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Recent nuclear magnetic resonance and specific heat measurements have provided concurring
evidence of spontaneously broken rotational symmetry in the superconducting state of the doped
topological insulator CuxBi2Se3. This suggests that the pairing symmetry corresponds to a two-
dimensional representation of the D3d crystal point group, and that CuxBi2Se3 is a nematic super-
conductor. In this work, we present a comprehensive study of the upper critical field Hc2 of nematic
superconductors within Ginzburg-Landau (GL) theory. Contrary to typical GL theories which have
an emergent U(1) rotational symmetry obscuring the discrete symmetry of the crystal, the theory of
two-component superconductors in trigonal D3d crystals reflects the true crystal rotation symmetry.
This has direct implications for the upper critical field. First, Hc2 of trigonal superconductors with
D3d symmetry exhibits a sixfold anisotropy in the basal plane. Second, when the degeneracy of the
two components is lifted by, e.g., uniaxial strain, Hc2 exhibits a twofold anisotropy with character-
istic angle and temperature dependence. Our thorough study shows that measurement of the upper
critical field is a direct method of detecting nematic superconductivity, which is directly applicable
to recently-discovered trigonal superconductors CuxBi2Se3, SrxBi2Se3, NbxBi2Se3, and TlxBi2Te3.

I. INTRODUCTION

Unconventional superconductors can be defined by su-
perconducting order parameters that transform nontriv-
ially under crystal symmetries. For a given superconduc-
tor, possible unconventional order parameters are classi-
fied by non-identity representations of the crystal point
group. Such representations are either one-dimensional
or multi-dimensional, and this distinction defines two
classes of unconventional superconductivity [1, 2]. The
first class is exemplified by d-wave superconductors in
cuprates [3, 4], while the second class is exemplified by
the p-wave superconductivity in Sr2RuO4 [5], with two
degenerate components (px, py) at the superconducting
transition temperature. Superconducting states in the
second class spontaneously break lattice or time-reversal
symmetry [6], in addition to the U(1) gauge symmetry,
leading to novel thermodynamic and transport proper-
ties not seen in single-component superconductors. The
search for new superconductors with multi-component
order parameters is therefore of great interest.

The doped topological insulator CuxBi2Se3, a super-
conductor with Tc ∼ 3.8K [7, 8], has recently attracted
a lot of attention as a promising candidate for uncon-
ventional superconductivity [9–19]. Fu and Berg pro-
posed that it may have an odd-parity pairing symmetry
resulting from inter-orbital pairing in a strongly spin-
orbit-coupled normal state [9]. While previous surface-
sensitive experiments [20, 21] drew disparate conclusions
regarding the nature of superconductivity in this mate-
rial, direct tests of the pairing symmetry in the bulk of
CuxBi2Se3 are carried out only very recently. A nuclear
magnetic resonance (NMR) measurement [22] found that
despite the three-fold rotational symmetry of the crys-
tal, the Knight shift displays a twofold anisotropy be-
low Tc as the field is rotated in the basal plane. The
twofold anisotropy is also found in the specific heat of
the superconducting state under magnetic fields down to
H = 0.03T corresponding to H/Hc2 ∼ 0.015 [23]. Both

experiments found that the twofold anisotropy vanishes
in the normal state, establishing that the superconduct-
ing state of CuxBi2Se3 spontaneously breaks the three-
fold rotational symmetry. This is only possible when the
order parameter belongs to the two-dimensional Eu or Eg
representation of the D3d point group. The Eg pairing
has been ruled out by comparing the theoretically ex-
pected gap structure [24] with specific heat data [8, 23].
These results taken together strongly suggest that the
pairing symmetry of CuxBi2Se3 is Eu, an odd-parity pair-
ing with two-component order parameters [9].

