
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Superconducting pairing in resonant inelastic x-ray
scattering

Yifei Shi, David Benjamin, Eugene Demler, and Israel Klich
Phys. Rev. B 94, 094516 — Published 20 September 2016

DOI: 10.1103/PhysRevB.94.094516

http://dx.doi.org/10.1103/PhysRevB.94.094516


Superconducting pairing in resonant inelastic X-ray scattering

Yifei Shi1, David Benjamin2, Eugene Demler2 and Israel Klich1

1 Department of Physics, University of Virginia, Charlottesville, VA 22904, USA
2 Physics Department, Harvard University, Cambridge, Massachusetts 02138, USA

We develop a method to study the effect of the superconducting transition on resonant inelastic X-
ray scattering (RIXS) signal in superconductors with an order parameter with an arbitrary symmetry
within a quasiparticle approach. As an example, we compare the direct RIXS signal below and above
the superconducting transition for p-wave type order parameters. For a p-wave order parameter with
a nodal line, we show that, counterintuitively, the effect of the gap is most noticeable for momentum
transfers in the nodal direction. This phenomenon may be naturally explained as a type of nesting
effect.

The description of many-body systems is usually only
practical in terms of simplified low energy theories. Such
theories are indispensable and describe a large variety
of measurements such as conductance and magnetic re-
sponse. However, measurements based on scattering
techniques often probe wider energy scales. Indeed, pow-
erful probes such as resonant inelastic X-ray scattering
(RIXS), are allowing unprecedented access to a wide
range of excitations in superconducting and magnetic
systems. In particular, the superconducting gap scale
is tiny in comparison with band energies of most mate-
rials and often below the experimental energy resolution
scale. It is therefore of interest to ask to which extent
details of low energy theories, such as the gap function
are observable through RIXS. Recently, it was suggested
that RIXS can distinguish between different phases of the
order parameter1,2. This dependence is studied through
the dynamical structure factor which is shown to discrim-
inate between singlet and triplet pairing. The structure
factor itself is related to the RIXS signal only in the limit
of ultra short core hole life time, for which a more elab-
orate treatment is needed3.

Here, we set out to examine the effect of superconduct-
ing pairing on the RIXS mechanism within a simple mean
field BCS picture, which includes the effect of core hole
potential and goes beyond the ultra short core hole life
time approximation which is used to relate RIXS with
dynamical structure functions. We derive a general for-
mula for the RIXS intensity for an arbitrary quadratic
Fermi Hamiltonian, with anomalous pairing ∆, as ex-
pressed in Eq. (3) together with (11). This result gener-
alizes the quasi-particle approach of4, where the compu-
tation of RIXS spectra was performed using a model of
non-interacting quasiparticles but including an interac-
tion with a positively-charged core hole via exact deter-
minant methods. This formalism allows us to compute
the characteristics of the signal by numerically evaluat-
ing (11). Moreover, the computations can be done for ar-
bitrary band structures using relatively straightforward
numerical means.

As a demonstration of the method, throughout the
paper we will concentrate on p wave superconducting
states. p + ip superconductors are of great current in-
terest. Such superconductors can support unpaired Ma-
jorana fermions at cores of (half quantum) vortices5,6,

and allow for non-Abelian statistics7,8. Remarkably, we
find that the RIXS signal is sensitive to the presence of a
superconducting gap ∆, even down to a scale where ∆ is
quite small (a few percent) compared to the value of band
parameters. In particular, going through the supercon-
ducting phase transition ∆ acquires a non-zero value and
we expect the RIXS spectra to experience a significant
change.

Resonant inelastic X-ray scattering is an important
technique for the investigation of a large variety of ex-
citations in correlated systems. Its main advantage is
the wide range of energy scales to which it is sensitive:
from low energy excitations, such as phonons, to charged
excitations of several eV . Another advantage is that
it is a bulk measurement. The physical mechanism at
play in a RIXS experiment is a second-order photon ab-
sorption process, involving a shake-up of the system due
to an abrupt appearance of a core hole potential. The
non-equilibrium process involved may be rather compli-
cated, and thus the interpretation of experimental mea-
surements may not be straightforward.

