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Hybrid improper ferroelectricity, where an electrical polarization can be induced via a trilinear
coupling to two non-polar structural distortions of different symmetry, has recently been
experimentally demonstrated for the first time in the n=2 Ruddlesden-Popper compound Ca3Ti2O7.
In this paper we use group theoretic methods and first-principles calculations to identify possible
ferroelectric switching pathways in Ca3Ti2O7. We identify low-energy paths that reverse the
polarization direction by switching via an orthorhombic twin domain, or via an antipolar structure.
We also introduce a chemically intuitive set of local order parameters to give insight into how these
paths are relevant to switching nucleated at domain walls. Our findings suggest that switching may
proceed via more than one mechanism in this material.

I. INTRODUCTION

Ferroelectric materials display a broad range of
fascinating properties, from their phase transition and
switching behaviors,1 to various photoinduced effects2

and intriguing topological defects in their domain
structures.3,4 They also have utility in applications such
as low-power electronics.5 In particular, there is a great
deal of interest in ferroelectrics that allow a coupling
between the polarization and another order parameter
(OP), making electric field control of non-polar OPs
possible. For example, the search for strategies
to directly couple magnetization and polarization
provided an impetus to understand new mechanisms for
ferroelectricity,6 such as spin-induced ferroelectricity,7,8

and more recently, octahedral rotation-induced
ferroelectricity.9–12 This latter type of ferroelectricity,
termed “hybrid improper ferroelectricity,” is a
mechanism where a polarization can be induced via a
trilinear coupling to two octahedral rotations (or other
structural distortions13) of different symmetry. Hybrid
improper ferroelectricity was predicted theoretically
in ABO3/A′BO3 superlattices9,11,13–15 and in n=2
Ruddlesden-Popper (RP) materials.10 Recently, it was
experimentally demonstrated in the n=2 RP compound
Ca3Ti2O7,16 and a complex domain structure was
observed.17,18 The observation of an unexpectedly low
switching barrier and abundant structural domains
suggests that these domains may be critical to
ferroelectric switching, but the precise pathway by
which the polarization reverses remains an open
question.

This paper aims to take the first steps to address
this question. While a rigorous theoretical description
of the full dynamic ferroelectric switching process is
challenging, simpler approaches can provide valuable
insight, as has been demonstrated by previous work
on BiFeO3.19 In this work, we first use a combination
of group theory and first-principles calculations to
survey the energetics of Ca3Ti2O7 in a space of low-
energy metastable structures, and enumerate the possible
ferroelectric switching pathways within this space. Then,
we introduce a set of OPs that reflect the structural

chemistry of Ca3Ti2O7 to aid in understanding how
these pathways are relevant for switching nucleated at
domain walls. While this paper focuses on Ca3Ti2O7,
the approach we introduce is generic to all A3B2O7 RP
materials.

Fig. 1(a) shows the high-symmetry parent structure
I4/mmm, which consists of CaO-terminated CaTiO3

slabs of thickness n=2, separated by a rocksalt layer.
Adjacent perovskite slabs are offset from each other by
a0/2[110], where a0 is the lattice constant. At room
temperature Ca3Ti2O7 crystallizes in the orthorhombic
polar space group A21am.20,21 This distorted structure
can be decomposed into three distinct structural
distortions that transform like irreducible representations
(irreps) of I4/mmm:10 two octahedral rotation-like
distortions that transform like X−3 and X+

2 , respectively,
and a polar distortion that transforms like Γ−5 .

The A21am symmetry is established by X−3 ⊕ X+
2 ,

the polar distortion is not required. The polar
distortion is induced because its OP QP and the ‘hybrid’
OP QX−

3
QX+

2
transform in the same way under the

symmetry operations of I4/mmm, so a trilinear coupling
between these OPs is allowed in the Landau expansion
of the energy:10

Ftri = αQX−
3
QX+

2
QP (1)

(here the OP Q is the distortion amplitude). It is
clear from Eq. 1 that reversing the polarization direction
(QP → −QP ) requires reversing one but not both of
the octahedral rotation OPs, thus, Ref. 10 identified two
possible switching pathways. To reverse the polarization
direction via either of these pathways, the amplitude of
one of the octahedral rotations is brought to zero, and
then the rotation is turned back on with the opposite
sense.

What are other possible switching pathways? To make
progress towards answering this question, in Fig. 1(b)
we take a closer look at the polar distortion in A21am,
which primarily consists of a 2-against-1 displacement
of the Ca ions in each n = 2 perovskite slab.22,23 The
atomic displacements in adjacent perovskite slabs are in
the same direction, leading to a net polarization. One
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FIG. 1. Ca3Ti2O7 structure and orthorhombic twin domains: (a) high-symmetry structure I4/mmm, (b) polar structure
A21am and (c) antipolar structure Pnam. The upper (lower) n=2 CaTiO3 slab is indicated by light (dark) grey; in (b, c)
the blue arrows give the polarization direction in each perovskite slab. (d) The orientation of the orthorhombic axes a and
b relative to the tetragonal axes, which determines the setting of the orthorhombic space group symbols. (e) The octahedral
rotation distortions that transform like the (a, 0) (top, pink hatched) and (0, a) (bottom, light blue) directions of irreps X−

3

and X+
2 , respectively. Taking both irreps along (a, 0) leads to polar A21am, while taking both along (0, a) leads to polar

orthorhombic twin Bb21m. (f) The combinations of X−
3 and X+

2 irrep directions that lead to the two orthorhombic twins of
the antipolar structure, Pnam and Pbnm (top and bottom). Ca ions and planar oxygens are suppressed in (d-f) for clarity.

may wonder, what would happen if each slab still has
the same 2-against-1 displacement of Ca ions, but now
in opposite directions, which would lead to an antipolar
structure, shown in Fig. 1(c)? This antipolar structure
may be energetically close to the polar one, because the
perovskite slabs are weakly connected across the rocksalt
layer. The same combination of irreps (X−3 ⊕X

+
2 ) that

induces the polar distortion in A21am also can induce
this antipolar distortion, when the irreps are taken along
different directions in OP space. The key to describing
these polar and antipolar structures on an equal footing
is to use the full two-dimensional OPs24,25 to describe
the structural distortions in Ca3Ti2O7. This means that
both an amplitude Q and a phase θ characterize each
distortion. Note that Ref. 10 worked with OPs restricted
to one dimension (Q only, neglected θ); consideration of
the full two-dimensional OPs leads to additional trilinear
coupling terms beyond Eq. 1, which we will discuss later.
In this paper, we will use these two-dimensional OPs to

first describe the polar and antipolar structures, and their
orthorhombic twin domains, and then systematically
identify additional switching pathways beyond those
mentioned above (for which the antipolar structure will
be important).