Spontaneous rotational symmetry breaking due to su-
perconductivity is a rare and remarkable phenomenon.
Superconductors exhibiting rotational symmetry break-
ing from multi-component order parameters can be called
nematic superconductors [24], in analogy with the ne-
matic liquid crystals and nematic electronic states in
non-superconducting metals [25, 26]. Nematic and chi-
ral superconductivity, the latter breaking time-reversal
symmetry, are the two distinct and competing states of
multi-component superconductors, corresponding to real
and complex order parameters respectively [1, 6]. Bro-
ken rotational symmetry has previously been reported
in the heavy-fermion superconductor UPt3 [29] under a
magnetic field [28]. In addition, the A phase in a nar-
row temperature range at zero field is likely rotational
symmetry breaking, which however may be due to anti-
ferromagnetic order already present in the normal state
[30, 31]. Thus the recent discovery of broken rotational
symmetry in CuxBi2Se3, without broken time-reversal
symmetry, may potentially open a fruitful research di-
rection.

Motivated by the recent experimental progress, in this
work we study the upper critical field Hc2 of trigo-
nal nematic superconductors within the framework of
Ginzburg-Landau (GL) theory. Such GL theory admits
a new trigonal gradient term which is not allowed in
hexagonal crystals [27]. We relate the gradient terms
to Fermi surface and gap function anisotropies by a mi-
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croscopic calculation of the GL coefficients. Building
on and generalizing the previous work [27], we show
that the upper critical field generically displays a sixfold
anisotropy within the basal plane of trigonal crystals. We
further show that a uniaxial strain acts as a symmetry-
breaking field in nematic superconductors, which directly
couples to the bilinear of the two-component supercon-
ducting order parameter. As a result, Hc2 in the basal
plane exhibits a twofold anisotropy with a distinctive
angle and temperature dependence, similar to theoret-
ically expected results for UPt3 in the presence of anti-
ferromagnetic order [46, 47]. Our findings suggest that
measurement of the upper critical field is a direct method
of detecting nematic superconductivity. In particular,
this method may shed light on the pairing symmetries
of other superconducting doped topological insulators
SrxBi2Se3 [32, 33], NbxBi2Se3 [34] and TlxBi2Te3 [35],
which have yet to be determined.

II. GINZBURG-LANDAU THEORY

We start by constructing the GL theory of odd-parity
two-component superconductivity in crystals with D3d

point group and strong spin-orbit coupling. The pairing

potential ∆̂(~k), which is a ~k-dependent matrix in spin
space, takes the following form

∆̂(~k) = η1∆̂1(~k) + η2∆̂2(~k). (1)

The pairing potential is a linear superposition of two de-

generate components ∆̂1,2(~k), the basis functions of the
two-dimensional pairing channel Eu (specific gap func-
tions are given in the Supplementary Material, Sec. III).
For odd-parity superconductors the pairing components

satisfy ∆̂1,2(−~k) = −∆̂1,2(~k). As basis functions of Eu,

the two partners ∆̂1,2(~k) transform differently under the

mirror symmetry x → −x, i.e., ∆̂1(~k) is even whereas

∆̂2(~k) is odd. A key property of (doped) Bi2Se3 mate-
rials is strong spin-orbit coupling that locks the electron
spin to the lattice. The two complex fields η1,2 define the
superconducting order parameters η = (η1, η2)T . In con-
trast, in case of triplet superconductors in spin-rotation
invariant materials the order parameter components are
vectors in spin space.

The GL theory of two-component superconductivity is
formulated in terms of the order parameters η and the
GL free energy Ftot =

∫
d3~x ftot is the sum of a homoge-

neous term and a gradient term given by ftot = fhom+fD,
where fhom and fD are the corresponding free energy den-
sities. In addition, the free energy contains a Maxwell

term fEM = (~∂ × ~A)2/8π, which for our purposes can
be taken as a constant. The free energy densities fhom
and fD are polynomial expansions in the order parameter
fields and their gradients, and consist of all terms invari-
ant under the symmetry group of the crystal. For two-
component trigonal superconductors the homogeneous

contribution is the same as the corresponding expression
for hexagonal symmetry [1, 6],

fhom = Aη†η +B1(η†η)2 +B2|η∗1η2 − η∗2η1|2, (2)

to fourth order in η, and we have defined η† = (η∗1 , η
∗
2).