In the process, photons with energy ω and momentum
q, are scattered, and the outgoing photons have energy
ω −∆ω, and momentum q + Q (we take ~ = 1 through-
out). A complete description of the RIXS intensity would
require the consideration the full interacting dynamics
of the sample, which is too hard to achieve. Below we
will start from the standard approach, using from the
Kramers-Heisenberg cross section9:

I(ω,k,k
′
) ∝

∑
f

| Ffg |2 ×δ(Eg − Ef + ∆ω), (1)

with

Ffg =
∑
l,n

eiQ·Rn
〈f | dn | l〉〈l | d†n | g〉
Eg + ω − El + iΓ

. (2)

Here, |f〉, |g〉 are the initial and final state, respectively, of
the electron band, and Ef,g are their energies. The opera-
tor dn creates a quasiparticle in a conduction band at site
Rn. The states |l〉 are the set of eigenvectors of the inter-
mediate Hamiltonian Hn = H+Vn, where the remaining
core-hole is interacting with the conduction band through
a potential Vn. The form of the potential Vn may be ar-
bitrary. In this paper we used both the local form Vn =



2

Ucd
†
ndn, describing an on site interaction with a local core

hole, as well as Vn = Ucd
†
ndn +U ′c

∑
|Rn−R′n|=1 d

†
n′dn′ , to

account for the effect of the coulomb interaction on the
neighboring sites. Here Γ is the inverse of the core-hole
lifetime, which we take a typical value of order 0.1eV .

It is important to note that the Kramers-Heisenberg
formula (1) is incomplete in that it doesn’t properly ac-
count for the photoelectron-core-hole Coulomb interac-
tion (see e.g.10,11). Here, however, we neglect such effects
as we are only interested in the physics involving the band
structure. Indeed, these effects (for example, mixing be-
tween L2 and L3 absorption edges) are more pronounced
in lighter elements, while in heavier elements of interest
for high Tc superconductivity as well as the p-wave sys-
tem described here, the L2, L3 separation in energy is
very large (of order 20eV for Cu and 130eV for Ru).

Following4, we write the intensity as:

I ∝
∫ ∞
−∞

ds

∫ ∞
−∞

dt

∫ ∞
−∞

dτeiω(τ−t)−is∆ω−Γ(t+τ)

×
∑
mn

eiQ(Rm−Rn)Smn, (3)

with

Smn = 〈eiHτdne
−iHnτd†ne

iHsdme
iHmtd†me

−iH(t+s)〉. (4)

As long as the various stages in the time evolution are
governed by quadratic Fermi operators, (4) can be cal-
culated by exact diagonalization methods. Consider
fermions on a lattice with N = L × L sites, governed
by a mean field Hamiltonian:

H =
∑
i,j

hijd
†
idj + ∆ijdidj + h.c. (5)

To handle arbitrary superconducting pairing ∆ij , we rep-
resent the fermion creation and annihilation operators in
terms of 2N Majorana fermions ck defined as:

ck =

{
dk + d†k k = 1, 2, ...N

i(d†k−N − dk−N ) k = N + 1, N + 2, ...2N ,
(6)

and satisfying the relation {ci, cj} = 2δij . The Hamil-
tonian (5) can be re-expressed in terms of the Majorana
fermions as

H =
∑
ij

hijcicj , (7)

with h the antisymmetric matrix:

h =
1

4

(
iIm(h+ 2∆) iRe(2∆ + h)
iRe(2∆− h) iIm(h− 2∆)

)
. (8)

