameters DS and Γeff without energy arguments corre-
spond to the high-energy limiting values at ǫ ≫ ∆), we
find the sufficient condition

dS ≪
√

DSΓesc

ΓtrΓr
. (B18)

For dS ≈ dN and νS0 ≈ νN0, this condition reduces to
dS ≪ λS ≡

√
DS/Γr which, as discussed after Eq. (B15),

is generically satisfied in the experiments. Then for a thin
superconductor Eq. (B16) simplifies to

ṗS (ǫ, x, y, t) = DS (ǫ) ~∇2pS (ǫ, x, y, t)

− a (x, y) Γeff (ǫ) pS (ǫ, x, y, t) .
(B19)
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In closing this section, we note that the length scale
λS also determines the validity of the assumption made
above that the uncovered part of the device is sufficiently
long, which reads L > λS .

3. Dynamics of the quasiparticle density

The quantity that can be measured is the (normalized)
quasiparticle density xqp, which is related to pS by inte-
gration over energy, xqp = 2

∆

∫∞

∆
dǫ pS (ǫ). Focusing on

the case of thin films, using Eq. (B19) as reference we
write

ẋqp = Dqp
~∇2xqp − a(x, y)Γeffxqp (B20)

where xqp depends only on x and y. Comparing this
equation to the integral over energy of Eq. (B19) we iden-
tify the coefficient Γeff with

Γeff =

∫∞

∆ dǫΓeff (ǫ) pS (ǫ)∫∞

∆ dǫ pS (ǫ)
(B21)

[cf. Eq. (18)], and an analogous relation holds between
the quasiparticle diffusion coefficients Dqp and DS(ǫ).
These relations are exact if the energy dependence in
pS can be factorized from its temporal and spatial ones.
Although the structure of Eqs. (B16) and (B19) does not
favor such factorization, the latter may be enforced by
the process of quasiparticle thermalization due to their
interaction with phonons. The temperature dependence
of Γeff quoted in the text after Eq. (18) assumes the
quasiparticles are thermalized at an effective tempera-
ture T . Phenomenological equations such as Eqs. (B20)-
(B21) are widely used in the literature [8–10, 12, 13, 27]
as they successfully describe experiments as in Sec. IV.
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