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Previous measurements of the superfluid density ρs and specific heat for 4He have identified effects
that are manifest at distances much larger than the correlation length ξ3D [1–3]. We report here
new measurements of the superfluid density which are designed to explore this phenomenon further.
We determine the superfluid fraction ρs/ρ from the resonance of 34 nm films of varying widths
4 ≤ W ≤ 100 µm. The films are formed across a Corbino ring separating two chambers where a
thicker 268 nm film is formed. This arrangement is realized using lithography and direct Si-wafer
bonding. We identify two effects in the behavior of ρs/ρ : one is hydrodynamic, for which we present
an analysis; and the other, a correlation-length effect which manifests as a shift in the transition
temperature Tc relative to that of a uniform 34 nm film uninfluenced by proximity effects. We find
that one can collapse both ρs/ρ and the quality factor of the resonance onto universal curves by
shifting Tc as ∆Tc ∼W−ν . This new scaling is a surprising result on two counts: it involves a very
large length scale W relative to the magnitude of ξ3D; and, the dependence on W is not what is
expected from correlation-length finite-size scaling which would predict ∆Tc ∼W−1/ν .

INTRODUCTION

How do two coupled systems undergoing an ordering
transition, which because of different constraints take
place at different temperatures, affect each other? As
reported by Perron et al. [1], the superfluid transition of
an array of (2 µm)3 boxes filled with 4He and connected
via a thin film show a remarkable action-at-a-distance
coupling in the specific heat. This can be measured at a
temperature corresponding to a distance of one hundred
times the magnitude of the three-dimensional correlation
length ξ3D. Concomitant with this, the superfluid den-
sity ρs of the film connecting the boxes is influenced by
the proximity to the boxes in two ways. Its superfluid
transition is shifted closer to the bulk transition Tλ, and
there is an overall enhancement of ρs above that of a uni-
form film of the same thickness [1–3]. It was conjectured
by Perron et al. [2] that such behavior might be generic
to continuous phase transitions where fluctuations play
an important role, thus would not be limited to 4He.

As remarked by Fisher [4], in the 2D Ising system
consisting of an array of strips with different coupling
strengths there is also a two-peak structure in the specific
heat, as is seen in the helium data [1], which is indica-
tive of the role of the coupling strength between such
strips. In more recent work [5, 6] with 2D Ising strips
of different spin coupling strengths and widths Au Yang
and Fisher found that there is an enhancement of the
specific heat and of the overall critical temperature. In
a calculation which more closely mimics the boxes-plus-
film geometry, but still for 2D Ising, Abraham et al. [7]
showed that there is a remarkable long distance coupling
between squares of spins connected through extraordinar-
ily long linear links. This, they point out, is not a corre-
lation length effect but is associated with the emergence
of a new length scale which diverges exponentially. Also,
in experiments with junctions between two high Tc su-

perconductors through a link which is normal because of
doping, tunneling is seen over distances much larger than
the correlation length [8]. It seems that this, sometimes
referred to as giant proximity effect, is a manifestation of
similar physics. There are no analogous calculations, as
for the Ising system, for a 3D XY system as appropriate
to 4He. However, recent work has been reported by Del
Maestro [9]. Mean field calculations do not describe the
effects seen [10].

In the case of low temperature superconductors there
have also been experiments which have shown long-range
effects associated with the influence of one superconduc-
tor on another. Kwong et al. [11] have reported studies
of the superconducting transition in aluminum films ar-
rays in which the critical temperature in different regions
is slightly different due to different chemical treatment.
They find that the superconducting transition of the ar-
ray shifts between the two temperature limits defined by
the uniform films. However, when comparing this with
expected theoretical predictions they find that they do
not describe their data. The data indicate that a long
range coupling exists on a scale much larger than the
correlation length, ξ = 1 µm for aluminum. They ten-
tatively suggest that phase fluctuations due to the small
∼ 0.02 K difference in the transition temperature of the
two regions might be responsible for this. In another se-
ries of measurements by Liu et al. [12], it was found that
single crystal of superconducting nanowires of length be-
tween 6 and 60 µm superconductivity was induced on the
wires when in contact with superconducting electrodes of
higher critical temperature. These authors also conclude
that the observed long-range proximity effect cannot be
understood by existing theories.

We report in this paper new measurements of the su-
perfluid fraction of 4He confined as coupled films. The
experiments have been designed to determine proximity
effects on a thin film due to two adjoining superfluid re-
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gions which behave more bulk-like in the region where the
thin film has its transition. The experimental arrange-
ment consists of two regions where the 4He is formed as
a 268 ± 2 nm film. These regions are separated by, and
linked through a ring of controlled width where 4He is
formed as a 34.5± 0.5 nm film. This geometry is simpler
than the arrangement of boxes-plus-film of the Perron et
al. [1] experiments and is amenable to a more detailed
analysis for the superfluid fraction. It also tests coupling
in a different way: one two-dimensional film in proximity
to another of different thickness.

This paper is organized as follows: we first describe the
experimental arrangement; then we present a theory for
the superfluid fraction for the geometry of the cells. This
yields equations which do not include correlation length
effects but can be tested against the data, especially for
the widest ring with W = 100 µm. This can be done
without any adjustable parameters except for an overall
magnitude normalization. More importantly, this theory
also allows us to separate effects in ρs/ρ which are hy-
drodynamic in nature from effects of coupling which are
correlation-length driven. We then present all of our data
and further analysis. This is followed by conclusions.

EXPERIMENTAL DETAILS

The Corbino geometry [13] of our cells is depicted in
Fig. 1 in a cut-away view. It consists of two silicon wafers
5 cm in diameter which have patterned oxide growths and
are directly bonded [14, 15]. The SiO2 patterns in this
cell consist of an outermost ring, which seals the cell;
and, an inner ring of 2.4 cm diameter which defines an
opening of height h = 34 nm and width W . Not visible
on this rendering is a series of oxide regions on the top
wafer. These are bonded on the ring so that there are ac-
tually 250 openings across the ring each of 200 µm lateral
width. This lateral dimension, as well as the height h are
kept constant while W is varied for different cells. This
design, with 1/3 of the ring area being bonded, insures
uniformity for the opening of small height h. The magni-
tude of h is chosen to match as closely as possible the film
thickness used in the measurements with (2 µm)3 boxes
of helium, and in a separate experiment where the full cell
consisted of a 33.6 ± 0.9 nm planar film [3, 10]. These
data will form a basis for comparison with the present
results. The two regions surrounding the ring consist of
a film which is H = 268 ± 2 nm thick. See Table I for
the actual dimensions h, H of each individual cell. This
Table also has the dimensions for other cells which are
relevant for the present work. The height H is defined
by bonding the wafers with a series of oxide posts which
are (100 µm)2 in cross section and at 200 µm separation.
These posts take up 11% of the volumes in these regions.
The helium in the cell communicates with a filling line
via a center hole. The staging of such a cell on a cryo-

stat has been described previously [16]. Basically, it is
an arrangement whereby excellent long term temperature
stability can be achieved by the use of a low temperature
valve to seal the filling line, and the use of three stages
of temperature regulation. The cell is enclosed by two
light shields, one anchored at a 4He evaporator running
at about 1.4 K, and another at a temperature a few mK
above the temperature of the cell. A separate thermal
link allows the cell to be regulated below the tempera-
ture of its light shield. More details can be found in [16].
The cell has a CuNi resistive film heater deposited in a
spiral pattern on the outer surface of the bottom wafer.
Two doped single crystal Ge chips are epoxied to the top
wafer. One is used to regulate the average temperature
of the cell and the other to detect the temperature oscil-
lations in response to an ac heating.

