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The role of quantum ion dynamics in the low melting temperatures of Li is investigated from first
principles theory. Free energies of solid and liquid phases are obtained at the classical and quantum
ion levels. The results are used to determine the Li melting curve in the 40–60 and 110–150 GPa
pressure ranges and are in excellent agreement with experimental data around 50 GPa. They predict
the resumption of a positive melting slope at higher pressure. Quantum corrections to individual
energy terms are far more significant than their net effect on the melting temperatures near 50 GPa,
even though lithium behaves as a quantum solid at this pressure. The scales of these corrections
increase with compression. A case is made for the possibility for anomalous melting at much higher
pressures, where quantum ion dynamics are expected to play a prominent role.
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The phase diagram of Li has attracted considerable
interest recently from both theory and experiment in
relation to a number of counterintuitive electronic and
structural changes observed under pressure. These in-
clude a deviation from simple metallic behavior, increas-
ingly high temperature superconductivity, and a reen-
trant translation from metal to semiconductor 1–7. One
of the most remarkable properties of dense lithium is its
anomalous melting. Despite numerous efforts, only re-
cently has a clear experimental picture of the high pres-
sure phase diagram and melting curve up to 75 GPa been
established8. The anomalous melting behavior of Li was
initially predicted based on the similarity between the
high pressure crystalline phases of Na and Li. Tamblyn
et al.5 proposed that Li would undergo similar transi-
tions to those found in liquid Na9–12, thus leading to
projections of anomalous melting of Li. They employed
a ”heat-until-melt” approach with molecular dynamics to
compute melting temperatures up to 90 GPa. The melt-
ing curve was then predicted to have a minimum at about
65 GPa and 270 K5. A succeeding study using a two-
phase simulation method found somewhat lower melting
temperatures13. The turnover of the melting curve is at
about the same pressure in both calculations.

Subsequent x-ray diffraction measurements8,14 quali-
tatively confirmed the turnover of the melting curve, but
also determined the minimum to be at lower tempera-
tures than in the theoretical calculations. This raises the
question of whether the quantum ion dynamics, which
were not taken into account in the previous theoretical
treatments 5,13, can account for the difference. Even
though it was previously suggested that quantum cor-
rections might play a significant role8,15, no conclusive
evidence of this effect has been provided up to date. Fur-
ther, the recent work of Schaeffer et al.16 who measured
the melting curve using resistivity measurements found
the melting minimum to be above 300 K, i.e. over 100 K
higher than the results reported by Guillaume et al.8.

The purposes of this article are therefore twofold.
First, we seek to determine the role of quantum ion dy-
namics in the anomalous melting of Li. This is achieved
by computing the free energies of both solid and liquid Li
(i) first assuming classical ions, and then (ii) with correc-
tions to account for quantum ion dynamics. The lowering
of the melting temperature arising from quantum effects
can thus be isolated. For this analysis we focus on the
region between 40 and 60 GPa (about 2.8-fold compres-
sion compared to one atmosphere Li) where quantum ef-
fects are likely to be strongest and the relevant crystalline
phase has the cI16 space group symmetry. The second of
the goals is to provide an accurate theoretical value for
the lowest melting temperature of the Li, as well as to ex-
tend its melting curve up to 150 GPa – a pressure region
where the solid transforms to the lower symmetry oC24
structure and where no melting data are yet available.

To obtain the liquid phase Gibbs free energies and
classical-ion enthalpies for the solid phase (cI16 ), we have
carried out first principle molecular dynamic (FPMD)
simulations of 7Li for pressure from 38 to 65 GPa
and temperatures up to 1000 K. We used finite-
temperature density functional theory (DFT)17 within
the Perdew-Burke-Ernzerhof generalized gradient ap-
proximation (PBE-GGA)18 as implemented in VASP19.
The simulations were carried out in the canonical en-
semble (NVT ) using Born-Oppenheimer dynamics, with
a Nosé-Hoover thermostat. Here N is the number of
atoms, V is the volume and T is the temperature. These
simulations were carried out with 128-atom supercells,
3-electron projector augmented wave pseudo-potential
(PAW PP), and 340 eV plane-wave cut-off. For each
density and temperature, the system was initially equili-
brated within 1-2 ps and subsequently simulated for 10 ps
or more using 0.75 fs ionic time-step (1/56 of the shortest
phonon period). The plane-wave cut-off convergence was
tested up to 400 eV for pressure at 45 GPa and temper-
atures 100, 400, and 3000K. The resulting convergence
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of E and PV is within 1 meV/atom. In addition, con-
vergence tests for finite size effects and k-point Brillouin
zone sampling were performed at the above specified con-
ditions. These included: (i) first principles molecular dy-
namics simulations (FPMD) simulations with 192-atoms
supercells and the Γ k-point; (ii) FPMD simulations with
288-atoms supercells and the Γ k-point; and (iii) FPMD
simulations with 128-atom supercells and a 2× 2× 2 k-
point grid. In all tests, the convergence of E and PV
proved to be within one meV/atom.