The plan for the rest of this paper is as follows.
Sec. II describes our methods. Sec. III introduces
the necessary two-dimensional OP formalism, and uses
these OPs to enumerate all domains of the polar
and antipolar structures. In Sec. IV, we present the
possible ferroelectric switching pathways for Ca3Ti2O7.
To understand how these pathways relate to the
crystallographic structure and likely domain walls in the
sample, we introduce local OPs in Sec. V, and discuss
the implications of our results in Sec. VI.
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TABLE I. Isotropy subgroups of I4/mmm generated by distinct directions of the irreps X−
3 , X+

2 , and X−
3 ⊕X

+
2 . Energies are

given relative to that of the ground state A21am. For isotropy subgroups P21am and P21nm, where one of the OPs is along
a general direction (a, b), the energy reported is that when a = b, obtained from a NEB calculation.

irrep ηX
−
3 ηX

+
2 space group induced P energy ηX

−
3 ηX

+
2 space group induced P dir.

irrep direction [meV/Ti] (twin) (twin) (twin) irrep (twin) (twin)

X−
3 (a,0) - Amam - - 56 (0,a) - Bbmm - -

(a,a) - P42/mnm - - 45 - - - - -

(a,b) - Pnnm - - - - - - - -

X+
2 - (a,0) Acam - - 90 - (0,a) Bbcm - -

- (a,a) P4/mbm - - 172 - - - - -

- (a,b) Pbam - - - - - - - -

X−
3 ⊕X

+
2 (a,0) (b,0) A21am ηP2 [110] 0 (0,a) (0,b) Bb21m ηP1 [-110]

(a,0) (0,b) Pnam ηAP2 - 7 (0,a) (b,0) Pbnm ηAP1 -

(a,a) (b,b) C2mm ηP1,2, ηAP1,2 [100] 41 (a,a) (-b,b) Cm2m ηP1,2, ηAP1,2 [010]

(a,b) (c,0) P21nm ηP2 , ηAP1 [110] 35 (a,b) (0,c) Pn21m ηP1 , ηAP2 [-110]

(a,0) (b,c) P21am ηP2 , ηAP2 [110] 32 (0,a) (b,c) Pb21m ηP1 , ηAP1 [-110]

(a,b) (c,d) Pm ηP1,2, ηAP1,2 a[110]+ - - - - -

b[-110]

II. METHODS

We perform density functional theory calculations
using VASP26,27 with the PBEsol functional,28 and use
the nudged elastic band (NEB) method29 to compute
switching paths. We use a Z = 4 cell commensurate
with both orthorhombic twins of Ca3Ti2O7, a 6 × 6 × 2
k-point mesh, a 600 eV plane wave cutoff, and for
structural relaxations a force convergence tolerance of 2
meV/Å. We make use of ISOTROPY30,31 to aid with
the group theoretic analysis, and VESTA to visualize
crystal structures.32

III. CRYSTALLOGRAPHIC STRUCTURE AND
DOMAINS

The two-dimensional OPs that describe the distortions
that transform like X−3 and X+

2 are:24,33

ηX
−
3 = (η

X−
3

1 , η
X−

3
2 ) = QX−

3
eiθX3

ηX
+
2 = (η

X+
2

1 , η
X+

2
2 ) = QX+

2
eiθX2 . (2)

Taking the example of X−3 , there are three symmetry-
inequivalent choices for the OP (directions of the irrep):

(η
X−

3
1 , η

X−
3

2 ) = (a, 0), (a, a), and (a, b), where a and
b are real numbers. Each choice defines one of the
three isotropy subgroups of I4/mmm generated by X−3 ,
and thus describes a structural distortion of different
symmetry. These isotropy subgroups are listed in Table I,
as well as those generated by X+

2 .
The OPs (a, 0) and (0, a) define orthorhombic

twin domains of the same isotropy subgroup.33 The

orientation of the orthorhombic relative to the tetragonal
axes, shown in Fig. 1(d), determines the setting of the
space group symbol that describes the symmetry of each
twin domain. The (a, 0) and (0, a) directions of X−3
define twin domains Amam and Bbmm, the structural
distortions in these domains, shown in Fig. 1(e, left
column), are out-of-phase octahedral tilts about [110]
and [-110], respectively. Similarly, for X+

2 , the (a, 0)
and (0, a) directions define twin domains Acam and
Bbcm, in both domains there is an in-phase octahedral
rotation about [001], but they have different relative
rotation senses in adjacent perovskite slabs (Fig. 1(e,
right column)).

Table I also lists the isotropy subgroups generated by
the coupled irreps X−3 ⊕ X+

2 . The two orthorhombic
twins of the polar ground state have symmetry A21am

and Bb21m. The combination of OPs {ηX
−
3 = (a, 0),

ηX
+
2 = (b, 0)} establishes A21am, while {ηX

−
3 = (0, a),

ηX
+
2 = (0, b)} establishes Bb21m, as illustrated in

Fig. 1(e) (top and bottom). Within each twin domain,
there are four structural domains. To generate the other
structural domains from the representative ones shown
in Fig. 1(e), consider all possible ways of combining the
two octahedral rotation distortions, each of which has
two senses. This leads to a total of eight structural
domains, shown in Fig. 2(a). By using OPs restricted to
one dimension, Ref. 10 considered only one twin domain,
so the four domains discussed in that work are those of
A21am.