FIG. 1. A schematic rendering, not to scale, of the Corbino
confinement. The cell is formed with two 50 mm diameter
silicon wafers. The support posts and outer border maintain
wafer separation of 268 nm except over the Corbino ring of
width W which has a 34 nm film above it. The 268 nm
dimension was chosen since it is large enough so that in the
region where the 34 nm film has its transition the 268 nm
film has a superfluid fraction which is within 10% of the bulk
value. The square posts (100 µm)2 are at 200 µm separation
and define the 268 nm separation of the two wafers inside and
outside the Corbino ring. The 34 nm height is defined by the
oxide pattern in the upper wafer.

To obtain the superfluid fraction for the helium con-
fined in this cell, or similar cells with different oxide pat-
terns, one can apply a uniform ac heating and vary the
frequency to search for resonant flow. The cells are a
superleak sealed at one end. A resonance consists of su-
perflow between the cell and the filling line. Because of
the experimental arrangement this movement of the su-
perfluid is adiabatic with very little heat flow between
the cell and the filling line during the cycle of oscilla-
tion. This motion of the superfluid is accompanied with
temperature and pressure excursions in the cell. We mea-
sure the temperature response. This technique has been
described [17, 18]. Our thermometry with a doped Ge
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chip enables us to resolve temperature oscillations within
∼50 nK. This is achieved by averaging the temperature
oscillations over several minutes at fixed frequency. The
range of resonant frequencies is typically between about
50 to 1000 Hz. The cell is held at a fixed average tem-
perature for each resonance sweep. The normal fluid is
viscously immobile. For a cell without the Corbino ring,
there is a single Helmholtz resonance which has been
called Adiabatic Fountain Resonance (AFR) [17, 18].
The analysis yields equations for the temperature oscil-
lations and the phase shift of these oscillations relative
to the ac excitation at the heater. In practice any su-
perleak staged as the silicon cells will support an AFR
resonance from which a value of the superfluid fraction
can be obtained. However, the meaning of this super-
fluid fraction depends on the details of how the helium is
confined. In the case of uniform films of thickness H the
meaning is unambiguous: it is that of a film undergoing
crossover from 3D to 2D as the superfluid transition is
approached. In the case of the Corbino cells the meaning
of the measured ρs requires some additional analysis.

There are no significant temperature gradients across
the cell that can be determined experimentally. A calcu-
lation of the temperature distribution in the cell includ-
ing details of the heater and thermal links shows that
possible gradients are much less than one µK [19]. How-
ever, see below for an exception to this under a particular
resonance condition.

In Figs. 2, 3 we show two examples of resonances at two
different temperatures. The data for the amplitude of the
temperature oscillations are shown as the product of fre-
quency times amplitude. This removes a dominant ω−1

dependence. The phase shift is that of the detected signal
relative to the ac drive frequency. The lines through the
data are a fit to the line shapes derived in [18]. We see
in Fig. 2 that for t ≡ (1− T/Tλ) = 0.06 both the phase
and amplitude signals are fit well. They yield a consis-
tent resonant frequency which is indicated by the vertical
dashed line. In Fig. 3 are data for t = 0.004, much closer
to the film’s superfluid transition of tc ∼= 0.003, the fit to
the phase is still good but the fit to the amplitude shows
some systematic deviations. We believe that in this case
the amplitude signal is distorted because of finite veloc-
ity effects. The maximum velocity for these particular
data is 1 cm/s at the exit of the cell. In cases such as
for Fig. 3 we rely only on the phase signal to determine
the resonance. The increase of dissipation near the tran-
sition, above some non critical background, is related to
the process of vortex pairs unbinding [20]. This affects
the quality factor of the resonance and limits how close to
the transition one can make a meaningful measurement.
We note in these plots with a vertical line the magnitude
of the temperature excursion for the amplitude signals.
This depends on the frequency so it applies strictly to the
region of the resonance. These temperature oscillations,
as mentioned before, are not large ∼ ±0.5 µK. The tem-

perature resolution of these oscillations can be inferred
from the scatter of the amplitude data, it is better than
50 nK.

FIG. 2. A sample resonance signal for the amplitude and
phase at t = 0.06 The data fit (solid lines) according to the
Adiabatic Fountain Resonance equations derived in [18]. The
resonant frequency ω0 is indicated by the dashed vertical line.
The solid vertical line indicates the magnitude of the temper-
ature oscillation.

FIG. 3. A sample resonance signal for the amplitude and
phase at t = 0.004. The data fit according to the Adiabatic
Fountain Resonance equations derived in [18]. Again, the
resonant frequency is indicated by the dashed vertical line.
The amplitude signal is somewhat distorted because of finite
velocity effects, however the fit of the phase still yields the
resonant frequency.

We present next a theory for the interpretation of the
superfluid fraction which is determined from resonances
with the Corbino cells.



4

TABLE I. The oxide thicknesses for each Corbino cell and three other cells.

Corbino cells

W (µm) Small Oxide Thickness (nm) Large Oxide Thickness (nm)

4 34.1±0.5 264.6 ±1.0

8 34.4±0.5 271.1 ±1.3

18 34.6±0.5 268.0 ±1.1

18 34.8±0.5 270.9 ±1.1

40 34.6±0.5 267.7 ±0.8

100 34.4±0.5 265.7 ±0.9

Average 34.5±0.5 268±2

Other cells [3]

Uniform film thickness (nm) 33.6±0.9

Film with boxes (nm) 31.7±0.1 ( boxes at 4 µm separation)

Film with boxes (nm) 32.5±1.2 (boxes at 2 µm separation)

HELMHOLTZ RESONANCES FOR A
THREE-CHAMBER OSCILLATOR

The superfluid fraction determined from a resonance
with the Corbino cell with the widest ring W = 100 µm
is shown in Fig. 4 on a log-log plot. Also shown in this
figure are data for a cell with a uniform 33.6 nm film [3,
10]. The solid line is the dependence of the superfluid
fraction for bulk, unconfined helium [21]. Both sets of
film data have the same critical temperature tc ∼= 0.003.
The horizontal line is the magnitude for the expected
Kosterlitz-Thouless jump [22] at tc for a planar film of
33.6 nm. This can be written as