Entropies of the classical and quantum harmonic
solids, as well as enthalpies in the quantum ion case, are
obtained by computing the phonon dispersions of Li in
the cI16 phase. DFT perturbation theory20 as employed
in the ABINIT code21 with Hartwigsen-Goedeker-Hutter
PP’s22 and the PBE-GGA were used. A plane-wave ex-
pansion with a 2700 eV cut off and sufficiently dense
k-point grids 12 × 12 × 12 were used to ensure conver-
gence of free energies better than 0.5 meV/atom. The
dynamical matrices were computed on uniform q-point
meshes, from which interatomic force constants were ob-
tained and used to interpolate the phonon dispersions
over the entire BZ’s. The q-point grids were tested un-
til convergence for the resulting Helmholtz free energies
and entropy better than 0.5 meV/atom was achieved.
For this a 5 × 5 × 5 grid was required. To verify that
anharmonicities can be neglected, the Helmholtz free en-
ergy of the cI16 crystal was calculated for 50 GPa and
300 K within the self-consistent ab initio lattice dynamics
method (SCAILD) implemented in the SCPH package23

. The result differs by only 0.33 meV/atom from the
quasi-harmonic free energy at the same conditions.

Assuming classical ions, Gibbs free energies for liquid
and solid phases were evaluated as G = 〈E〉+〈P 〉V −TS,
where 〈〉 is a statistical average over the FPMD trajec-
tories, E , P are the instantaneous total energy and
pressure respectively, and S is the entropy. The clas-
sic ion internal energies are calculated from FPMD using
〈E〉 = 〈EDFT 〉 + 3/2NKT , with EDFT being the DFT
energy for a given atomic configuration, and 3/2NKT
the ion kinetic energy. The pressure for solid and liq-
uid phases is also obtained from the simulations as P =
−∂EDFT

∂V + NkT
V .

The entropy for the liquid was calculated using a ref-
erence entropy at T0 = 1000 K obtained from previous
work24, and then integrating the specific heat, CV , at a
fixed volume to obtain the entropy at the desired T :

S(V, T ) = S(V, T0) +

∫ T

T0

CV
T ′

dT ′. (1)

The integral is performed well by fitting CV to a polyno-
mial for the temperature range from 300 to 1000 K.

For the solid phase, the entropy was calculated at
each volume of interest by integrating the phonon den-
sity of state, g(ω), assuming classical oscillators as Scl =
3Nk

[
1−

∫
dωg(ω) ln(~ω/kT )

]
.

The quantum corrections to the ionic free energies for
the liquid were obtained based on the Wigner-Kirkwood
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FIG. 1: Gibbs free energies for solid (cI16) and liquid lithium,
represented by solid and dash lines, respectively. Results for
classical ions are shown in (a) and for quantum ions in (b).
The lines cross at the melting temperature for the given pres-
sure.

approximation, which is known to be valid for systems
not too far off from classical:

∆Fqm =
h2

24k2BT
2
<
∑
i

F 2
i

mi
>cl, (2)

where the average is over the classical ensemble, and Fi
and mi are the ionic forces and masses.

Quantum corrections for the solid phase free energies
were then evaluated by taking into account the phonon
contributions to the free energy as G = E0 + P0V +
PphV +Fph, where E0 and P0 are the static lattice energy
and pressure, Pph and Fph are the phonon pressure and
free energy respectively. In all cases, E0 and P0 are taken
from the VASP calculations in order to eliminate system-
atic differences between the static and MD simulations
performed with the two different codes. The phonon
Helmholtz free energy is Fph = Uph−TSph, and Uph and
Sph are the phonon internal energy and entropy respec-

tively. Here Pph is calculated from Pph = −∂Fph

∂V |N,T .
For this purpose, Fph is computed for several volumes
and interpolated with a quadratic function of V .

Free energies for classical ions were determined for
solid and liquid phases and then interpolated along each
isotherm in order to compare their relative values along
specific isobars (for further details see Supplementary
Material). The final results for three isobars are shown in
Fig. 1(a). The intersections of the solid and liquid Gibbs
free energy curves give the respective melting tempera-
tures. The same procedure was followed for determining
the free energies but with quantum corrections, and the
results are shown in Fig. 1(b).