Traces involving quadratic Hamiltonians of the form
A = aijcicj where aij is an anti-symmetric matrix, can
be calculated by using the counting statistics formulas

presented in, e.g.12. As shown in the appendix, the trace
formula

Tr(eA1 ... eAn) =
√

det(1 + e4a1 ...e4an), (9)

leads, in the direct RIXS case, to the three distinct con-
tributions to Smn,

Smn = Smn1 + Smn2 + Smn3 . (10)

The contributions are detailed in the supplementary ma-
terial, but we mention that in the absence of a core hole
potential S2 contributes only to the elastic signal, while
in the absence of superconducting pairing, S3 vanishes.
We note that the sign of the square root in equation (9)
is determined to be consistent with analyticity of the ex-
pression as function of t, s, τ . The first term is given
explicitly by:

Smn
1 =

√
det(F )(Λn,m + Λn+N,m+N − iΛn+N,m − iΛn,m+N )

×(Γm,n + Γm+N,n+N − iΓm+N,n + iΓm,n+N ). (11)

Here Λn,m,Γn,m are elements of the 2N × 2N matrices

Λ = eihseihmtei(τ−t−s)hG−1(1−Nβ)e−i(τ−t−s)he−ihmt

Γ = ei(τ−t−s)hNβF
−1, (12)

where Nβ = 1
1+e−4βh , K = e−4ihnτe4ihse4ihmte4i(τ−t−s)h,

F = 1 − Nβ + KNβ , G = 1 − Nβ + NβK. Here hm
represent the Hamiltonian with core hole at position m
(i.e. Hm =

∑
ij(hm)ijcicj). We stress that the equations

(3,4,11) are valid for any type of mean field pairing and
are the main technical result. We now turn to apply these
for a particular pairing, of p wave form.

To be concrete, we take a minimal toy model for a p
wave superconductor. We use a two-dimensional, spinless
fermionic system, on a square lattice, with superconduct-
ing gap ∆. In the Hamiltonian (5), we choose band struc-
ture parameters sometimes used for Strontium Ruthen-
ate, Sr2RuO4. Following13, we choose hii = −µ, hi,i+x̂ =
hi,i+ŷ = −t1, hi,i±x̂±ŷ = −t2. To get a px + ipy super-
conducting state, we take, to be concrete, ∆i,i+x̂ = ∆,
∆i,i+ŷ = i∆, with (µ, t1, t2,∆) = (1.15, 0.8, 0.3, 0.05)ε,
where ε ∼ 0.2eV 14. In comparisons with Sr2RuO4, the
Hamiltonian (5) is associated with the so-called γ band
of the dxy orbitals in the Ruthenate. The signal may also
get contributions from additional quasi-1d bands associ-
ated with dxz, dyz orbitals, with hopping ∼ ε. We have
also carried out explicit calculations for the dxz and dyz
bands, however we focus here on the γ band.

To explore the role of the superconducting gap, we
calculated the RIXS intensity across the superconduct-
ing phase transition using Eq. (11). As is shown in Fig.
1, for Q = 0.15(π, 0), 0.1(π, 0), the main effect seems to
be the shift of spectral density to higher energies: the in-
tensity decreases for small energy transfer and increases
for large energy transfer, and the shift is not simply pro-
portional to ∆, another observable effect is the increase
in intensity at the peak. Calculations were carried out
at zero temperature both in the presence and without
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FIG. 1: Upper panels: RIXS intensity across the tran-
sition for a px + ipy superconductor. (Left panel:
Q = 0.1(π, 0); Right panel: Q = 0.15(π, 0)), Uc = 1ε,
for different values of ∆ (in units of ε). ∆ increases the
spectral weight for higher energy exchanges, shifts the
peak position, and increases the intensity. Notice the
shift of the peak position is not linear in ∆. Lower pan-
els: spectral shift due to core hole potential as com-
pared to Uc = 0 for ∆ = 0.05ε.

the gap (We have found that thermal corrections beyond
the presence of the gap do not play a significant role in
the RIXS signal). The lower panels in Fig. 1 exhibit
the spectral shift cause by including a core hole poten-
tial in the calculations. Introduction of a core hole tends
to shift spectral weight to higher energy exchanges due
to the available coulomb potential. This contribution is
taken into account exactly in the full formalism devel-
oped between Eqs. (3-11) and is vital for a full compari-
son with possible experiments. However, we have found
that in most of the calculations a qualitative description
of the effects of a finite gap ∆ on the intensity curves
works quite well already at Uc = 0, and will be described
below.