∆ρs =
4m

hλ2T
, (1)

where λT = 2πh̄2/mkBT is the thermal wavelength, m is
the mass of a 4He atom, and h is the film thickness. One
can see that the data for the 33.6 nm film comes close to
this value; dissipation prevents following this closer than
the last point. The data for a 34 nm film across a Corbino
ring 100 µm wide and in equilibrium with a 268 nm film
have a larger superfluid fraction but vanish effectively at
the same temperature. The temperature dependence for
the Corbino data is quite different from that of a planar
film. This is brought out more clearly in Fig. 5 where
the ratio of ρs/ρs,bulk is plotted. Both of these data are
normalized to the bulk value near t = 0.1. The decrease
from this value as one moves closer to the transition is
quite different for these two cases. The Corbino data
fall quite abruptly at the critical temperature near tc ∼=
0.003, while the uniform film has a more gentle decrease
toward tc. To understand this behavior we examine now
in more detail the resonances allowed for the Corbino
cells and hence an interpretation of the behavior shown
in Fig. 5.

t=1−T/Tλ
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FIG. 4. The superfluid fraction of the Corbino cell with
W = 100 µm is shown with the 33.6 nm planar data. A
hydrodynamic effect causes the Corbino data to behave like
a 268 nm film until near tc where there is a rapid decrease in
the superfluid fraction.

Rayleigh was the first to consider Helmholtz res-
onances in a two-chamber gas oscillator with open
ends [23]. The approach is to construct a Lagrangian
involving the kinetic energy of the gas and the potential
energy associated with the compressibility. In the same
spirit one can view the Corbino cells as a three-chamber
radial oscillator which is however closed on one end and
open at the center. The three chambers consist of the
two chambers where the helium film is at a thickness
H = 268 nm, we will refer to these as region 1 and 3,
with chamber 1 open to the filling line. Chamber 2 is the
region across the ring where the film is at h = 34 nm. To
just focus on the possible resonances, one can ignore dis-
sipation in the movement of the superfluid and construct
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FIG. 5. The ratio ρs/ρsb versus t for the Corbino cell with
w = 100 µm; and, the 33.6 nm planar data. The difference in
the behavior of these data can be understood via the hydro-
dynamics discussed below.

a Lagrangian from which the equations of motion follow.
Given the confinement dimensions and the frequencies
in the experiment (the viscous penetration depth is of
the order of 25 times the largest separation of the silicon
surfaces) only the superfluid component will flow. The
kinetic energy can then be written as

KE =
1

2
g0ρsbṙ

2
1 +

1

2
g′1ρs1ṙ

2
1 +

1

2
g2ρs2ṙ

2
2 +

1

2
g3ρs1ṙ

2
3 (2)

where ṙi is the velocity of the superfluid at the entrance
of each chamber and gi is a geometric factor with units
of volume reflecting the radial flow in the cell. The first
term is introduced as an end correction to include the fact
that the superfluid flows out of the cell (and into a fourth
chamber, the filling line which is at saturated vapor pres-
sure) with a velocity ṙ1 and at the bulk superfluid density
ρsb. The superfluid densities in chambers 1 and 3 are the
same ρs1, characteristic of the 268 nm confinement plus
any influence from ρs2 in the ring. The end-effect vol-
ume g0 can be determined from hydrodynamics. It has
been shown that for flow out a channel through a flanged
orifice the effective length of the channel is increased by
an amount given by δ` = 0.48

√
A, where A is the cross

sectional area of flow [24, 25]. This length turns out to be
small relative to the overall linear dimension of the cell:
with R = 2 cm one finds δ`/R = 0.7×10−3. However, at
the exit of the cell the superfluid velocity is largest, and it
is more realistic to include this end effect as an additional
kinetic energy. One has g0 = 2πr0Hδ` = 1.20×10−8 cm3

where r0 = 0.0508 cm is the radius of the opening into
the silicon cell, and from the above δ` = 1.4× 10−3 cm.
Note that this end correction is much smaller than the
one considered by Brooks et al. [26] for a Helmholtz
resonator involving an array of channels in Nuclepore
filters [27–29] separating two chambers of bulk helium.

The other geometric factors can be obtained by assum-
ing a 1/r velocity field inside the cell. In chamber 1
this extends from r0 to the Corbino ring Rc = 1.2 cm,

ṙ (r) = ṙ1 ×
(

r0
R−r0

) (
R
r − 1

)
. With this dependence of

the velocity on the radial distance, the total kinetic en-
ergy in this chamber is given by

KE1 =
1

2
ρs1ṙ

2
1

{
2πf1H

(
r0

R− r0

)2

×
[
R2 ln

Rc
r0
− 2R (Rc − r0) +

1

2

(
R2
c − r20

)]}
(3)

where f1 = 0.89 is the open fraction of this chamber
not taken up by the supporting oxide posts. One finds
g′1 = 8.8 × 10−7 cm3. Similarly, for region 3 extending
from Rc to R = 2.0 cm, one can take the velocity field as

ṙ (r) = ṙ3 ×
(

Rc
R−Rc

) (
R
r − 1

)
. Upon integration from Rc

to R one finds g3 = 4.11 × 10−5 cm3. For the chamber
defined by the relatively narrow width and height of the
Corbino ring, one can take the velocity field as constant.
One has g2 = V2 = f22πRcHW where f2 = 2/3 is the
fraction of the volume which is not taken up by the oxide
supports in this region, and W is the width which we will
take for the present numerical calculation as the largest
we have used in our cells: 100 µm. One finds g2 = 1.73×
10−7 cm3.

One can now incorporate the end correction into a sin-
gle term so that KE1 is given by

KE1 =
1

2
g0ρsbṙ

2
1+

1

2
g′1ρs1ṙ

2
1 =

1

2
ρs1g

′
1

(
1 +

g0
g′1

ρsb
ρs1

)
ṙ21

=
1

2
g′1

(
1 + 1.36× 10−2

ρsb
ρs1

)
ρs1ṙ

2
1 ≡

1

2
g1ρs1ṙ

2
1 (4)

The potential energy U is due to the compression and
rarefaction of the confined helium and the flexing of the
375 µm thick Si wafers as the superfluid moves between
chambers. It is given by

U =
1

2K1V1
(v1 − v2)

2
+

1

2K2V2
(v2 − v3)

2
+

1

2K3V3
v23

(5)
where vi represents the volume entering each cham-
ber, and Ki, Vi are the compressibility and volume of
each chamber. The volumes entering the chambers can
be written as v1 = ∆r1σ1