Inclusion of quantum dynamics lowers the melting
temperature. While the effect is noticeable, it is not
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so dramatic as one might anticipate from considerations
of the crystalline zero point energy alone. In order to
make sense of this result, we have examined the relevant
free energy terms. Their temperature dependences at 50
GPa are shown in Fig. 2. The quantum correction to the
solid enthalpy (∆Hs = Hs

qm −Hs
cl) is indeed significant

- larger than ∼ 56 meV/atom below 200 K, confirming
that Li melts as a quantum solid at this pressure. How-
ever the effect of entropy is just the opposite, as it is lower
for classical oscillators than for quantum counterparts by
∼ 17.5 meV/atom. Furthermore, the quantum nature of
the liquid must be considered as well, and it contributes
as much as ∼ 23 meV/atom at 200 K. When all free
energy terms are considered, the difference between the
quantum corrections to the solid and liquid Gibbs free
energies, ∆Gs−∆Gl, is only about ∼ 15.5 meV near the
melting point, i.e. a third of ∆Hs.

It is interesting to compare these results with previous
studies25–31 of the isotope effect on the melting curves of
the two lighter than Li elements, H and He. In general,
there are several competing factors that determine the
sign of the quantum correction to the melting curves: (i)
The scaling of the kinetic energy with ion mass, ∝ 1/mα,
where α is 0.5 for a harmonic solid, but is generally
> 0.5 for a liquid; (ii) Density differences between the
two phases at coexistence; (iii) The collective lattice mo-
tion in the solid, keeping atoms more effectively away
from their neighbors28; (iv) Structural differences. Pre-
vious studies25–28 found that there is a large cancelation
in the quantum corrections to liquid and solid He. A
path integral Monte Carlo study28 showed that at the
same density, the liquid has higher kinetic energy due to
(iii) above. However, the density of the solid is higher
at co-existence and the net result is that the lighter He
isotope has lower melting temperature28. An ab initio
study29 of H2 and D2 reported a change in the sign of
the isotope (quantum) effect on the melting curve with
pressure, most likely related to the onset of a gradual
dissociation in the liquid. Interestingly, the computed
isotope effect at low pressure in Ref. 29 is opposite to
experimental measurements30; this could be an artifact
of the crystal structures chosen to construct the free en-
ergy functions in Ref. 29. For monatomic metallic H at
extreme compression (600-1600 GPa), Geng et al.31 de-
termined that the quantum effects lower the melting tem-
perature by about 100-120 K. In the present case of Li,
the solid and liquid densities are identical at coexistence
near 50 GPa, and the two phases have similar local struc-
tural environments5. The larger quantum corrections in
solid compared to liquid Li mean that (i) is the domi-
nating factor here. At pressure above 50 GPa, where the
melting slope is positive, the density differential (based
on the Clapeyron equation) will play an additional role
in favor of larger quantum corrections in the solid phase.

Our final results for the melting temperatures of the
cI16 phase for quantum and classical ion dynamics are
shown in Fig. 3. The agreement of the quantum results
with the recent experimental measurements8 is indeed ex-
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FIG. 2: Quantum corrections to various free energy terms at
50 GPa. Here ∆Hs = Hs

qm − Hl
cl, ∆Ss = Ss

qm − Sl
cl, and

∆Gs = Gs
qm − Gl

cl are the quantum corrections to the cI16
crystal enthalpy, entropy and Gibbs free energies, respectively.
∆GL is the quantum correction to the liquid Gibbs free energy
computed using Eq. (2).

cellent; the slight underestimate of the melting tempera-
tures at 40 and 60 GPa is to be expected considering that
cI16 is not the preferred crystalline phase at these pres-
sures. In addition, the error bars on the computed melt-
ing temperatures are 25 K. They are estimated by con-
sidering by how much the melting temperatures change
(20-25 K) when the relative free energies of the solid and
liquid phases are varied by 5 meV/atom. These uncer-
tainties produce systematic errors and thus have little
effect on the computed shift of the melting temperatures
that results from quantum ion effects. Furthermore, we
note that the harmonic frequencies scale as 1/

√
mi, which

means that if 6Li were considered instead of 7Li, ∆HS

would increase by about 8% or 4 meV/atom near the
melting curve minimum (see Fig. 2). At the same time,
∆GL, which scales as 1/mi, would be larger as well, by
∼ 3.2 meV/atom. The net isotope effect is thus smaller
than about 1 meV/atom. Finally, we have determined32

the Lindemann ratio, which at 50 GPa and 200 K is 0.20.
This is indeed a noticeably large value and characteristic
for the melting of a quantum solid.