The same directions of OPs ηX
−
3 and ηX

+
2 , but taken

in different combinations, define the two orthorhombic
twin domains of the antipolar structure, which have
symmetry Pnam and Pbnm. Pnam is established by

{ηX
−
3 = (a, 0), ηX

+
2 = (0, b)}, while Pbnm is established
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FIG. 2. Eight structural domains of (a) polar and (b) antipolar structures. There are four structural domains in each

orthorhombic twin, which are indicated by the red and blue shaded regions. For each structural domain, the OPs ηX
−
3 and

ηX
+
2 are shown (red and green arrows), as well as the corresponding structural distortions. Both X−

3 ⊕X
+
2 domains in each

quadrant trilinearly couple to the same domain of ηP or ηAP (blue and purple arrows). (c) shows an illustration of a “stacking
domain wall” (dashed line) between perovskite slabs with polarization P and slabs with polarization −P. The crystallographic
structure at this stacking domain wall is the antipolar structure. The blue arrows indicate the polarization direction in each
perovskite slab.

by {ηX
−
3 = (0, a), ηX

+
2 = (b, 0)}, as shown in Fig. 1(f)

(top and bottom). Comparing polar A21am to antipolar
Pnam (Fig. 1(e,f), top row), one can see that the only
difference between the octahedral rotation distortions
in these two structures is the sense of the in-phase
octahedral rotation about [001] in perovskite slab 2.
Therefore, it is unsurprising that we find antipolar Pnam

to be only 7 meV/Ti above the polar ground state.
Each antipolar twin domain has four structural domains,
leading to a total of eight structural domains, shown
in Fig. 2(b). The other X−3 ⊕ X+

2 isotropy subgroups
listed in Table I are 30-40 meV/Ti above the polar
ground state, and will be important for our discussion of
ferroelectric switching in the next section. The domains
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of these subgroups, and the structural properties of
Ca3Ti2O7 in all subgroups, are given in Appendix A.

There are additional trilinear terms when the
Landau expansion of the energy is performed with

two-dimensional OPs. Whenever bilinears η
X−

3
α η

X+
2

α

and η
X−

3
α η

X+
2

β (α, β = 1, 2, α 6= β) have the
same transformation properties under the generators
of I4/mmm as a direction of an irrep of a different
symmetry, a trilinear coupling is allowed (see Appendix C
for the transformation properties). We find that the
allowed trilinear terms are:34

Ftri = αη
X−

3
1 η

X+
2

1 ηP2 + βη
X−

3
2 η

X+
2

2 ηP1

+γη
X−

3
1 η

X+
2

2 ηAP2 + δη
X−

3
2 η

X+
2

1 ηAP1 . (3)

Here ηP = QP e
iθP = (ηP1 , η

P
2 ) is the OP for

the polar distortion that transforms like Γ−5 , and
ηAP = QAP e

iθAP = (ηAP1 , ηAP2 ) is the OP for the
antipolar distortion that transforms like irrep M−5 (both
these irreps and hence their OPs are two-dimensional).
The (a, 0) direction of ηP (ηAP ) describes a polar
(antipolar) distortion with displacements along [-110],
while (0, a) describes a polar (antipolar) distortion with
displacements along [110].

In polar twin domain A21am, the first term in Eq. 3
is nonzero (this is the term given in Eq. 1), and all other
terms vanish, while in polar twin domain Bb21m, only
the second term in Eq. 3 survives. In the two twin
domains of the antipolar structure, Pnam and Pbnm,
only the third and fourth terms survive, respectively. For
all other X−3 ⊕ X+

2 istotropy subgroups, there is more
than one trilinear coupling term. For example, all four
terms in Eq. 3 are nonzero in C2mm, so both components
of ηP and ηAP are induced, see Table I. In P21am and
P21nm (and their twins), there are two nonzero trilinear
coupling terms (one to a component of ηP , one to a
component of ηAP ).

To summarize, we have found that the antipolar
structure is only slightly higher energy than the polar
ground state, and that the domains of these two
structures are compatible. This has an important
implication: all eight polar domains and all eight
antipolar domains shown in Fig. 2 should be present in
a bulk as-grown multidomain sample. The eight polar
domains, and a complex network of domain walls between
them, have already been detected experimentally.17,18 An
additional type of domain wall that should be present
in samples is what we call a “stacking domain wall,”
illustrated in Fig. 2(c): an interface between a polar
domain with polarization P stacked on top of (along
[001]) a polar domain with polarization −P. At this
stacking domain wall, which lies parallel to the ab
plane, the structure locally is antipolar, so if there are
stacking domain walls in the sample, antipolar domains
are necessarily present. While our bulk calculation found
antipolar Pnam to be 7 meV/Ti above the polar ground
state, the energy to form a stacking domain wall between
many-unit cell polar domains should become vanishingly

small. We suggest atomic scale imaging of the local Ca
displacements to observe these stacking domain walls
experimentally. The appropriate starting point for
considering possible ferroelectric switching paths in the
next section is to treat all polar and antipolar domains,
as well as the twin domain walls and stacking domains
walls between them, on an equal footing.

IV. FERROELECTRIC SWITCHING PATHS

In this section we enumerate the possible ferroelectric
switching paths in twin domain A21am (paths in twin
Bb21m are analogous). As discussed in the Introduction,
reversing the polarization direction (ηP → −ηP ) requires
reversing one but not both of the octahedral rotation

OPs ηX
−
3 and ηX

+
2 . Here we discuss switching paths that

reverse ηX
+
2 → −ηX

+
2 , those that reverse ηX

−
3 are shown

in Appendix B. We identify three distinct types of paths

that reverse ηX
+
2 , which are presented in Fig. 3.

In the first path, shown in Fig. 3(a), ηX
+
2 reverses

by turning off and then turning back on, pointing in
the opposite direction. At the energy barrier (Amam),
where QX+

2
= 0, the polarization is also zero, because all

trilinear coupling terms in Eq. 3 vanish. We refer to this
as a one-step switching path; it previously was discussed
in Ref. 10 (one-dimensional OPs are sufficient to describe
this path).