The spectral density flow to higher energy can be sim-
ply understood by noting that the main contributions to
RIXS intensity occur due to the generation of electron-
hole pairs where one of them is close to the Fermi level.
In the presence of pairing, states close to the Fermi level
are unavailable - the incoming photon must first over-
come the energy gap, and thus the energy difference in
the subsequent electron-hole pair is higher. On the other
hand, as we see below, surprisingly, the increase in inten-
sity at a direction Q is not directly related to the pairing
∆Q at that wave vector.

As stated above, many interesting differences in the
RIXS signal below and above the SC transition can be
observed already for small Uc. In this limit we can com-
pute the RIXS more efficiently using perturbation theory.
We consider an expansion in terms of Uc for Ffg in (2).

For a simple on-site core hole potential V we write:

G = (Hm − Eg + iΓ + ω)−1

∼ G(0) − UcG(0)(d†mdm)G(0) + ...

where G(0) = (H−Eg+iΓ+ω)−1, is the propagator with
no core-hole. From here on we take only the lowest order
contribution, where Uc = 0. The theory is then exactly
solvable in terms of the eigenstates of the static prob-
lem, and we can calculate the intensity efficiently. We
first solve the energy spectrum by switching to momen-
tum space and writing the Hamiltonian in the standard
Bogoliubov-de Gennes form:

H =
1

2

∑
k

[
d†k dk

] [ εk ∆k

∆∗k −εk

] [
dk
d†−k

]
(13)

where εk = −µ − 2t1[cos(kx) + cos(ky)] −
4t2cos(kx)cos(ky), and ∆k = 2i∆[sin(kx) + i sin(ky)], the
Hamiltonian is diagonized by a Bogoliubov transforma-
tion:

dk = u∗kbk + vkb
†
−k

d†−k = −v∗kbk + ukb
†
−k (14)

the energy of the excitation is now Ek =
√
ε2k+ | ∆k |2,

| uk |2 + | vk |2= 1, and uk

vk
= ∆k

Ek−εk , the ground state is

annihilated by all bks, and Ffg in Eq. (2) is now given
explicitly by:

F0
fg=

∑
k1,k2,r

eir·(k1−k2+Q) vk1
uk2

Ek2 + ω + iΓ
〈f |b†−k1

b†k2
|g〉(15)

From (15) we see that in the quasiparticle picture,
the contribution to RIXS intensity comes from pairs of
quasiparticles with momenta k and k + Q, energies Ek

and −Ek +∆ω. When there is no pairing term, these are
an electron and a hole, and in the presence of a pairing
term, these are the Bogoliubov quasiparticles. Going
to the superconducting phase, the energy spectrum
becomes Ek =

√
ε2k + |∆k|2, when |εk| � |∆k|, we have

Ek ∼ |εk|, which is the case in most of the Brillouin
Zone as |∆| is small compared to other band parameters.
Thus the change in the RIXS intensity comes mainly
from pairs where at least one quasiparticle is close to the
Fermi surface, there the energy spectrum and density of
states change significantly. For a pair of quasiparticles,
one close to the Fermi surface, where |εk1

| < ∆k1
, with

Ek1
∼ |∆k1

|, and Ek2
∼ εk2

, we have ∆ω ∼ |∆k1
|+ εk2

.
The same pair without the pairing term will contribute
to the intensity at ∆ω ∼ εk2

. In Fig. 2 we show the
intensity as a function of Q and ∆ω, as calculated
from the lowest order contribution (15) for the p + ip
superconducting state in comparison with its normal
state. The figure shows that for small Q, the intensity
is enhanced, which is consistent with having an energy
gap forcing larger energy transfers for two quasiparticles
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FIG. 2: RIXS intensity map on Q, ∆ω plane, in the
(11) and (10) directions (in units of π). Upper panel is
in the normal phase (∆ = 0), lower panel is the super-
conducting phase (∆ = 0.05ε). The calculation is done
using Eq. (15).