ρs1
ρ ; v2 = ∆r2σ2

ρs2
ρ ; v3 =

∆r3σ3
ρs1
ρ . The variables ∆ri = r − ri are the displace-

ment of the superfluid measured from the entrance of
each chamber. The cross sectional areas of flow σi and
the volumes of each chamber vi are given in Table II.
The equations of motion now follow from the Lagrangian
KE − U ,

r̈1 + αρs1∆r1 − α12ρs2∆r2 = 0 (6)

r̈2 − α122ρs1∆r1 + βρs2∆r2 − α232ρs1∆r3 = 0 (7)

r̈3 − α233ρs2∆r2 + γρs1∆r3 = 0 (8)
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where the coefficients of ∆ri involve various geomet-
ric factors and the compressibilities. These factors are
listed in Table III. Assuming an oscillatory solution
∆ri = ∆rioe

iωt yields the following secular equation for
the angular frequency

ω6 − [βρs2 + (α+ γ) ρs1]ω4

+
[
(γβ + αβ − α232α233 − α12α122) ρs1ρs2 + αγρ2s1

]
ω2

− (αβγ − αα232α233 − α12α122γ) ρ2s1ρs2 = 0.
(9)

This equation allows for three solutions in ω2. The sim-
plest is when ρs2 = 0 across the Corbino ring, in which
case there is no flow from the outer volume and the term
γ must also be set to zero. This leaves only a resonance
associated with V1 and is given by

ω2
0 = αρs1 =

σ2
1

g1K1V1ρ

ρs1
ρ
. (10)

This can be compared with the expression obtained from
the AFR analysis [18]

ω2
AFR =

σ1
lK1V1ρ

ρs1
ρ
. (11)

In the AFR derivation a more realistic length l is in-
troduced to take into account the length over which the
temperature T and pressure P vary from their oscillat-
ing values in the cell to the constant values in the filling
line. The filling line contains about one mm3 of bulk
helium. In practice l can be obtained from the measure-
ments only if K1 = KHe + KSi is known. It is found
from many cells for which this resonance has been stud-
ied and from the magnitude of the resonant frequencies
of these cells, that K1 > KHe. KSi depends on the oxide
pattern, the uniformity of the bonding and the thickness
of the wafers, 375 µm in our case. Thus, to take care
of the unknown values of K1 and l the superfluid frac-
tion obtained from the measured resonance is normalized
in a region of temperature where confinement effects are
negligible, i.e. where the ratio of the data to the corre-
sponding bulk superfluid fraction is one. In this way only
the combination of factors σ1/lK1 is determined. The
AFR derivation also has the advantage that dissipation
is included and expressions for the resonant line shapes
can be obtained [18]. However, the existence of an AFR
resonance simply indicates that there is adiabatic super-
flow in a superleak which is accompanied by temperature
oscillations of the enclosure. It says nothing about the
possible structure within that superleak or the meaning
of the observed superfluid fraction relative to this inter-
nal structure. The Lagrangian derivation supplements
the AFR by determining the meaning of the measured
ρs in terms of the detailed structure of the superleak.
Another aspect of Lagrangian approach is the ability to
introduce an end correction in a meaningful way.

It is interesting to use this end correction to gauge
the effect on a cell which is fully a 34 nm film. One

TABLE II. Geometric terms for W = 100 µm Corbino cell.

Radius of filling hole r1 = 0.0508 cm

Radius of Corbino ring Rc = 1.20 cm

Volume of chamber 1 V1 = 1.07× 10−4 cm3

Volume of Corbino ring V2 = 1.73× 10−7 cm3

Volume of chamber 3 V3 = 1.90× 10−4 cm3

Cross section into chamber 1 σ1 = 8.5× 10−6 cm2

Cross section into chamber 2 σ2 = 1.73× 10−5 cm2

Cross section into chamber 3 σ3 = 2.00× 10−4 cm2

KE factor for end correction g0 = 1.20× 10−8 cm3

KE factor for chamber 1 g1 = 8.8× 10−7 × δ cm3

KE factor for chamber 2 g2 = 1.73× 10−7 cm3

KE factor for chamber 3 g3 = 4.11× 10−5 cm3

TABLE III. Terms in the secular equation with W = 100 µm.
Units are in cm−2 except as noted; δ is dimensionless.

α = σ2
1/(K1ρ

2g1V1) = 0.77/K1ρ
2δ

β = σ2
2/(K2ρ

2g2V2) + σ2
2/(K1ρ

2g2V1) ∼= 0.99× 104/K2ρ
2

γ = σ2
3/(K2ρ

2g3V2) + σ2
3/(K3ρ

2g3V3) ∼= 5.6× 103/K2ρ
2

α12 = σ1σ2/
(
K1ρ

2g1V1

)
= 1.55/K1ρ

2δ

α122 = σ1σ2/
(
K1ρ

2g2V1

)
= 7.9/K1ρ

2

α233 = σ2σ3/
(
K2ρ

2g3V2

)
= 4.8× 102/K2ρ

2

α232 = σ2σ3/
(
K2ρ

2g2V2

)
= 1.15× 105/K2ρ

2

α (βγ − α232α233)− α12α122γ

= (σ1σ2σ3)2/
(
K1K2K3ρ

6g1g2g3V1V2V3

)
= 3.9× 104cm−6/K1K2K3ρ

6δ

δ = 1 + 0.0136ρsb/ρs1

finds that the correction is small and given by δ =(
1 + 4.2× 10−3ρsb/ρs,film

)
. This would imply a maxi-

mal correction of less than two percent from the value
ρs,film/ρs,b ∼= 1 well below the transition, to the point
closest to the transition temperature where the lowest
value measured is ρs,film/ρs,b ∼= 0.3.

For the region where both superfluid fractions are non
zero, evaluation of the various terms in the secular equa-
tion shows that for typical experimental frequencies the
ω6 term is smaller than the other terms in the equation
by six to eight orders of magnitude. The ω6 term would
become important at frequencies above 104 Hz which are
not realized experimentally. Thus, the ω6 term can be
dropped and the equation becomes a quadratic in ω2 with
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solutions given by

ω2
± = − b

2a
± b

2a

√
1− 4ac

b2
, (12)

a = βρs2 + (α+ γ) ρs1, (13)

b = (−γβ − αβ + α232α233 + α12α122) ρs1ρs2

− αγρ2s1,
(14)

c = (αβγ − αα232α233 − α12α122γ) ρ2s1ρs2. (15)

From the above one can see that in the limit that the
superfluid density in the ring becomes small one can ex-
pand the square root to obtain

ω2
− = −c

b

=
(αβγ − αα232α233 − α12α122γ) ρs1ρs2

[(γβ + αβ − α232α233 − α12α122) ρs2 + αγρs1]
. (16)

Thus ω− will vanish as ρs2 vanishes. One can now iden-
tify this resonance, which vanishes at tc = 0.003, as char-
acteristic of the 34 nm film. This resonance will track
the vanishing of ρs2, but obviously will have contribu-
tions from ρs1 as given by this equation as one moves
to lower temperatures. The other solution ω2

+ does not
vanish when ρs2 vanishes but has a strong dip as ρs2
goes to zero. This is the resonance dominated by the two
268 nm chambers which eventually must cross over to a
single chamber resonance as ρs2 vanishes. We were able
to excite this second resonance only for the Corbino ring
with W = 40 µm. See below.