In the second path, shown in Fig. 3(b), ηX
+
2 reverses by

rotating in OP space (changing its phase θX2
by π, while

its amplitude QX+
2

stays finite). When θX2
= π/2, the

crystallographic structure is antipolar Pnam, due to the
presence of this low-energy intermediate state, we refer to
this as a two-step switching path. Both OP amplitudes
QX−

3
and QX+

2
are nonzero throughout the switching

process, although QX+
2

decreases at the energy barrier

(P21am).35 As a result, there are nonzero trilinear
couplings, which induce ηP and/or ηAP , throughout the

switching process (specifically, because ηX
−
3 = QX−

3
(1, 0)

stays fixed, the relevant trilinear couplings are the first

and third terms of Eq. 3; as ηX
+
2 rotates, the magnitudes

of η
X+

2
1 and η

X+
2

2 , and therefore these two trilinear terms,
change).

Finally, Fig. 3(c) shows the third type of path, here

ηX
+
2 reverses by rotating in OP space as in Fig. 3(b),

but now ηX
−
3 also rotates. When θX2 = θX3 = π/2, the

crystallographic structure is the polar orthorhombic twin
Bb21m; this is also a two-step switching process. As in
Fig. 3(b), both QX−

3
and QX+

2
are nonzero throughout

the switching process, with QX+
2

decreased by about half

at the energy barrier (C2mm),36 so there are nonzero
trilinear couplings inducing ηP and/or ηAP throughout.

In this case, because both ηX
−
3 and ηX

+
2 rotate, all four

terms in Eq. 3 are active. The polar OP ηP is nonzero
throughout switching, although its amplitude decreases
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FIG. 3. Ferroelectric switching pathways that reverse the
X+

2 octahedral rotation. (a) one-step switching, (b, c) two-
step switching via antipolar (Pnam) and orthorhombic twin
(Bb21m) intermediate, respectively. The top of each panel

shows the ηX
−
3 (red) and ηX

+
2 (green) OPs, while the bottom

shows the amplitudes of all OPs, obtained by decomposing
the structures into symmetry adapted modes.37 (d) The total
energy as a function of switching coordinate for paths shown
in (a-c).

significantly at the energy barrier. Fig. 3(d) shows the
total energy as a function of switching coordinate, we find
that the two-step paths both have lower energy barriers
than the one-step path, with the antipolar path barrier
being the lowest.

Table II summarizes the properties of the switching
paths presented in Fig. 3, as well as those that reverse

ηX
−
3 . These are all the possible switching paths, of

two steps or less, within the space defined by X−3 ⊕
X+

2 . We reach a different understanding of the possible
switching processes by using the full two-dimensional
OPs (the one-dimensional OPs only can describe the
one-step paths). First, the predicted energy barriers

TABLE II. Summary of switching paths.

path barrier intermediate Ebarrier OP

[meV/Ti] reversed

one-step Amam - 56 ηX
+
2

one-step Acam - 90 ηX
−
3

two-step, AP P21am Pnam 32 ηX
+
2

two-step, AP P21nm Pbnm 35 ηX
−
3

two-step, twin C2mm Bb21m 41 ηX
+
2 or ηX

−
3

are significantly lower: the barrier for switching via

reversing ηX
+
2 reduces from 56 meV/Ti (one-step) to 32

meV/Ti (two-step), while for switching via ηX
−
3 reversal,

it reduces from 90 to 35 meV/Ti. Second, there is a large
difference in barrier energy between the one-step path

that reverses ηX
−
3 , and the one-step path that reverses

ηX
+
2 (90 versus 56 meV/Ti). However, the barrier for

two-step switching via the antipolar intermediate (Pnam

or Pbnm) is almost the same for reversing ηX
−
3 or ηX

+
2

(35 versus 32 meV/Ti), while the barrier for switching
via orthorhombic twin Bb21m is the same regardless of
which octahedral rotation is reversed (compare Fig. 3(c)
and Appendix B, Fig. 7(c)). These energetics suggest
that ferroelectric switching may proceed via more than
one mechanism in Ca3Ti2O7.

Two-step ferroelectric switching paths have been
discussed previously in a couple other systems. A
first principles study of AFeO3/A′FeO3 superlattices,
which are predicted to be hybrid improper ferroelectrics,
found a two-step switching path to have the lowest
energy barrier.38 In addition, it has been experimentally
demonstrated, and corroborated by first principles
calculations, that ferroelectric switching in BiFeO3

follows a two-step path19 (although the details are
different, due to the different crystallographic structures
and ferroelectric mechanisms in BiFeO3 and Ca3Ti2O7).

V. LOCAL ORDER PARAMETERS TO
ELUCIDATE SWITCHING PATHS

How do the two-step switching paths identified in the
previous section relate to the crystallographic structure
and switching in the real material, which is likely
nucleated at domain walls? To gain insight into these
questions, we introduce a set of OPs local to each n = 2
perovskite slab in Ca3Ti2O7. This will allow us to rewrite
Eq. 3 in terms of trilinear couplings local to each slab,
and clearly visualize how the crystallographic structure
evolves during the switching process. To do this, we
write each structural distortion uY that transforms like
irrep Y = {X−3 , X

+
2 , P,AP} as a sum of distortions local

to the two adjacent perovskite slabs α in the unit cell:
uY =

∑
α=1,2 u(α), and introduce an OP local to each

slab to describe their symmetry properties. These local
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distortions, written in Glazer notation,39 are an a−a−b0

tilt, an a0a0b+ rotation, and a polar distortion in each
perovskite slab (for the polar and antipolar structures,
for arbitrary irrep directions the rotation pattern is
a−b−c+). A similar local OP approach was used in
Ref. 40 to describe the hexagonal manganites.

We define each of these local structural distortions and
the OPs that describe them in Fig. 4 (see Appendices C
and D for complete details). The X−3 distortion (with
arbitrary irrep direction) can be written as the sum
of a−b−c0 tilt distortions u(α) in slabs α = 1, 2.
We introduce the local two-dimensional OP Tα =
(Tαx, Tαy) = QTαe

iθα to describe u(α), Tα = QTα(1, 0)
and QTα(0, 1) describe a−a−b0 tilts about [110] and [-
110] in slab α, respectively (see Fig. 4(a,b)). The phase
θα can be interpreted as the angle of the apical oxygen
displacement vector in slab α. The symmetry of the X−3
distortion imposes a relation between the Tα in adjacent
slabs: QT1 = QT2 = QT , and θ1 = −θ2. Similarly,
we express the X+

2 distortion as the sum of a0a0b+

rotation distortions in slabs α = 1, 2 (see Fig. 4(c,d)),
and introduce the local OP Φα to describe them. The
local OP Φα is one dimensional because the rotation axis
is fixed to [001].