FIG. 3: RIXS intensity map for a spinless px + py type
of pairing function (∆k = i2∆(sinkx + sinky)) with
∆ = 0.05ε, in the anti-nodal (1, 1), and nodal directions
(1,−1) for Q. In the absence of pairing the two direc-
tions should have the same intensity, thus the difference
comes purely from the presence of the superconducting
gap. Surprisingly, the effect is more pronounced on the
nodal direction where ∆ = 0.

near the Fermi sea.

A yet more intriguing situation is that of a super-
conducting order like px + py which, as opposed to the
px + ipy, exhibits nodal lines. Nodal lines are unusual
but in principle allowed for p-wave systems, both for
so-called unitary and non-unitary states15. In Fig. 3 the
RIXS intensity in the nodal and anti-nodal directions,
(1,−1) and (1, 1), respectively, are depicted for such
pairing. There is a striking breaking of the symmetry
between the two directions as a result of the pairing. In
the absence of pairing, the intensity in the two directions
is the same. To see this, consider an electron-hole
pair with momenta (kx1

, ky1), (kx1
+ q, ky1 + q), and

energies ε1, ε2, which contributes to the intensity at
∆ω in the (1, 1) direction. Another electron-hole pair
with (kx1

,−ky1), (kx1
+ q,−ky1 − q), will have the

same energies, since ε(kx, ky) = ε(±kx,±ky), but will
contribute intensity in the (1,−1) direction.

The effect of the pairing term can be understood by
looking at F0

fg over the Brillouin zone. In (15), the sum-
mation over r gives a delta function and we can write:

F0
fg =

∑
k

vkuk+Q

Ek+Q + ω + iΓ
(16)

where we took |f〉 = b†−kb
†
k+Q|g〉. When the system is

unpaired, |f〉 describes a particle hole pair whose mo-
menta differ by Q and energies differ by ∆ω.

We note that the RIXS intensity is the integral over
the Brillouin zone of the function:

F(k) =
vkuk+Q

Ek+Q + ω + iΓ
δ(Ek+Q + Ek −∆ω). (17)

To identify the main contributions to the signal in mo-
mentum space we now focus on the behavior of F(k).
In practice, we replace the delta function by: δ(E) ∼
e−(E/Eres)

2/2 with Eres = 0.1ε, to account for the ex-
perimental energy resolution. The result is shown in
Fig. 4. Because of the symmetry of the Hamiltonian,
at ∆ = 0, Fk is the same at Q = (0.25, 0.25)π and
Q = (0.25,−0.25)π, up to 90◦ rotation. We can now
see why for Q = (0.25, 0.25)π, in the anti-nodal direc-
tion, the effect of pairing is weaker: Fk does not change
a lot after turning on the pairing, since the significant
regions of Fk are far from the line kx = ky where the
pairing, ∆k = 2i(sin(kx) + sin(ky)) is most significant.
However, in the nodal direction, Q = (0.25,−0.25)π, a
pairing term becomes much more relevant: Fk has sig-
nificant contributions across the line kx = ky, and in
those regions Fk is sensitive to the pairing term (noted
by green circles in the plot), resulting in a substantial
change in the RIXS intensity. We thus see that the effect
of pairing on intensity is sensitive to the direction of the
momentum transfer, and seems to be enhanced in the
nodal direction.