One can replace the various terms in the secular equa-
tion with their numerical values. These are known for
the patterned cells to within a few percent. The largest
uncertainty is for the filling hole in the center of the cell
which is made with a 0.040 inch diameter diamond drill.
The effective hole size is probably known within 10 per-
cent. With numerical values, and for the case of the
W = 100 µm wide ring, the expression for the resonance
ω− across the ring is given by

ω2
−

4.5cm−2ρsb
K1ρ

2

=

[(
1+0.56

K1
K3

+ 0.084
δ

)
ρ′s1ρ

′
s2+

0.048
δ ρ′2s1

ρ′s2+0.57ρ′s1

]
×

[
1−

√
1− 0.19

(ρ′s2+0.56ρ′s1)ρ′s2 1
δ
K1
K3((

1+0.56
K1
K3

+ 0.084
δ

)
ρ′s2+

0.048
δ ρ′s1

)2

] (17)

where δ =
(

1 + 1.36× 10−2 ρsbρs1

)
is the end correction.

The compressibilities for regions 1, 3 are retained in this
expression. One expects that K1/K3

∼= 1 given that both
regions have the same 11% of oxide bonding. The ring
region with 33% bonding is expected to have a much
smaller compressibility with K2

∼= Khelium. This can-
cels out in the above. Finally, we note that because we
analyze the data as the ratio of the measured superfluid

fraction normalized by the bulk value, we have done so in
the above expression with the notation ρ′si ≡ ρsi/ρs,bulk.

The left hand side of the above is the quantity
ρs,measured/ρs,bulk. We can see that it is a function of
both the superfluid fraction on the two sides of the ring
ρs1, and the superfluid fraction across the ring ρs2. To
test this equation against the measured value one needs
ρs1 and ρs2. One can assume that with W = 100 µm
ρs2 will be well represented by that of a uniform film.
One has available data from an independent experiment
where the full volume of the cell was at 33.6 nm. This
can be used with no adjustments. The small difference
in h of about 1 nm between these data and the present
data is not important. It would cause, for instance, a
difference in the value of tc of 0.00002, about two orders
of magnitude smaller than tc itself. The difference in h
is also within the uncertainty of the determination of the
oxide thickness.

For ρs1 there are no available data. However, one can
construct the behavior of ρs1 from experimental mea-
surements of a film of thickness H = 0.2113 µm [30].
Even though the data for the superfluid density do not
scale with size as tH1/ν over a wide range of H [31],
one can still use this scaling for small variations in H,
see for instance [32]. An alternative to this is to use
the superfluid density we obtained from the second res-
onance ω+ with a 40 µm ring. This follows ρs1(268 nm)
but is affected by the behavior of ρs2 near the transi-
tion in the region where ρs2 vanishes. However, as we
will see, with the 40 µm ring the transition is at slightly
warmer temperature than for 100 µm ring. Thus using
the results from ω+ is not unreasonable. We show the re-
sults of this calculation of ρs,measured/ρs,bulk via Eq. 17
in Fig. 6. The measured values of the superfluid frac-
tion for the 100 µm ring obtained from ω− are the open
squares. The calculated values for this quantity are the
pluses using the data from ω+ of the 40 µm ring, and
the crosses using ρs1( 268 nm) from the scaled value of
ρs1 (0.2113µm). The open circles are the data for the uni-
form 33.6 nm film. Both the calculated values and the
measured data go to zero at t ∼= 0.003 as expected from
Eq. 17. The two ways of calculating ρs,measured/ρs,bulk
agree quite well. Both reproduce the relatively shal-
low drop in ρs,measured/ρs,bulk away from tc, but miss
in the region where ρs,measured/ρs,bulk goes rapidly to
zero, i.e. the calculated values have a much sharper, al-
most discontinuous, drop to zero than the data. This
might have been expected. The data reflect the rapid
onset of dissipation near the transition and display a rel-
atively smooth but still sharp reduction of the superfluid
fraction. The calculated superfluid density drops almost
discontinuously to zero at tc ∼= 0.003. There is no dis-
sipation in the Lagrangian model, so this difference in
not surprising. The important result of this calculation
is the fact that the model reproduces the large enhance-
ment of ρs,measured/ρs,bulk, the difference between the
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open circles and the measured data, the open squares in
the region just below the transition. Thus this feature
is not due to correlation-length effects between the film
across the ring and the films external to it, but rather is
a hydrodynamic effect of this particular cell arrangement
of superleaks. We will see that this feature will also be
present with data for narrower rings. However, these will
in addition show an enhancement in tc which will be the
indication of correlation-length effects between the films.

FIG. 6. The ratio ρs/ρsb versus t for the Corbino cell with
w = 100 µm and the 33.6 nm planar data are plotted with the
calculated values for the Corbino cell. The calculated values
for this quantity are the pluses using the data from ω+ of the
40 µm ring, and the crosses using ρs1(268 nm) from the scaled
value of ρs1 (0.2113µm). The diamonds are calculated using
an internal cell resonance, Eq. 20. See text.

We note that the above results are independent of the
end correction. This correction, which can be inferred
from Eq. 17 by setting δ = 1, has less than 0.1% ef-
fect in the change of the superfluid fraction in the region
0.003 ≤ t ≤ 0.01. Thus it is negligible. The dependence
of the superfluid fraction on the ratio of the compressibil-
ities K1/K3 can also be tested. Varying this ratio in the
range 10 to 0.1 changes the results by ±1% of the drop
in the superfluid fraction in the region 0.003 ≤ t ≤ 0.01.
Smaller values of this ratio have negligible effect. It is
very likely, as pointed out above, that, given the con-
struction of the cell with the same oxide bonding in re-
gions 1, 3, one will have K1/K3

∼= 1. This is the value
used for the calculations shown in Fig. 6.

In summary, the model for the interpretation of the
measured superfluid fraction in these cells obtained from
the resonance ω− shows that the region below the transi-
tion temperature of the 0.034 µm film across the Corbino
ring is dominated by the behavior of the 0.27 µm regions
on either side of the ring. For the ring of 100 µm there are
no discernible correlation-length effects associated with
critical coupling between these two regions as would be
evidenced by a shift in the critical temperature relative

to that of uniform film.
It is interesting to consider the above results for con-

finements which are much more complicated than the
Corbino geometry considered above, say a cell with a dis-
tribution of sizes such as would be realized with packed
powders superleaks or with porous glasses. It seems clear
that the interpretation of such data from a resonance
measurement would not be straightforward. It would re-
flect the confinement in a unique way which could not be
generalized from sample to sample or be indicative of a
type of universal behavior.

DATA WITH NARROWER CORBINO RINGS

We have obtained data for six different experimen-
tal cells each with the same 34.5±0.5 nm thickness film
across the ring and with width W= 4, 8, 18, 40 and 100
µm. In the case of the 18 µm ring we constructed and
measured two separate cells to verify the reproducibil-
ity of the cell construction and the subsequent measure-
ments.