Both the polar and antipolar distortions (along
arbitrary direction) can be written as the sum of local
polar distortions in slabs α = 1, 2, which we describe
with the local two-dimensional OP Pα = (Pαx, Pαy) =
QPαe

iφα . Here Pα = QPα(1, 0) and QPα(0, 1) describe
polar displacements along [-110] and [110] in slab
α, respectively (Fig. 4(e,f)). The phase φα can be
interpreted as the angle of the polarization vector in slab
α.

The transformation properties of these local OPs,
as well as the bilinear combination Yα = PαxTαy −
PαyTαx, under the generators of I4/mmm are shown in
Appendix C. We find the invariant trilinear terms, and
reexpress Eq. 3 in terms of the local OPs:

Ftri = β1Y1Φ1 + β2Y2Φ2. (4)

Therefore, the four trilinear coupling terms in Eq. 3
reduce to just two trilinear terms, each of which is local
to one perovskite slab.

We can bring Eq. 4 to a more illuminating form by
representing the local OPs as vectors (note that we are
free to choose to represent each octahedral rotation as
either a polar or an axial vector).41 Writing Tα and
Pα as polar vectors (Tα = QTα(cos θαx̂ + sin θαŷ),
Pα = QPα(cosφαx̂+sinφαŷ)), and Φα as an axial vector
(Φα = Φαẑ), Eq. 4 becomes:

Ftri = β1(T1 ×Φ1) ·P1 + β2(T2 ×Φ2) ·P2. (5)

Therefore, the two octahedral rotation OPs in slab α, via
a right-hand rule, determine the polarization direction in
slab α; reversing one of these octahedral rotation OPs
reverses the polarization direction in that slab (taking the
structure from being polar to antipolar, or vice versa).

FIG. 4. Definition of local order parameters (OPs).
Structural distortions local to perovskite slab 1 (2) are shown
in the left (right) column, each of the local distortions is
described by an OP local to that slab. (a, b) show out-of
phase a−a−b0 tilt distortions described by two-dimensional
OP Tα in slab α, (c, d) show the in-phase a0a0b+ rotation
distortions described by OP Φα, and (e, f) show the polar
distortions described by two-dimensional OP Pα.

With these local OPs, we return to the question of how
the crystallographic structure changes during each of the
two-step switching paths listed in Table II. Fig. 5 shows
the first step of each path (the second step is similar).
Fig. 5(a) shows switching from polar A21am to antipolar
Pnam, along this path, the polarization in slab 1, P1,
stays fixed, while the polarization in slab 2, P2, reverses.
The only difference between A21am and Pnam is the
a0a0b+ rotation sense in slab 2 (ΦA21am

2 = −ΦPnam
2 ), so

at the energy barrier Φ2 = 0, by symmetry. This barrier
structure, P21am, has rotation pattern a−a−b+ in slab
1 and a−a−b0 in slab 2, so only P1 is induced (via the
first term in Eq. 5), while P2 = 0.

The second antipolar switching path (A21am →
Pbnm) is shown in Fig. 5(b), in this case the polarization
vectors in both slabs rotate. The difference between
A21am and Pbnm is the axis of the a−a−b0 tilt, this
axis rotates by −(+)π/2 in slab 1(2) when switching
from A21am → Pbnm. By symmetry, at the energy
barrier (P21nm), slab 1 has rotation pattern a−b0c+

with polarization along [100], while slab 2 has rotation
pattern b0a−c+ with polarization along [010] (both terms
in Eq. 5 are nonzero). Note that while P1 and P2 rotate
in opposite directions, |P1| = |P2| throughout, so the
net polarization stays fixed along [110], with amplitude
diminishing to zero at antipolar Pbnm.

Fig. 5(c) shows switching between orthorhombic twins
A21am and Bb21m. To go between these two structures,
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the a0a0b+ rotation sense in slab 2 must reverse, and the
a−a−b0 tilt axes must rotate, so one can loosely think
of this path as the “sum” of the two antipolar paths in
Fig. 5(a,b). At the energy barrier (C2mm), by symmetry
slab 1 has rotation pattern a−b0c+ with polarization
along [100], while slab 2 has rotation pattern b0a−c0 with
P2 = 0. Along this path, the total polarization rotates
from [110] to [-110].

In both the P21nm and C2mm barrier structures
(Fig. 5(b,c)), the tilt axes in adjacent perovskite slabs are
perpendicular to each other (tilt pattern a−b0c0 in one
slab and b0a−c0 in the other). Interestingly, considering
isotropy subgroups generated by X−3 only, we find that

this tilt pattern (ηX
−
3 = (a, a), P42/mnm) is in fact lower

energy than the a−a−b0 tilt pattern in the polar ground

state (ηX
−
3 = (a, 0), Amam), see Table I. Therefore, the

coupling to the X+
2 and polar distortions stabilizes the

ηX
−
3 = (a, 0) tilt pattern in A21am. By changing the

energetics of these different distortions using chemical
doping or epitaxial strain, one may be able to stabilize the
tetragonal P42/mnm structure. It was recently found
that Ca3−xSrxTi2O7 with x ∼ 1 crystallizes in space
group P42/mnm,18 as does SrTb2Fe2O7.42

To summarize, all three of these two-step paths take
advantage of the fact that the perovskite slabs are
disconnected across the rocksalt layer, which allows the
polarizations local to each perovskite slab, via the local
trilinear couplings in Eq. 5, to turn off and/or rotate
independently.

VI. DISCUSSION

We now discuss how the two-step switching paths
relate to twin and stacking domain walls. The
orthorhombic twin path (Fig. 3(c), 5(c), 7(c)) describes
switching at a twin domain wall, as was previously
suggested in Ref. 16. Our finding that this path’s
intrinsic energy barrier is the same regardless of whether

ηX
−
3 or ηX

+
2 reverses suggests that both variations of this

path could contribute to the switching process. This may
help explain the recent observation of multiple types of

twin domain walls in Ca3Ti2O7, where ηX
−
3 , or both

ηX
−
3 and ηX

+
2 , change across the wall.17 The antipolar

path, shown in Fig. 3(a), 5(a), describes switching at
the stacking domain wall introduced in Fig. 2(c). That
is, as the polarization reverses in individual perovskite
slabs stacked along [001], this stacking domain wall would
move up or down. Finally, the antipolar path shown in
Fig. 5(b),7(b) describes switching at a twin wall between
a polar and an antipolar domain. Depending on the
prevalence of twin and stacking domain walls in a given
material, and the relative energetics to move these walls,
any one of these paths could be the dominant switching
mechanism.