The coefficients A ∝ T −Tc and B1,2 are phenomenologi-
cal constants of the GL theory. The sign of GL coefficient
B2 determines the nature of the superconducting state,
selecting either chiral or nematic order [24, 36].

Spatial variation of the superconducting order param-
eter is captured by the gauge-invariant gradient Di =

−i∂i − qAi, with ~A the electromagnetic vector potential
and q = −2e. In case of multicomponent order parame-
ters, there generally exist multiple independent gradient
terms which are allowed by crystal symmetry. It is in-
sightful to present all gradient terms in order of “emer-
gent symmetry”. For crystals with a principal rotation
axis along the z direction, such as the three- and sixfold
rotations of trigonal and hexagonal crystals, four gradient
terms with full continuous in-plane rotational symmetry
are present and given by [1, 38, 39]

fD = J1(Diηa)∗Diηa + J2εijεab(Diηa)∗Djηb

+ J3(Dzηa)∗Dzηa + J4
[
|Dxη1|2 + |Dyη2|2

− |Dxη2|2 − |Dyη1|2 + (Dxη1)∗Dyη2 + (Dyη1)∗Dxη2

+(Dxη2)∗Dyη1 + (Dyη2)∗Dxη1] (3)

(summation understood, i = x, y, a = 1, 2), and J1,2,3,4
are the phenomenological GL coefficients. The first three
terms are invariant under independent U(1) rotation of
coordinates and order parameters, and thus have an
emergent U(1)×U(1) symmetry, whereas the gradient
term with coefficient J4 is invariant under arbitrary joint
rotations of coordinates and order parameters, i.e., an
emergent U(1) symmetry. Therefore, fD does not reflect
the discrete rotational symmetry of the crystal. However,
a new gradient term fD,trig, which we call trigonal gra-
dient term, is uniquely present in crystals with trigonal
symmetry, but not allowed in hexagonal crystals [27]. It
is given by the expression

fD,trig = J5 [(Dzη1)∗Dxη2 + (Dzη2)∗Dxη1

+(Dzη1)∗Dyη1 − (Dzη2)∗Dyη2 + c.c.] . (4)

The appearance of this new gradient term, which has D3d

symmetry, can be understood from angular momentum,
since in trigonal symmetry L = 3 is equivalent to L =
0. Indeed, in momentum space (Di → qi) the trigonal
gradient term can be expressed as iqz(q−η∗+η−−q+η∗−η+),
where q± = qx ± iqy and similarly for η1,2. The relative
phases between η+ (q+) and η− (q−) are determined by
mirror symmetry: η1 (η2) is even (odd) under x → −x.
It follows from the structure of fD,trig that the spatial
variation of the order parameter in the basal plane is
coupled to spatial variation in the z-direction, which is
in sharp contrast to hexagonal and tetragonal crystals.
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In the rest of this work we map out the consequences
of trigonal crystal anisotropy in the GL theory for the
upper critical field.

III. UPPER CRITICAL FIELD IN THE BASAL
PLANE

The angular dependence of Hc2 was first proposed as
a method to establish the multicomponent nature of un-
conventional superconductors in the context of heavy-
fermion superconductors [41–43]. The key idea is as fol-
lows. For the class of single-component (e.g., s-wave)
superconductors with trigonal, tetragonal, and hexago-
nal symmetry, Hc2 is always isotropic within the GL the-
ory, due to the emergence of U(1) rotational symmetry to
second order in the gradients. In case of multicomponent
superconductors, effects of crystal anisotropy can appear
in the GL theory, removing the emergent U(1) symme-
try, but this crucially depends on crystal symmetry. For
instance, hexagonal systems with multicomponent order
parameters do not show in-plane Hc2-anisotropy due to
the emergent rotational symmetry of Eq. (3), whereas
tetragonal symmetry can give rise to an angular depen-
dence of Hc2 with fourfold symmetry [42]. In trigonal
crystals, Hc2 can exhibit a sixfold anisotropy in the basal
plane [27] as of Eq. (4). Here we map out the basal plane
upper critical field of trigonal superconductors for general
GL gradient coefficients.