We have confined our discussion here to mean field
BCS and made no speculation about the suitability of
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(a) (b)

(c) (d)

FIG. 4: Fk over the Brillouin zone, for a px + py pair-
ing. The black lines show the original Fermi surface,
red regions denote large values of Fk from electron like
regions and the blue regions are the associated hole
like quasiparticles. (a) and (b): Q = (0.25, 0.25)π,
anti-nodal direction, energy transfer ∆ω = 0.35ε.
(a): ∆ = 0, and (b): ∆ = 0.05ε. (c) and (d):
Q = (0.25,−0.25)π, nodal direction, energy transfer
∆ω = 0.35ε. (c): ∆ = 0, and (d): ∆ = 0.05ε. The
region marked with green in (d) is the most affected by
the pairing.

the treatment to strongly correlated systems and it’s rel-
evance, e. g. to high-Tc superconductors. At this point,
it is worth mentioning, among the other probes of super-
conducting states, the electronic Raman scattering tech-
nique. Electronic Raman scattering essentially measures
the dynamical structure factor16:

S̃(q, ω) =
1

2π

∫ ∞
−∞

e−iωt〈ρ̃q(0)ρ̃q(t)〉, (18)

which has a very similar form to the 4-point function
measured by RIXS, and describes a similar process. In
the limit where qξ << 1, where ξ is the coherent length,
there will be a peak around 2∆, which is what we get
in the small momentum limit for RIXS using Eq. (17).
Thus, RIXS allows for a complementary study to that of
the Raman technique. It is also important to note that
RIXS is especially interesting away from the BCS picture,
where one can see contributions from both band structure
physics and collective excitations, thus to differentiate
between such effects it is of particular importance to have
a well developed picture of RIXS in the absence of collec-
tive behavior. In particular it is of great interest to see

how the present approach may affect results pertaining to
the quasiparticle interpretation of RIXS in the cuprates.
Indeed, although our treatment is within a mean-field
BCS picture, we remark that the method may also be
of relevance to the study of cuprates. Most recent stud-
ies of RIXS in the context of cuprates have largely con-
sidered cases of insulating phases17–20. However, RIXS
experiments have been performed over a wide range of
doping, including systems where itinerant electrons are
present, and a description using tools developed for insu-
lators may be insufficient. For example, in21, it is shown
that contrary to a common interpretation, for Bi− 2212,
the magnon picture fails at a nodal direction and that a
quasiparticle scenario may be an essential ingredient to
understand the RIXS data there. A different theoretical
approach starts from the itinerant electrons, considering
both direct4 and indirect RIXS processes22. It is possible
to show that within this method, the RIXS signal is sen-
sitive to particularities of the band structure23 quite far
from the Fermi level, and gives results consistent with ex-
perimental studies. Another example of consideration of
itinerant electrons are refs 21,24 where RIXS intensity has
been calculated using the random phase approximation
for Sr2IrO4.

In summary, we developed a general formalism to
treat the RIXS intensity for a quadratic Fermi theory
with arbitrary pairing. With the introduction of Majo-
rana fermions, all quadratic Hamiltonians can be han-
dled within the determinant method. The main formu-
las are summarized in the equations (3,4,11) which are
ready for immediate numerical use. Focusing on p-wave
superconducting states, we have shown within this ap-
proach several intriguing effects on the RIXS signal. The
most important findings are: a non linear shift of the
RIXS absorption peak below the superconducting tran-
sition, as function of ∆, and, for nodal p-wave pairing, a
breaking of symmetry between the nodal and anti-nodal
directions, in which, surprisingly, the effect is more pro-
nounced in the nodal direction than the anti-nodal di-
rection. We have seen pronounced effects of a gap scale
down to a few percent of the band parameters, unfor-
tunately, in actual Sr2RuO4, the pairing is believed to
be of the order 10−3ε, and the effects discussed here will
most likely be outside experimental resolution in this ma-
terial with present techniques. However, the method in-
troduced here, allows us to readily study other paired
systems. Similar effects as described for our toy-model
should be observable when carrying out RIXS measure-
ments below and above a superconducting transition.
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I. APPENDIX: CALCULATING Smn WITH
PAIRING

Here we give further details regarding the derivation
of (11). Explicitly,

Sxy = 〈eiHτdye−iHyτd†yeiHsdxeiHxtd†xe−iH(t+s)〉
= tr[eiHτdye

−iHyτd†y...