Finally, by focusing on switching paths that stay in the
space ofX−3 ⊕X

+
2 isotropy subgroups, we are restricted to

FIG. 5. Crystallographic structure and polarization in
perovskite slabs 1 and 2 during switching from polar A21am
to (a) antipolar Pnam, (b) antipolar orthorhombic twin
Pbnm, and (c) polar orthorhombic twin Bb21m. The top
of each panel shows the crystallographic structure at three
points along the switching path (switching coordinate = 0,
0.25, 0.5), note that 0.25 is the barrier structure. The black
arrows indicate the apical oxygen motion under the combined
tilt and rotation distortions in each slab. The bottom part
of each panel shows the polarization in slabs 1 and 2 as a
function of switching coordinate.

structures with a−a−b+ rotations. What about switching
via a structure with a different rotation pattern? Using
intuition from perovskites,43 structures with a−a−b−

rotations also may be low energy. We identify two such
structures, Pbna and C2/c, established by X−3 ⊕ X−1 ,
and find that their energies are 14 and 21 meV/Ti above
A21am, respectively.44 Our computed energy barriers
for two-step polarization switching with Pbna (C2/c) as
an intermediate are 30 (34) meV/Ti, approximately the
same as the antipolar switching barriers. While it is not
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immediately clear how switching via these rhombohedral
phases could be nucleated, this may be an interesting
topic for future investigation (a recent first principles
study found that epitaxial strain stabilizes Pbna45).

In summary, this work uses two-dimensional OPs to
describe the polar and antipolar domains of Ca3Ti2O7,
and enumerates possible ferroelectric switching
pathways. We find switching via an orthorhombic
twin domain, an antipolar stacking domain, or a
rhombohedral-like phase, to have low energy barriers.
In addition, we find that the antipolar structure Pnam
is only slightly higher energy than the polar ground
state. An interesting direction for possible future
investigations is understanding how to control, via
chemical doping, the relative energetics of these two
structures. This could help elucidate the relationship
between ferroelectricity and antiferroelectricity, and
provide a pathway to find new antiferroelectrics, which
would be of both fundamental and technological interest.

The authors thank D. G. Schlom for useful discussions.
We acknowledge support from the Army Research Office
under grant number W911NF-10-1-0345.

Appendix A: Domains and structural properties of
X−

3 ⊕X
+
2 isotropy subgroups

Fig. 6 shows the distinct domains of the isotropy
subgroups C2mm (twin Cm2m), P21am (twin Pb21m),
and P21nm (twin Pn21m). Each of these subgroups
has 16 total structural domains. As shown in Fig. 6(a),
C2mm (Cm2m) has four distinct domains established

by the combination of OPs {ηX
−
3 = (a, a), ηX

+
2 = (b, b)},

{ηX
−
3 = (−a, a), ηX

+
2 = (−b, b)}, {ηX

−
3 = (a, a), ηX

+
2 =

(−b, b)}, and {ηX
−
3 = (−a, a), ηX

+
2 = (b, b)}. In the

first two domains, the polarization lies along [100], while
in the second two it is along [010]. All 16 domains
can be generated by considering all ways to combine
the two senses of the X−3 and X+

2 octahedral rotations
shown in the four distinct domains. The other subgroups
P21am (Pb21m) and P21nm (Pn21m) have two distinct
domains, shown in Fig. 6(b-c), in these domains the
polarization lies along [110] ([-110]). All 16 domains
can be obtained from the two distinct ones shown
by considering all ways to combine the two senses of
the high-symmetry direction OP (±a, 0) and the four
possibilities for the general direction OP (b, c), (−b, c),
(b,−c) and (−b,−c).

Table III lists the structural parameters of
Ca3Ti2O7 in all isotropy subgroups.

Appendix B: Switching paths that reverse X−
3

octahedral rotation sense

Fig. 7 shows the paths that switch the polarization
by reversing the X−3 octahedral rotation sense. These
are analogous to the paths in Fig. 3 that reverse the

X+
2 rotation. In the one-step path, shown in Fig. 7(a),

ηX
−
3 turns off and then turns back on pointing in the

opposite direction, the barrier has symmetry Acam. In

the antipolar path, shown in Fig. 7(b), ηX
+
2 stays fixed,

while ηX
−
3 rotates, the intermediate phase is the antipolar

orthorhombic twin Pbnm. Fig. 7(c) shows switching via
the Bb21m orthorhombic twin intermediate, where both

ηX
−
3 and ηX

+
2 rotate in the two dimensional OP space.

Fig. 7(d) shows the total energy as a function of switching
coordinate, we find that the two-step paths are both
lower energy than the one-step path, with the antipolar
path being the lowest.

Appendix C: Trilinear coupling

Table IV presents the transformation properties of the

OPs ηX
−
3 , ηX

+
2 , ηP , and ηAP under the generators of

I4/mmm. The generators of I4/mmm are: mirror plane
σz = (−x,−y, z), 90◦ rotation C+

4z = (−y, x, z), mirror
plane σy = (−x, y,−z), inversion I = (−x,−y,−z),
and translations {E| 12

1
2

1
2} = (x + 1

2 , y + 1
2 , z + 1

2 ) and
{E|100} = (x+ 1, y, z).

By inspecting Table IV, one can see that the bilinear
Z1 (Z2) has the same transformation properties as
ηP2 (ηP1 ) so Z1η

P
2 +Z2η

P
1 is invariant and thus is allowed

in the free energy. Similarly, the bilinear Z3 (Z4) has
the same transformation properties as ηAP2 (ηAP1 ) so
Z3η

AP
2 +Z4η

AP
1 is invariant and allowed in the free

energy. The sum of these are the four trilinear coupling
terms presented in Eq. 3.