Within GL theory, the upper critical field is calculated
by solving the GL equations obtained from Ftot, keeping
only terms linear in η since the order parameter is small
at Hc2. Therefore, the calculation also applies to chiral
superconductors. The resulting system of GL equations,
which is given by

−Aηa = J1(D2
x +D2

y)ηa + J3D
2
zηa + J2εab[Dx, Dy]ηb

+ J4
[
(D2

x −D2
y)τzab + {Dx, Dy}τxab

]
ηb

+ J5 [{Dz, Dx}τxab + {Dz, Dy}τzab] ηb, (5)

can be solved as a two-component harmonic oscillator
problem, leading to a Landau-level spectrum from which
Hc2 is determined as the lowest Landau-level solution.
The coupling of the two harmonic oscillators is deter-
mined by the structure of the GL equations, and is in
general complicated by the presence of multiple gradient
terms. In hexagonal and tetragonal systems, straight-
forward or even exact analytical expressions for Hc2 can

be found [42]. In contrast, the trigonal gradient term
of Eq. (4) couples basal plane gradients to gradients in
the orthogonal direction, giving rise to a different set of
harmonic oscillator equations to which previous meth-
ods do not apply. A special limiting case was considered
in Ref. 27. We generalize this result by solving the GL
equations in the presence an in-plane magnetic field for
general gradient coefficients. In deriving the general so-
lution we adopt an operator based approach and exploit
that harmonic oscillator mode operators corresponding
different cyclotron frequencies can be related by squeez-
ing operators. Here we present and discuss the main
results, and give a detailed account of the lengthy cal-
culations in the Supplemental Material (SM). For conve-
nience, below we will refer to the appropriate section of
the SM.

To demonstrate the key features ofHc2 in trigonal crys-
tals, we will focus the discussion on the most physical
case, where trigonal anisotropy effects may be considered
weak and J5 can be treated as perturbation. We take the

magnetic field ~H in the basal plane to be given by ~H =
H(cos θ, sin θ, 0)T , which corresponds to a vector poten-

tial ~A = Hz(sin θ,− cos θ, 0)T . It is convenient to rotate
the basal plane GL gradients Dx,y = −i∂x,y + 2eAx,y
according to the transformation(

D‖
D⊥

)
=

(
cos θ sin θ
sin θ − cos θ

)(
Dx

Dy

)
, (6)

such that D‖ is along the field and D⊥ is perpendic-
ular to the field. These operators satisfy [D‖, D⊥] =
[D‖, Dz] = 0, and D⊥ and Dz define the magnetic alge-
bra [Dz, D⊥] = −2ieH. Writing Eq. (5) in terms of D⊥
and Dz, and setting D‖ηa = 0 (i.e., no modulation along
the field), one obtains

−Aηa = (J1D
2
⊥ + J3D

2
z)ηa

− J4D2
⊥(cos 2θτzab + sin 2θτxab)ηb

+ J5{Dz, D⊥}(− cos θτzab + sin θτxab)ηb. (7)

Next, it is convenient to diagonalize the term propor-
tional to J4. This is achieved by a the rotation of the
order parameters given by(

η1
η2

)
=

(
cos θ − sin θ
sin θ cos θ

)(
f1
f2

)
. (8)

In terms of the rotated order parameters (f1, f2)T the
GL equations read

−A
(
f1
f2

)
=

(
J3D

2
z + (J1 − J4)D2

⊥ 0
0 J3D

2
z + (J1 + J4)D2

⊥

)(
f1
f2

)
+ J5{Dz, D⊥}

(
− cos 3θ sin 3θ
sin 3θ cos 3θ

)(
f1
f2

)
. (9)