The melting curve of Li is extended to higher compres-
sion by evaluating the melting temperatures of the oC24
phase8 in the pressure range from 100 to 175 GPa. The
procedure for quantum ions described above was also fol-
lowed here as well, with the only differences being that
96-atom supercells were used for the FPMD simulations
of oC24 and vibrational density of states obtained from
the FPMD were used to calculate entropies. The lat-
ter ensures that anharmonic effects, which become more
significant at elevated temperatures, are included in the
computed free energies.

We have also used the empirical Simon law34, which as-
sumes no minimum, to fit the low pressure experimental
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FIG. 3: Melting curve and phase diagram of dense Li. Melt-
ing temperatures obtained in this study with (shown in red)
and without (blue) quantum corrections are compared with
available experimental data8,14,16,33 and previous theoretical
results5,13. The dotted line is the extrapolation of the melting
curve with the Simon law.

data and extrapolate the P-T melting points into the sta-
bility field of oC24 (see Fig. 3) as no melting minimum
exists. By comparing the extrapolation and the calcu-
lated at P > 150 GPa data points, it becomes clear that
the Li melting curve resumes a positive slope once the
solid transforms away from very complex phases. It is
interesting to note that there are common features, such
as deep melting minima, clustering of several complex
solid phases, and resumption of positive melting curve,
exhibited in the phase diagrams of the lighter alkalis: Li
(see Fig. 3), Na (see Fig. 7 in Ref.35) and K (see Fig. 3
in Ref. 36).

Note that even though the oC and cI16 space group
symmetries are open structures compared to fcc, they
are more dense because of s-to-p charge transfer. Our
result for the melting curve above 100 GPa confirms the
explanation5 that the anomalous melting of Li is a con-
sequence of parallel structural and electronic transitions
taking place in the liquid and solid phases. They are
analogous in both phases - symmetry breaking transitions
driven by s-to-p charge transfer- but take place gradually
in the liquid, and commence at lower pressure there in
than in the solid.

Given the above analyis and parallel with the phase
diagrams of other alkalis, a relevant question is whether
a second region of anomalous melting at higher pressure
may exist; a second melting minimum is known for Cs37

and Rb38. Indeed, Tamblyn et al.5 predicted that over-
lap of the Li 1s electrons at pressures above 150 GPa
will ensue, by ∼350 GPa, in the emergence of a liquid
with average tetrahedral local order. Quantum effects in-
crease with compression and if the Li melting curve has a
turnover above ∼ 200 GPa comparable to that observed
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below 50 GPa, proper consideration of quantum dynam-
ics then becomes essential. Nevertheless, our results up
to 150 GPa can be extrapolated in order to obtain an
estimate for the magnitude of the quantum corrections
at higher compressions.

Quantum corrections to the Gibbs free energies of liq-
uid and solid Li for several isotherms from 50 to 150 GPa
are shown in Fig. 4. The corrections for the liquid phase,
∆GL, are calculated using Eq. (2). Those for the solid
phase, ∆GS , are estimated by taking the difference be-
tween the phonon internal energy, Uph, and 3kT for the
relevant structures reported reported by Guillaume et
al.8. While the zero point energies vary among the dif-
ferent structures by as much as 30 meV/atom (Fig. 4
(a)), the differences become negligible by 500 K. As can
be seen from the figure, the difference ∆GS − ∆GL in-
creases almost linearly with pressure for a fixed tempera-
ture. Thus the curves in Fig. 4 (c) can be extrapolated to
estimate the magnitude of quantum corrections at higher
pressure. For example, if the melting temperature of Li
at 350 GPa is anticipated to be around 400 K, quantum
effects would be responsible for changing the relative free
energies of the solid and liquid phases by about 100 meV.
The effect of such a change on the melting temperature
will depend on the exact forms of the free energy curves
as a function of temperature. Given the predicted5 sim-
ilarity of the tetrahedral local order of solid and liquid
pases above 350 GPa, it is reasonable to assume that
their free energies have similar temperature dependences
as well. Therefore, a quantum correction of the order of
100 meV per atom may have a significant effect on the
melting curve at these pressures. The possibility for a
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low-temperature liquid Li at extreme compression is an
intriguing question worth further study.

As a concluding comment we should note that though
considerable care has been devoted to the calculations
of all terms appearing in the Gibbs energy, it is clear
that those of electronic origin (of major importance) are
ultimately dependent on provisions of pseudopotentials,
which as a matter of construction do not describe cor-
rectly charge densities in regions close to nuclei. Given
the large density gradients in these regions, the impor-
tance of pseudopotential and exchange approximations

may merit further scrutiny for a low atomic number sys-
tem (with large zero-point motion), such as lithium, at
extreme densities.
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