Table V presents the transformation properties of the
local OPs Tα, Φα, and Pα (α = 1, 2) under the generators
of I4/mmm, as well as the transformation properties of
the bilinears Yα = PαxTαy − PαyTαx. From Table V,
it is clear that Yα and Φα have the same transformation
properties, so the allowed trilinear terms are Y1Φ1+Y2Φ2,
which is the expression for Ftri given in Eq. 4.

Appendix D: Relationship between the two sets of
order parameters

This appendix derives the relationship between the
local OPs and those that transform like irreps of
I4/mmm. This will allow us to show that the two
expressions for Ftri presented in Eqs. 3 and 4 are
equivalent. All structures considered in this work can
be decomposed into distortions that transform like the
irreps of I4/mmm:

u = uX
−
3 + uX

+
2 + uP + uAP .

Here u is a vector that contains the atomic displacements
of all atoms in the unit cell. A distortion that transforms
like an arbitrary direction of irrep Y described by OP
(ηY1 ,ηY2 ) can be written as a linear combination of
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FIG. 6. Distinct domains of X−
3 ⊕X

+
2 isotropy subgroups not shown in the main text. The two twin domains are shown in the

left (right) column: (a) C2mm (Cm2m), (b) P21am (Pb21m), and (c) P21nm (Pn21m). For each distinct domain, the OPs

ηX
−
3 and ηX

+
2 are shown, as well as the structural distortions described by these OPs. The polarization directions in each twin

domain are shown by blue arrows. In (b) ηX
−
3 = (a, b) and in (c) ηX

+
2 = (a, b) are along general directions, here we show the

structures when a = b.

TABLE III. Structural parameters of Ca3Ti2O7 in all isotropy subgroups where both OPs are along high-symmetry directions.
The OP amplitudes are obtained by decomposing the structures into symmetry adapted modes,37 and are given for a Z=2 cell.

I4/mmm Amam P42/mnm Acam P4/mbm A21am Pnam C2mm

a [Å] 5.42 5.39 5.45 5.33 5.38 5.39 5.39 7.67

b [Å] 5.42 5.48 5.45 5.33 5.38 5.44 5.43 7.67

c [Å] 19.40 19.14 19.05 19.88 19.61 19.30 19.36 19.17

Q
X−

3
[Å] - 1.3 1.87 - - 1.20 1.18 1.74

Q
X+

2
[Å] - - - 1.21 1.09 0.87 0.86 0.71

QP [Å] - - - - - 0.60 - 0.11

QAP [Å] - - - - - - 0.62 0.13

P [µC/cm2] 0 0 0 0 0 17 0 0.9

orthonormal basis distortion modes37 êY1,2: uY = ηY1 êY1 +

ηY2 êY2 . These basis modes are shown in Fig. 8. Note that
the basis modes for X−3 and X+

2 in Fig. 8(a,b) are the
(a, 0) and (0, a) domains which were already shown in
Fig. 1, but they are reproduced here for clarity of the
present discussion. The basis modes for the polar and
antipolar irreps, shown in Fig. 8(c,d) are polar (antipolar)
displacements along [110] and [-110], respectively.

Equivalently, as discussed in the main text, each uY

can be written as the sum of two distortions local to each
perovskite slab α = 1, 2: uY =

∑
α=1,2 u(α). These local

distortions u(α) are written in terms of their own basis
modes e

(α)
1,2 , shown in Fig. 8(e-j) ( already presented in

Fig. 4, but reproduced here). Here, for each irrep, we
write down the relation between these two sets of basis
modes, which will allow us to relate Eqs. 3 and 4.
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FIG. 7. Ferroelectric switching pathways that reverse the
X−

3 octahedral rotation. (a) one-step switching, (b, c) two-
step switching via antipolar (Pbnm) and orthorhombic twin
(Bb21m) intermediate, respectively. The top of each panel

shows the ηX
−
3 (red) and ηX

+
2 (green) OPs, while the bottom

shows the amplitudes of all OPs. (d) The total energy as a
function of switching coordinate for paths (a-c).

1. X−
3 octahedral tilting distortion

Let uX
−
3 be a distortion described by OP (η

X−
3

1 , η
X−

3
2 ),

it can be written as

uX
−
3 = η

X−
3

1 ê
X−

3
1 + η

X−
3

2 ê
X−

3
2

where normalized basis modes ê
X−

3
1 and ê

X−
3

2 are shown
in Fig. 8(a).

We can also write uX
−
3 = u(1) + u(2), where u(α) is an

out-of-phase tilting distortion in slab α described by two
dimensional OP Tα = (Tαx, Tαy). It can be written as the

sum of the two basis modes ê
(Tα)
1,2 shown in Fig. 8(e,f):

u(1) = T1xê
(T1)
1 + T1yê

(T1)
2

u(2) = T2xê
(T2)
1 + T2yê

(T2)
2

σz C+
4z σy I {E| 1

2
1
2

1
2
} {E|100}

η
X−

3
1 -η

X−
3

1 η
X−

3
2 η

X−
3

2 -η
X−

3
1 η

X−
3

1 -η
X−

3
1

η
X−

3
2 -η

X−
3

2 -η
X−

3
1 η

X−
3

1 -η
X−

3
2 -η

X−
3

2 -η
X−

3
2

η
X+

2
1 η

X+
2

1 -η
X+

2
2 η

X+
2

2 η
X+

2
1 η

X+
2

1 -η
X+

2
1

η
X+

2
2 η

X+
2

2 -η
X+

2
1 η

X+
2

1 η
X+

2
2 -η

X+
2

2 -η
X+

2
2

ηP1 -ηP1 ηP2 ηP2 -ηP1 ηP1 ηP1

ηP2 -ηP2 -ηP1 ηP1 -ηP2 ηP2 ηP2

ηAP1 -ηAP1 ηAP2 ηAP2 -ηAP1 -ηAP1 ηAP1

ηAP2 -ηAP2 -ηAP1 ηAP1 -ηAP2 -ηAP2 ηAP2

Z1 -Z1 -Z2 Z2 -Z1 Z1 Z1

Z2 -Z2 Z1 Z1 -Z2 Z2 Z2

Z3 -Z3 -Z4 Z4 -Z3 -Z3 Z3

Z4 -Z4 Z3 Z3 -Z4 -Z4 Z4

TABLE IV. Transformation properties of OPs ηY ,
Y = {X−

3 , X
+
2 , P,AP} under generators of I4/mmm.