Note that only the term proportional to J5 depends on the angle θ. We now describe solutions to Eq. (9) ob-
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tained by treating J5 as a perturbation.
To start, let us consider taking both J4 = J5 = 0. Solv-

ing the GL equations then yields two degenerate series
of Landau levels with cyclotron frequency ω =

√
J1J3,

with the upper critical field given by Hc2 = −A/2eω =
−A/2e√J1J3 (more details are provided in Sec. II
B of the SM). Including the gradient contribution in
Eq. (3) proportional to J4 simply makes the cyclotron

frequencies inequivalent, ω1,2 = ω
√

1∓ |J4|J3/ω2 =

ω
√

1∓ |J4|/J1, and increases the upper critical field to
Hc2 = −A/2eω1. This defines the exactly solvable un-
perturbed system. Then, introducing trigonal perturba-
tion parametrized by J5 couples the two series of Landau
levels with different frequencies in a nontrivial way: the
coupling of in-plane and out-of-plane gradients implies a
coupling of canonically conjugate operators of the form
{Dz, D⊥} ∼ {−i∂z, z}. To solve the system of GL equa-
tions we assume that crystal anisotropy effects are weak
and use second order perturbation theory to obtain the
correction to the cyclotron frequency −δω1. (The cal-
culations are lengthy and described in detail in Sec. II
B 3 of the SM.) The upper critical field then becomes

Hc2 = H̃c2(1 + δω1/ω1) with H̃c2 ≡ −A/2eω1. We find
Hc2 to lowest order in J5 as

Hc2(θ)

H̃c2

= 1 +
J2
5

2ω2
+

[
cos2 3θ

(1− ω−
ω+

)2
+

sin2 3θ

1− ω−
ω+

F (ω−
ω+

)

]
,

(10)

where the frequencies ω± are defined as ω± = (ω2±ω1)/2.
In the limit of small J4/J1 these frequencies become
ω+ ∼ ω and ω− ∼ ω|J4|/2J1. The function F (x) arises
due to the coupling of two series of Landau levels with
different cyclotron frequencies and oscillator eigenfunc-
tions. It takes the form

F (x) =

(
1− x2

) 5
2

x2

∞∑
m≥0

(2m)!

(m!)24m
x2m(2m− x2

1−x2 )2

2m+ x(2m+ 1)

=
1− x
x

[√
1 + x

1− x 2F1

(
1
2 ,

a
2 ; 1 + a

2 ;x2
)
− 1

]
(11)

where a = x/(1 + x) and 2F1[α, β; δ; γ] is a hyperge-
ometric function. The function F (x) has the property
F (0) = 1, which implies that for J4 = 0 (correspond-
ing to ω−/ω+ = 0) no angular dependence of Hc2 exists.
The latter is a consequence of an emergent rotational
symmetry of fD,trig in Eq. (4): it is invariant under in-
plane rotations of the order parameters and coordinates
according to q+ → q+e

2iϕ, η+ → η+e
−iϕ. (Note that this

is not a physical symmetry.)
In general, however, considering all regimes of gradi-

ent coefficients that satisfy the stability constraints of
the free energy, Hc2 exhibits a six-fold anisotropy in the
basal plane of the crystal. For instance, the sixfold Hc2-
anisotropy can be obtained starting from a solution of the
GL equations derived from Eqs. (3) and (4) for J5 6= 0
and J4 = 0, and treating J4 as a small perturbation. This
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FIG. 1. Upper critical field (Hc2) anisotropy of two-
component pairing in trigonal crystals with D3d point group
symmetry, originating from the trigonal GL anisotropy term
(4). (a) Polar plot of the angular dependence of Hc2 with

six-fold symmetry given by Eq. (10) (normalized by H̃c2)
for J4/J1 = 0.2. Different curves correspond to J5/ω =
J5/
√
J1J3 = (0.15, 0.30, 0.45, 0.60) (inward to outward). (b)

Same as (a) but for J4/J1 = 0.4.

case was considered in Ref. 27 and is described in Sec. II
B 2 of the SM.