Among all of these cells the one with a 40 µm ring
behaved differently. This was the only cell for which we
were able to excite the resonance ω+. This is given by
Eq. 17 only with the plus sign in front of the square root.
Of course there are slightly different constants reflecting
the ring being 40 µm wide as opposed to 100 µm wide.
These data are shown in Fig. 7 as crosses. Also shown
on this plot are data of ρs for a uniform 268 nm film
obtained by scaling the data from the measured ρs of
a 211 nm film. One can see that the measured value
of ρs obtained from ω+ agrees with the behavior of a
268 nm film except in the region where ρs2 goes to zero
near t ∼= 0.0035. Here the measure ρs has a dip which
is predicted by ω+. In principle we should be able to
calculate this behavior from ω+. However, contrary to
the 100 µm ring there is a shift in the critical temperature
of the film in the ring. Thus it would not be correct to
assume that ρs2 within the ring could be represented by
that of a uniform film. The motion of the helium for the
ω+ mode must be different from that of the ω− mode. In
the latter, helium moves in phase in all chambers, in and
out of the cell. For ω+, helium must still move out of the
cell from chamber V1 since, with typical excitation levels,
we see a ‘normal’ amplitude of temperature oscillations
corresponding to a few µK. However, it is possible that in
chamber V3 the helium moves out of phase with respect
to the motion in V1. We have no way to establish this
from the data.

There is another possibility for a resonance which
would not involve helium leaving the cell. This would
be an internal mode where the movement of the helium
is out of phase in the two chambers with a velocity node
at the filling line, the outer cell border and in the middle
of the ring. We have measured such a mode with the
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FIG. 7. The ratio ρs/ρsb versus t for the Corbino cell with
w = 40 µm obtained from ω+; and, the data for 211 nm
planar film scaled to 268 nm.

40 µm cell. The characteristics of this internal mode are
a much smaller temperature signal of ∼ 200 nK, and a
resonance at a higher frequency than given by Eq. 17.
The difference is that this new motion conserves mass
within the cell. Consequently, because of this constraint,
one obtains a secular equation which is second order in
ω2. The solution for ω2 which vanishes when ρs2 vanishes
is given by

ω2
H
∼=

σ2
3ρsb

(g1 + g3)K1V1ρ2

(
1 +

K1V1
K3V3

)
ρ′s1ρ

′
s2

ρ′s2 + 3g2
g1+g3

σ2
3

σ2
2
ρ′s1

.

(18)
This is obtained with the assumption that K2V2 <<
K1V1,K3V3. The symbols in the above have the same
values as in the case of the derivation of Eq. 17, except-
ing for gi which can only be determined if one knows
the velocity dependences within each chamber of the cell.
One could also look at this resonance as a fourth sound
mode [33]. However, this would not allow one to sort out
the contributions of the measured superfluid density from
the different regions of the cell. The structure of Eq. 18
is the same as Eq. 17. This can be seen by expanding
the square root in Eq. 17 and retaining the symbols as
Eq. 18. One obtains

ω2
−
∼=

σ2
1ρsb

g1K1V1ρ2
ρ′s1ρ

′
s2[

1 + K3V3

K1V1

(
1 +

g3σ2
1

g1σ2
3

)]
ρ′s2 + K3V3

K1V1

g2σ2
1

g1σ2
2
ρ′s1

,

(19)
where one has assumed K2V2 << K1V1,K3V3 and we
have omitted the end correction. One can see that the
dependence of these two frequencies ωH , ω− on ρs1, ρs2
is the same, both vanishing when ρs2 vanishes. One can
go further by assuming that K1 = K3, and for Eq. 18
approximating the velocity field as decreasing linearly to
zero within the ring and at the edges. This allows one
to calculate the g-factors. For Eq. 19 all the factors are

the same as in Table II, except for g2 which for 40 µm
is 2.5 times smaller. One can now display Eq. 18 with
numerical factors

ω2
H ∼

ρ′s1ρ
′
s2

ρ′s2 + 0.042ρ′s1
. (20)

This equation is plotted as the diamonds in Fig. 6 us-
ing as an approximation the values for ρs1, ρs2 of planar
films. This procedure is not strictly valid but is reason-
able to see the behavior of the measured ρs as one ap-
proaches the transition. One can see that the behavior
predicted by Eq. 20 and this different resonance mode is
very similar to that predicted for ω− by the full Eq. 17.
Thus, we conclude that we can use these data from this
internal mode at equal footing with all the other data
which are obtained with the resonance ω−.

We note that if we use Eq. 18 to compare the magni-
tude of the measured frequency one would require that
K1
∼= 9 × KHe. This is consistent with the assumption

that K1 > KHe we have been making all along in de-
scribing these resonances.

For each cell the procedures followed after bonding,
staging on the cryostat and data acquisition were the
same. In particular, for each cell a separate temperature
calibration of the Ge thermometers was done. This is
required because the bare Ge chips do not maintain their
calibration upon recycling. More importantly, since the
relevant variable is t ≡ (1− T/Tλ), for each cell a de-
termination of the bulk superfluid transition was done
several times over the course of the measurements. To
obtain Tλ one makes use of the maximum in the heat
capacity associated with a small bulk sample which is
condensed in the cell’s filling line. This procedure is de-
scribed in [16]. For each cell a series of resonances is ob-
tained. These, as discussed, are proportional to

√
ρs/ρ

but need to be normalized to ρs,bulk far from the tran-
sition because of the uncertainty in the compressibility.
The complete set of data is shown on the log-log plot
in Fig. 8. The behavior of ρs,bulk/ρ is given by the
solid line [21]. All of the data are for the same reso-
nance ω− (ωH in the case of 40 µm), except for the X’s
which are for ω+. The remarkable aspect of these data
is that even with W as large as 40 µm one can see a
measurable shift of the transition closer to Tλ due to
the presence of the 268 nm film on either side of the
ring. Since there are supports over the ring which sepa-
rate the film into 200 µm wide sections, one may look at
the Corbino film as one consisting of 250 sections with
dimensions 0.034 ×W × 200 µm3 with Dirichlet bound-
ary conditions along the direction perpendicular to the
flow at L =200 µm defined by the bonded SiO2; and,
order-parameter-matching conditions in the direction of
flow W . With lateral dimensions of W × 200 µm2 one
might well consider this patch of film as having infi-
nite lateral extent, at least based on the magnitude of
ξ−3D = ξ−0 t

−ν = 0.353t−ν nm ∼= 17 nm at t = 0.003.
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Thus, one has W/ξ−3D
∼= 2400− 240 for the range of W ’s

where a shift in tc is measured. These are very large
distances for correlation-length effects. The temperature
dependence of these data in Fig. 8 does not appear at
first to be much different from other data of confined he-
lium. However, as we have seen from Figs. 4, 5 for the
case of W =100 µm this can be deceptive on a log-log
plot which does not have sufficient resolution. In Fig. 9
we show all of the data plotted as ρs/ρs,bulk. This type
of plot takes away what one might consider a background
temperature dependence of the bulk superfluid density.
The shift in the transition temperature is more obvious
here as is the difference in the temperature dependence
of the Corbino data relative to that of the planar 33.6 nm
film, the open circles. All the Corbino data have the char-
acteristic which we identified in Fig. 5 and via Eq. 17 as
a hydrodynamic effect between the 34 nm film and the
268 nm film on either side of ring: below the transition,
colder temperatures, the value of ρs follows more closely
the behavior of the 268 nm film. Now, in addition to
this, we see a correlation-length effect which is manifest
as a shift of the transition to higher temperatures.