Transformation properties of bilinears Z1 =η
X−

3
1 η

X+
2

1 ,

Z2 =η
X−

3
2 η

X+
2

2 , Z3 =η
X−

3
1 η

X+
2

2 , and Z4 =η
X−

3
2 η

X+
2

1 are also
shown.

σz C+
4z σy I {E| 1

2
1
2

1
2
} {E|100}

T1x -T1x -T1y -T1y -T1x T2x -T1x

T1y -T1y T1x -T1x -T1y T2y -T1y

T2x -T2x T2y T2y -T2x T1x -T2x

T2y -T2y -T2x T2x -T2y T1y -T2y

Φ1 Φ1 -Φ1 Φ1 Φ1 Φ2 -Φ1

Φ2 Φ2 Φ2 -Φ2 Φ2 -Φ1 -Φ2

P1x -P1x P1y P1y -P1x P2x P1x

P1y -P1y -P1x P1x -P1y P2y P1y

P2x -P2x P2y P2y -P2x P1x P2x

P2y -P2y -P2x P2x -P2y P1y P2y

Y1 Y1 -Y1 Y1 Y1 Y2 -Y1

Y2 Y2 Y2 -Y2 Y2 Y1 -Y2

TABLE V. Transformation properties of local OPs and
bilinears Yα = PαxTαy − PαyTαx (α = 1, 2) under generators
of I4/mmm.

These two sets of basis distortions are related as follows:

ê
X−

3
1 = (ê

(T1)
1 + ê

(T2)
1 )/

√
2

ê
X−

3
2 = (−ê

(T1)
2 + ê

(T2)
2 )/

√
2,

so we can write

uX
−
3 =

η
X−

3
1√

2
(ê

(T1)
1 + ê

(T2)
1 ) +

η
X−

3
2√

2
(−ê

(T1)
2 + ê

(T2)
2 ).

Comparing the expressions above, one can see that T1x =

T2x = η
X−

3
1 /
√

2, −T1y = T2y = η
X−

3
2 /
√

2, so

T1 =
1√
2

(η
X−

3
1 ,−ηX

−
3

2 )

T2 =
1√
2

(η
X−

3
1 , η

X−
3

2 ). (D1)
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FIG. 8. Basis modes for structural distortions that transform
like irreps of I4/mmm (a-d), and for local structural
distortions described by local OPs (e-j).

2. X+
2 octahedral rotation distortion

Here we consider distortion uX
+
2 described by OP

(η
X+

2
1 , η

X+
2

2 ),

uX
+
2 = η

X+
2

1 ê
X+

2
1 + η

X+
2

2 ê
X+

2
2

where the basis modes ê
X+

2
1,2 are shown in Fig. 8(b).

Also, we can write uX
+
2 = u(1) + u(2) as the sum of

a0a0b+ in-phase rotation distortions u(α) local to each
slab α described by local OP Φα. The local distortions
can be written as u(α) = Φαê(Φα), where the basis modes
ê(Φα) are shown in Fig. 8(g,h). The relationship between
the two sets of basis modes is:

ê
X+

2
1 = (−ê(Φ1) − ê(Φ2))/

√
2

ê
X+

2
2 = (−ê(Φ1) + ê(Φ2))/

√
2,

so

uX
+
2 =

η
X+

2
1√

2
(−ê(Φ1) − ê(Φ2)) +

η
X+

2
2√

2
(−ê(Φ1) + ê(Φ2)).

Therefore, the relationship between the two sets of OPs
is:

Φ1 = − 1√
2

(η
X+

2
1 + η

X+
2

2 )

Φ2 = − 1√
2

(η
X+

2
1 − ηX

+
2

2 ). (D2)

3. Polar (P) and antipolar (AP) distortions (Γ−
5

and M−
5 )

Finally, we consider distortions with polar and
antipolar OPs (ηP1 , η

P
2 ) and (ηAP1 , ηAP2 ):

uP = ηP1 êP1 + ηP2 êP2
uAP = ηAP1 êAP1 + ηAP2 êAP2

where the basis modes are shown in Fig. 8(c,d). As
discussed in the main text, polar distortions local to
each slab u(α) are described by the two-dimensional
local OP Pα = (Pαx, Pαy), and can be written as the

sum of the basis modes shown in Fig. 8(i,j): u(α) =

Pαxê
(Pα)
1 + Pαyê

(Pα)
2 . The two sets of basis distortions

are related as follows:

êP1 = (ê
(P1)
1 + ê

(P2)
1 )/

√
2

êP2 = (ê
(P1)
2 + ê

(P2)
2 )/

√
2

and

êAP1 = (ê
(P1)
1 − ê

(P2)
1 )/

√
2

êAP2 = (ê
(P1)
2 − ê

(P2)
2 )/

√
2.

Therefore,

uP =
ηP1√

2
(ê

(P1)
1 + ê

(P2)
1 ) +

ηP2√
2

(ê
(P1)
2 + ê

(P2)
2 )

uAP =
ηAP1√

2
(ê

(P1)
1 − ê

(P2)
1 ) +

ηAP2√
2

(ê
(P1)
2 − ê

(P2)
2 ).

We can write the total distortion from both modes as
u = uP + uAP = u(1) + u(2), so

u(1) =
1√
2

(ηP1 + ηAP1 )ê
(P1)
1 +

1√
2

(ηP2 + ηAP2 )ê
(P1)
2

u(2) =
1√
2

(ηP1 − ηAP1 )ê
(P2)
1 +

1√
2

(ηP2 − ηAP2 )ê
(P2)
2 .

From which we can obtain the relation:

P1 =
1√
2

(ηP1 + ηAP1 , ηP2 + ηAP2 )

P2 =
1√
2

(ηP1 − ηAP1 , ηP2 − ηAP2 ). (D3)

Using the relations between the two sets of OPs given
in Eq. D1-D3, one can show that the two expressions for
Ftri given in Eqs. 3 and 4 are equivalent.
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