Figure 1 shows the angular dependence of the upper
critical field for small to moderate J5/ω = J5/

√
J1J3 and

J4/J1 as obtained from Eq. (10). Note that in general,
for materials with weak to moderate (crystal) anisotropy
effects, one expects J1 ∼ J3. To make the interplay be-
tween J4 and J5 explicit, we expand Eq. (10) for small
J4/J1 and find

Hc2(θ)

Hc2(π4 )
= 1 + h cos 6θ, (12)

where h = 3|J4|J2
5/16J2

1J3. This expression serves to
highlight an important feature of the angular dependence
of Hc2: Hc2(θ = π/2)/Hc2(θ = 0) < 1, which is indepen-
dent of system specific parameters. Here θ = 0 is defined
by an axis orthogonal to a mirror plane.

Within weak coupling, the GL coefficients Ji can be
obtained in terms of Fermi surface and gap function
properties using a microscopic mean-field Hamiltonian

with pairing potential ∆̂(~k) given by Eq. (1). The gra-
dient coefficients J1, J3, J4, and J5 are proportional to
N(εF )v2F /T

2
c ∼ N(εF )ξ20 , where εF , vF , and ξ0 are the

Fermi energy, Fermi velocity, and correlation length re-
spectively, andN(εF ) is the density of states. (The calcu-
lations are presented in detail in Sec. III of the SM.) We
find that their relative strength depends on the crystal
anisotropy of the Fermi surface and of the gap functions

∆̂1,2(~k). In particular, J5 is nonzero only when trigonal
Fermi surface anisotropy is present, or when the gap func-
tion is composed of trigonal crystal spherical harmonics
of the Eu pairing channel (see Sec. III A of the SM), and
is generally expected to be weak.

The general sixfold basal plane anisotropy of Hc2 is a
direct consequence of trigonal symmetry and a discrim-
inating characteristic of two-component pairing symme-
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try. Indeed, single-component superconductivity corre-
sponding to one-dimensional pairing channels of point
group D3d cannot exhibit sixfold Hc2 anisotropy: the in-
plane gradient term is given by J̃1|Diψ|2 and has emer-
gent U(1) rotational symmetry. As a result, the six-
fold anisotropy provides a clear experimental evidence
for two-component pairing.

IV. NEMATIC SUPERCONDUCTIVITY AND
UPPER CRITICAL FIELD

Within our GL theory, the rotational symmetry break-
ing superconducting state reported in Refs. [22, 23]
corresponds to a real order parameter, i.e., η =
η0(cosφ, sinφ)T . Up to fourth order [see Eq. (2)], the
angle φ represents a continuous degeneracy. This degen-
eracy is lifted at sixth order by a crystal anisotropy term
and leads to a discrete set of degenerate ground states
[24, 36]. In materials, such as CuxBi2Se3, the remaining
degeneracy may be further lifted by a symmetry-breaking
pinning field, selecting a unique ground state. The origin
of such pinning can be strain-induced distortions of the
crystal [37], but in principle, any order with the same
symmetry, electronic or structural, can pin the order pa-
rameter. In case of two-component superconductors, the
symmetry-breaking (SB) pinning field couples linearly to
order parameter η in the following way

fSB = g
[
(uxx − uyy)(|η1|2 − |η2|2) + 2uxy(η∗1η2 + η∗2η1)

]
,

(13)

with coupling constant g. The order parameter bi-
linears (|η1|2 − |η2|2, η∗1η2 + η∗2η1) constitute a two-
component subsidiary nematic order parameter [24] with
the same symmetry as the symmetry-breaking field
(uxx − uyy, 2uxy). For comparison, uniaxial strain
in single-component superconductors couples to the
gradient of the order parameter ψ, taking the form
J̃1,x|Dxψ|2 + J̃2,y|Dyψ|2 different from Eq. (13). It is
worth noting that the coupling considered here differs
from the candidate theories proposed for the hexagonal
superconductor UPt3, in which case magnetic order cou-
ples quadratically, instead of linearly, to order parameter
bilinears [29, 31, 38, 39, 44, 45].