We also note in Fig. 9 the ×’s are from the ω+ mode
of the 40 µm cell. As remarked above, excepting the re-
gion where the superfluid density in the ring vanishes,
these data follow the relatively smooth drop toward the
expected Kosterlitz-Thouless jump. This is the same be-
havior as the data for the uniform 33.6 nm film. The
shift in the transition temperature Tc from ω+ is plotted
in Fig. 10 as a film of 268 nm along with other data avail-
able for fully planar confinement in Si cell (see also [31]
Fig. 24). All of the data in Fig. 10 have been obtained
with AFR. The transition temperature is taken as the
last point for which a resonance could be seen. It is clear
that the shift in Tc for the ω+ data agrees well with all
the other data from strictly planar cells. Thus, our iden-
tification of this signal as coming from the 268 nm region
of the Corbino cell is unambiguous. The determination
of tc depends to some extent on the quality of the reso-
nance which is different for different cells, and leads to
the scatter one sees in Fig. 10. The film thickness, as de-
termined from the oxide growth has relatively small un-
certainty. The solid line in Fig. 10 is a fit to these data
to a power law. It yields the expected shift exponent
ν = 0.66 ± 0.02 which agrees with the value determined
for the bulk superfluid fraction ν = 0.6705 ± 0.0006 [21]
and other determinations, see Table I of Ref. [31].

It is interesting to compare the correlation-length ef-
fects obtained in the Corbino geometry with the analo-
gous observations in the case of the same thickness film in
equilibrium with, and linking an array of (2µm)3 boxes
of helium. These latter data and the arrangement for
the measurements are discussed in more detail in [1–3].
In Fig. 11 we plot the superfluid density ratio ρs/ρs,bulk
as a function of temperature. Three sets of data are
shown: the Corbino data with W =4 µm; the film-boxes

t=1−T/Tλ
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FIG. 9. The ratio ρs/ρsb versus t for all the Corbino cells and
for the 33.6 nm planar data. The symbols are identified in
Fig. 8.

data when the separation of the boxes (these are in a
square array) is also 4 µm; and the uniform film data.
The influence of the larger confinement on the thin film
in equilibrium with it is manifest differently for these
two arrangements. First of all, in both cases, there is
a shift of the transition to higher temperatures. This is
larger for the Corbino film. The temperature dependence
of ρs/ρs,bulk is also different for the two cases. For the
Corbino case this can be partly understood in terms of
Eq. 17. But of course this equation says nothing about a
possible shift in Tc. For the boxes-film arrangement the
flow within the cell is clearly different. There is no su-
perfluid flow from the boxes into the filling line, as there
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FIG. 10. A plot of planar cell thickness versus critical tem-
perature tc = 1− Tc/Tλ. All data were obtained using AFR.
The fit yields a critical exponent ν = 0.66±0.02 which agrees
with the value determined for the bulk superfluid fraction
ν = 0.6705± 0.0006 [21].

is for the 0.27 µm region in the Corbino cell. Thus an
analysis such as leading to Eq. 17 is not appropriate. It is
not clear why the shift in the transition is larger for the
Corbino film than in the boxes-film arrangement when
the ‘distance’ between the film and the larger reservoirs
is the same. This must be related presumably to the
perimeter of contact between the large region and the
film. There is no theory for helium at present that has
addressed these long range coupling effects.

Reduced Temperature (t=1−T/Tλ)
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FIG. 11. The ratio ρs/ρsb is plotted for the Corbino cell with
W = 4 µm as well as for the 33 nm planar cell and the cell
with a 31.7 nm film in the presence of (2 µm)3 boxes spaced
4 µm.

One can define a shift of the transition temperature
Tc (W ) for the Corbino data relative to that of a uniform
film Tc (∞), δtc = (Tc (∞)− Tc (W )) /Tλ. This shift is

shown in Fig. 12 as a function of 1/W on a log-log plot.
We see that this shift is well described by a power law
δtc = (W/W0)

−ν
. We find that W0 = 0.33 nm ∼= ξ−0 the

coefficient of the bulk correlation length below Tλ. This
is a surprising result given the magnitude of W . If W is
considered the ‘small dimension’ determining the shift in
Tc, then finite-size scaling would predict a dependence of
the shift as W−1/ν not W−ν . Yet the result is clearly in
the spirit of finite-size scaling in the sense that no new
critical exponent is needed [34] to describe δtc. Note that
the datum for W =100 µm is not plotted on this graph
since the shift is too small to be resolved. Extrapolating
the line in Fig. 12 to 1/W = 0.01 µm−1 would yield
δtc ∼= 10−4. We also note that this power-law mus fail as
the ring width vanishes. In this limit the maximum shift
would be ∼ 2.9× 10−3.
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FIG. 12. A plot of δtc vs W−1. The straight line is given by
δtc ∼= (W/ξ−0 )−ν .

Our Corbino films can be viewed as undergoing a
crossover from bulk-like behavior far from Tc to finite-
size and eventually 2D crossover. One might expect the
2D correlation length to come into play in some way.
However the crossover to 2D is extremely narrow in tem-
perature. This can be seen as follows. The 2D correla-
tion length below Tc can be defined from the behavior
of the dielectric constant associated with vortices and
is given by ξ−2D = a exp(1/bτ1/2) [20], where one takes
a = ξ−3D (t) and where τ ≡ (1− T/Tc), i.e. the distance
to the transition temperature Tc not Tλ as for ξ−3D (t).
The non universal constant b depends on the thickness
of the film. This was shown by Finotello et al. [35, 36].
From [36] one obtains that b (34.5 nm) ∼= 105. Thus even
for τ = 10−4 one has ξ−2D

∼= 2.6ξ−3D; and, at τ = 10−3 ξ−2D
differs from ξ−3D (t) by only 30 percent. Thus, the 2D cor-
relation length not only does not provide a large length
scale which might explain our results, but its influence if
at all is over a very narrow region of temperature near
Tc.
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One can now use the shift in the transition temperature
to replot the data of Fig. 9 so that the transition takes
place at the same temperature as for that of the uniform
film, or equivalently that of the 100 µm ring. The data
rescaled this way are shown in Fig. 13. There is very
good collapse of these data on a universal locus showing
the similarity of the behavior for rings of various widths.
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FIG. 13. Scaling of the ratio ρs/ρsb when plotted versus t
shifted by δtc = (Tc(∞)− Tc(W ))/Tλ.