... eiHsdxe
iHxtd†xe

−iH(t+s)−βH ]/tr[e−βH ]. (19)

Here, the core-holes act at sites x and y.
We first focus on the numerator. When replacing all

the fermions with Majorana operators, we get a combi-
nation of terms such as:

Num =

= Σqmnptr[e
iHτ cqe

−iHyτ cme
iHscne

iHxtcpe
−iH(t+s)−βH ]

= Σqmnptr[cqe
X4cme

X3cne
X2cpe

X1 ]. (20)

Defining ξx = x+N , then the nonzero elements of Σ are

Σyyxx = Σξy,ξy,ξx,ξx = Σξy,ξy,x,x = Σy,y,ξx,ξx = 1
16

Σy,ξy,x,ξx = Σξy,y,ξx,ξx = −Σy,ξy,ξx,x = −Σξy,y,x,ξx = − 1
16

Σy,y,x,ξx = Σy,ξy,x,x = Σξy,ξy,ξx,x = Σξy,y,ξx,ξx = i
16

Σy,y,ξx,x = Σξy,y,x,x = Σξy,ξy,x,ξx = Σy,ξy,ξx,ξx = − i
16 .

Using the relation: cme
Ai,jcicj = eAi,jcicjcm′(e

4A)m,m′
(same indices are summed over), we can move all the
Majorana fermions to the right, yielding:

Num = Σqmnp(e
X1)p,p′(e

X2eX1)n,n′(e
X3eX2eX1)m,m′

× tr[eZijcicjcm′cn′cp′cq] (21)

where eZijcicj = eX4eX3eX2eX1 . Now the task is to
calculate traces of the form:

Tmnpq = tr[eZijcicjcmcncpcq]

= tr[eZijcicj (δmn + cmcn−cncm
2 )(δpq +

cpcq−cqcp
2 )]

= tr[eZijcicj ( 1
4MN + 1

2Mδpq + 1
2N δnm + δmnδpq)],(22)

whereM = Mijcicj . M = |m〉〈n|− |n〉〈m|, N = |p〉〈q|−
|q〉〈p|. Now that M and N are anti-symmetric matrices
and we can write M = ∂

∂αe
αM |α=0, and use the trace

formula (9) to calculate T. First we find:

tr(eZijcicj
d

dα
eαMijcicj |α=0) =

∂

∂α
tr(eZijcicjeαMijcicj )|α=0

=
1

2

√
det(1 + e4Ze4αM )tr[

4e4ZM

1 + e4Ze4αM
] |α=0

= 2
√

det(1 + e4Z){(1 + e−4Z)−1
nm − (1 + e−4Z)−1

mn} (23)

Next, we define B = 1
1+e−4Z and D = det(1+e4Z). Then,

∂

∂β

∂

∂α
tr(eZeαMeβN )

=
√
D{4tr(BM)tr(BN)

− 8tr(BNBM) + 8tr(BMN)} (24)
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The last step we take α = 0, and β = 0. Plugging the
result from the above two equations into Eq. (22), we
find:

Tmnpq =
√
D{(Bnm −Bmn + δmn)(Bqp −Bpq + δpq)

+2Bqm(δnp −Bnp) + 2Bpn(δmq −Bmq)
−2Bpm(δnq −Bnq)− 2Bqn(δmp −Bmp)} (25)

Noticing that since Z is anti-symmetric, Bnm + Bmn =
δmn, we get:

Tmnpq = 4
√
D(BnmBqp +BqmBpn −BpmBqn) (26)

We plug (26) back into Eq.(21):

Sxy = (27)

Σqmnp(e
X1)p,p′(e

X2eX1)n,n′(e
X3eX2eX1)m,m′Tm′n′p′q.