From a microscopic perspective, the origin of the or-
der parameter pinning in Eq. (13) can be understood as a
(strain-induced) Fermi surface distortion, leading to dif-
ferent Fermi velocities vF,x 6= vF,y. A uniaxial distortion
of this form couples to |η1|2 − |η2|2 and has the effect
of selecting either η = (1, 0) or η = (0, 1) by raising Tc,
resulting in a split transition. A quantitative calculation
of the coupling constant g, relating the order parame-
ter bilinear to such Fermi surface distortion can be ob-
tained within weak-coupling (see [40]). This effect of a
Fermi surface distortion should be compared to uniaxial
gradient anisotropies such as ∼ |Dxηa|2 − |Dyηa|2 and
∼ |Diη1|2 − |Diη2|2, with the effect of the former being
enhanced by a factor of ln(ωD/Tc)(ξ/ξ0)2 [40], where ξ

is the coherence length, lnωD/Tc ∼ 1/V N(εF ), ωD is a
cutoff frequency, and V is an effective interaction energy
scale associated with the pairing. In addition, the effect
of a uniaxial Fermi surface distortion ∼ vF,x/vF,y on the
shift of Tc is enhanced by lnωD/Tc.

To address the effect of the SB field on Hc2 in case of
the trigonal nematic superconductors, we solve the lin-
earized GL equations for small J4,5 gradient coefficients
in the presence of a uniaxial symmetry breaking term
defined as δ(|η1|2 − |η2|2), taking δ as a measure of the
uniaxial anisotropy. Here we focus the discussion on the
most salient features, for which we take J5 = 0, and
relegate a more detailed account to the SM. A similar
problem of upper critical field anisotropy was studied for
split transitions in UPt3 [46, 47].

Setting J5 = 0 in Eq. (7) and adding the contribution
from the symmetry breaking field, the GL equations take
the form

−Aηa = (J1D
2
⊥ + J3D

2
z)ηa + δτzabηb

− J4D2
⊥(cos 2θτzab + sin 2θτxab)ηb. (14)

The upper critical field is obtained by using the magnetic
algebra of Dz and D⊥, and projecting into the lowest
Landau level. The upper critical field is then determined
from the following implicit equation (see Sec. II D of the
SM)

−A
ω

=
1

l2b
−
√
J2
4J

2
3

4ω4l4b
+
δ2

ω2
− J4J3δ

ω3l2b
cos 2θ, (15)

(recall ω =
√
J1J3) where the magnetic length lb is de-

fined as 2eH = 1/l2b . For δ = 0 we recover the result
for J5 = 0 in Eq. (10), to first order in J4/J1 (i.e., ω1

expanded to first order in J4/J1). For J4 = 0 we simply
find Hc2 = Hc2,0 [see Eq. (12)], but with critical temper-
ature T ∗c = Tc + ∆Tc with ∆Tc ∼ |δ|. This follows from
comparing δ to A ∼ (T − Tc), i.e., δ shifts the transition
temperature and can be taken as a measure of T . We
define a dimensionless temperature t by T = T ∗c − t∆Tc.

For general J4/J1 and nonzero δ we solve Eq. (15) for
Hc2 and show the representative results for J4/J1 = 0.1
and J4/J1 = 0.6 in Figs. 2(a) and 2(b). Two key char-
acteristics of Hc2 in the presence of a pinning field are
evident in Fig. 2(a)–(b). First, the angular dependence of
Hc2 exhibits a distinct two-fold anisotropy, with a typical
“peanut”-shape close to T ∗c . This twofold anisotropy be-
comes more pronounced with increasing J4/J1, as shown
Fig. 2(b). Expanding the square root in Eq. (15) under
the assumption of very small fields, i.e., l2b � J4J3/2ωδ,
one finds Hc2 ∝ (1−J4sgn(δ) cos 2θ/2J1) (see Sec. II D of
the SM). This “peanut”-shape of the Hc2 profile should
be contrasted with the Hc2 profile of single-component
superconductor where uniaxial gradient anisotropy leads
to a weak elliptical angular dependence of Hc2, an ef-
fect which is parametrically smaller than the twofold
anisotropy in the two-component case. Consequently,
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FIG. 2. (a) Polar plot of the angular dependence of Hc2 in
the presence of a symmetry-breaking field δ for J4/J1 = 0.1,
calculated using Eq. (15) (in arbitrary units of H). Differ-
ent curves represent different temperatures: T = T ∗