The analysis of the line shape to obtain the resonant
frequency uses Eqs. 30, 31 derived in [18]. This analy-
sis yields also the dissipation 1/Q, where Q is the qual-
ity factor. A plot of 1/Q against the same shifted tem-
perature as for ρs/ρs,bulk is shown in Fig. 14. We find
that the quality factors also collapse onto a single locus
near the transition as did ρs/ρs,bulk. Thus, this indepen-
dent aspect of the transition confirms the scaling with
(W/W0)

−ν
. To achieve this collapse we have also shifted

the dissipation data vertically to agree near t ∼= 0.03.
This is reasonable, since it is our experience with these
resonators that each cell has slightly different sources of
background dissipation which are not associated with the
transition. Some of these come from the flexing of the
silicon wafers and depend on the quality of the bond-
ing. One can also see this in Fig. 14 near t ∼= 0.1, well
away from the critical region, that the data do not col-
lapse indicating different sources of background dissipa-
tion which depend on the absolute temperature and are
not associated with the transition. Note that in Fig. 14
we do not have data for the W =40 µm cell since it did
not yield resonances that could be analyzed to extract
the quality factor.
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FIG. 14. Scaling of the dissipation 1/Q when plotted versus
t+ δtc. This is the same shift as in Fig. 13 for ρs/ρsb.

SUMMARY AND COMMENTS

We have observed that the superfluid fraction of thin
films of helium is greatly affected at long range by the
proximity of thicker films. For the widest thin film,
W =100 µm, for which no significant shift in the tran-
sition temperature is observed, the temperature depen-
dence of the measured superfluid fraction can be under-
stood in terms of the hydrodynamics of the two films
in equilibrium. The analysis involves a three-chamber
Helmholtz oscillator with input from the geometry of the
cell and the superfluid fractions of the two films in the
thermodynamic limit. When the width of the thinner
film is reduced, one finds that the measured superfluid
fraction persists to a higher temperature, but its over-
all temperature dependence is similar to that for the
widest film. The shift to higher temperatures is gov-
erned by the three-dimensional correlation length. This
is surprising in light of the fact that near the transition
W/ξ−3D

∼= 2400−240 for the widths from 40 to 4 µm. It is
found then that both the superfluid fraction and the dissi-
pation associated with the resonance can be collapsed on
universal curves. To see how unusual these results are one
notes that for a film of thickness H the critical tempera-
ture Tc is reached when H/ξ−3D (tc) ∼= 1.7, and the specific
heat maximum Tm at H/ξ−3D (tm) ∼= 1.5 [31]. So, these
markers of a finite system take place when ξ−3D (tc) ∼ H.
In our case one has ξ−3D (tc) << W and the ratio W/ξ−3D
is not universal because of the W−ν scaling of δtc as op-
posed toH−1/ν for the planar films. There are clearly dif-
ferent mechanisms at play in finitesize effects for uniform
confinement leading to shifts in transition temperatures,
or rounding of thermodynamic responses, as opposed to
the coupling/proximity effects of the present experiment.

These long range effects associated with the coupling
between two regions of 4He were first identified in ex-
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periment of the specific heat with (1 µm)3 boxes of he-
lium separated by a thin film 19 nm thick and 1 µm
wide [31, 37]. These data presented a puzzle because
they did not obey finite-size scaling as the planar films
did. Since the connecting film was normal throughout
the critical region of the boxes it was felt that the data
should represent a collection of isolated boxes, hence
should scale. This thinking was clearly wrong. Subse-
quent data showed that the coupling has nothing to do
with the existence of a superfluid, but rather must be a
property of the critical system. The observed coupling
must be conveyed via critical fluctuations rather than
by the existence of a non-zero order parameter. Subse-
quent measurements with (2 µm)3 boxes where the sep-
aration between boxes was varied in two different cells
clearly showed this to be the case [31]. Again, as for the
now-understood (1 µm)3 boxes, the coupling of the boxes
through the connecting films was observed both below Tλ
and above Tλ where the helium was normal. These mea-
surements also showed that there is a reciprocal effect
which modifies the connecting film as well as the behav-
ior of helium in the boxes. Of relevance to our present
experiment is the observation with these data that the ef-
fect of coupling between (2 µm)3 boxes could be seen in
the specific heat when the separation between the boxes
was as large as 100 times ξ+3D for T > Tλ. Yet the depen-
dence of the excess specific heat signal generated through
this coupling is described by empirical functions which
have the same power law as the bulk correlation length
ξ+3D (see Figs. 19, 21, 22 in Ref. [3]). We have now seen
effects in the Corbino geometry which are manifest at
separations of over 1000 times ξ−3D, yet with a power-law
shift in the critical temperature governed by the critical
exponent ν of the 3D correlation length.

It is impossible to understand these effects if one
thinks in terms of a mean field transition. This is
the approach taken some time ago by Mamaladze and
Cheishvili [38, 39] in considering the possibility of what
would constitute a weak link to couple two region of he-
lium and display Josephson effects [40]. This mean field
approach does not work for the effects discussed here
as has been calculated explicitly [10]. Josephson effects
have been seen in both 3He and 4He [41–43]. The for-
mer can in fact be considered, as far as its phase tran-
sition, a mean field superfluid. Considerable effort was
expended in constructing suitable weak links for these ef-
fects. This was aided by the fact that 3He has a relatively
large zero-temperature correlation length and of course
small fluctuations effects. In the case of 4He the opposite
is true. So that to see Josephson effects for 4He with
reasonable weak links one has to work closer to the tran-
sition and make use of the divergence of the correlation
length. What our data indicate is that coupling between
superfluid regions of 4He can be realized over much longer
distances than one would expect on the basis of ξ3D. This
would make it possible to study Josephson effects with

much more readily available weak links separating helium
regions as widely as many micrometers. As was pointed
out in [3], the experiments with 4He actually take ad-
vantage of proximity effects to work with superleaks in
a temperature region where, if isolated, they should be
normal hence not support superflow.

In calculations of the winding number for an XY sys-
tem to obtain ρs/ρ one also finds that for films of size
L × L the transition temperature shifts to higher tem-
peratures as L is decreased [44, 45]. However, this is an
artifact of the periodic boundary conditions, and is seen
for films of at most 124× 124 atomic sites [46]. Dirichlet
boundary conditions on the other hand shift the tran-
sition to lower temperatures as the width of the film is
decreased [31, 47]. This enhancement of the transition
temperature and the thermodynamic response, such as
specific heat, for periodic boundary conditions in not just
a property of 2D XY systems, but was first observed for
a finite 2D Ising system [48], and in the field-theoretic
calculations for 4He with 1D crossover [49]. Our films
across the Corbino ring are 5.6× 105 atoms laterally and
1.1× 104 to 2.8× 105 atoms in the flow direction. These
are much larger than any numerical calculations. There
is no periodicity in the flow direction in our geometry, so
the enhancement in ρs we measure is not related to this
mechanism and must be connected with the 268 nm film
on either side of the film in the Corbino ring and critical
point coupling.
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