We see that Sxy is comprised of 3 terms corresponding
to the terms on the right hand side of Eq. (26). We first
focus on the first term:

S1 = (28)

4Σqmnp
√
DBnmBqp(eX1)p,p′(e

X2eX1)n,n′(e
X3eX2eX1)m,m′ .

It will be convenient to denote K ≡
e−4ihnτe4ihse4ihmte4i(τ−t−s)h , and Nβ ≡ 1

1+e4βh
.

With this notation we have eZ = K
Nβ

1−Nβ ,

B = (1 +
1−Nβ
Nβ

K−1)−1 . And we find:

S1 = Σqmnp(e
X3eX2eX1BT (eX2eX1)T )mn(eX1BT )pq,

(29)
where T is the matrix transpose. In order to get conve-
nient expressions in the low temperature limit (β →∞),
we have to calculate eX1B(eX1)T . Using that for anti-
symmetric matrix h, e−h = (eh)T , we write:

e−4βhBT (e−4βh)T =
Nβ

1−Nβ

1−Nβ
Nβ

K−1

1 +
1−Nβ
Nβ

K−1

1−Nβ
Nβ

= K−1 1

Nβ + (1−Nβ)K−1
(1−Nβ)

=
1

1−Nβ +NβK
(1−Nβ),

and

e−4βhBT =
Nβ

1−Nβ
1

1 +K
Nβ

1−Nβ

= Nβ
1

1−Nβ +KNβ
.

Using the above results and summing over m,n, p, q , we
have:

S1 =
√

det(F )(Λy,x + Λξy,ξx − iΛξy,x + iΛy,ξx)

× (Γy,x + Γξy,ξx + iΓξy,x − iΓy,ξx) (30)

where

Λ = eihseihxtei(τ−t−s)hG−1(1−Nβ)e−i(τ−t−s)he−ihxt

Γ = ei(τ−t−s)hNβF
−1, (31)

and F = 1−Nβ +KNβ , G = 1−Nβ +NβK. Similarly,
the second term is written as:

S2 = Σqmnp(e
X2eX1BT e−X1)pn(eX3eX2eX1BT )mq

= (Λ(2)
y,y + Λ

(2)
ξy,ξy + iΛ

(2)
ξy,y − iΛ

(2)
y,ξy)

× (Γ(2)
x,x + Γ

(2)
ξx,ξx + iΓ

(2)
ξx,x − iΓ

(2)
x,ξx), (32)

where Λ(2) = e−ihsΛeihxt and Γ(2) = eihseihxtΓ. For the
third term S3,

S3 = Σqmnp(e
X2eX1BT )nq(e

X3eX2eX1BT e−X1)mp

= (Λ(3)
x,y − Λ

(3)
ξx,ξy − iΛ

(3)
ξx,y − iΛ

(3)
x,ξy)

× (Γ(3)
x,y − Γ

(3)
ξy,ξx + iΓ

(3)
ξx,y + iΓ

(3)
x,ξy) (33)

where Λ(3) = Λeihxt and Γ(3) = eihxtΓ.
The terms S2 and S3 have a special behavior when ei-

ther the core-hole potential or the superconducting pair-
ing vanishes as follows:

(I) S2 does not contribute to the inelastic signal when
the core-hole potential Uc is 0: In that case, K = I, and
S2 only depends on t and τ , so S2 only contributes to the
elastic scattering.

(II) S3 vanishes when there is no pairing, in that case
the matrices Λ(3) and Γ(3) have the special property that
Λ(3)(x, y) = Λ(3)(ξx, ξy), Λ(3)(x, ξy) = −Λ(3)(ξx, y), so
that S3 vanishes.