c − t∆Tc
(recall that ∆Tc ∼ |δ|), where t = 1, . . . , 8 and the out-
ermost curve corresponds to t = 8. (b) Same as in (a)
but for relatively large J4/J1 = 0.6. Figure (b) clearly
shows the two-fold “peanut”-shape anisotropy expected for
two-component superconductors in the presence of a symme-
try breaking field. (c) Plot of the Hc2-anisotropy coefficient
Hc2(π

2
)/Hc2(0) as function of effective temperature t for var-

ious values of J4/J1. The horizontal grid lines correspond to
the values (1 + J4/2J1)/(1− J4/2J1).

the twofold anisotropy of Hc2 shown in Fig. 2, in par-
ticular the “peanut”-shape, is a discriminating property
of two-component pairing.

Second, the angular dependence of Hc2 is a function
of temperature and has different shape in the vicin-
ity of T ∗c (i.e., small fields) as compared to far below
Tc (and high fields). This is in sharp contrast to the
usual case, for instance Eq. (10), where only the over-
all magnitude of Hc2 is temperature dependent. The
unusual temperature dependence of Hc2 can be more
precisely captured by considering the upper critical field
anisotropy ratio Hc2(π2 )/Hc2(0) as function of tempera-
ture. In the vicinity of T ∗c , the anisotropy ratio should
exhibit temperature independent behavior given by ∼

(1 + J4sgn(δ)/2J1)/(1 − J4sgn(δ)/2J1) (see Sec. II D
of the SM). This is shown in Fig. 2(c), where the Hc2-
anisotropy ratio is plotted for various values of J4/J1. In
contrast, using Eq. (15) we find that the Hc2-anisotropy
ratio approaches unity for large temperature t accord-
ing to ∼ 2/(t − 1), which is independent of GL param-
eters. Within the model of Eq. (15), the temperature
at which the transition between two behaviors occurs is
given by t = 2J1/|J4|. This “kink” feature was also found
and discussed in the context of a hexagonal applicable
to UPt3 [46–48]. The distinctive temperature depen-
dence of Hc2-anisotropy is uniquely associated with two-
component pairing since single-component pairing with
uniaxial gradient anisotropy leads to temperature inde-
pendent Hc2-anisotropy.

V. DISCUSSION AND CONCLUSION

To summarize, in this work we have addressed the mag-
netic properties of two-component superconductors in
trigonal crystals with point group D3d symmetry. Start-
ing from a general GL theory of trigonal two-component
superconductors, we find that the upper critical field ex-
hibits a sixfold anisotropy in the basal plane, which is a
discriminating property of two-component pairing. The
sixfold anisotropy is a rare manifestation of discrete crys-
tal symmetry, since effects of crystal anisotropy are typ-
ically obscured in GL theory by an emergent U(1) rota-
tional symmetry. In addition, in this work we show that
when a symmetry breaking field originating from, e.g.,
structural distortions selects a real order parameter, Hc2

exhibits a twofold anisotropy with characteristic angular
and temperature dependence.

The recent NMR and specific heat measurements on
CuxBi2Se3, which reported spontaneously broken rota-
tional symmetry, indicate that this material belongs to
the class of superconductors with two-component pair-
ing symmetry. Prominent other examples of materials
with trigonal symmetry, which have attracted increasing
attention recently, are the doped Bi2Se3 superconduc-
tors SrxBi2Se3, NbxBi2Se3, and TlxBi2Te3. Our theory
of in-plane anisotropy of upper critical field stands to
contribute to uncovering the pairing symmetry of these
superconductors, which remains to be determined.
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