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An unusual form of superconductivity, called Ising superconductivity, has recently been uncovered in mono-
and few-layered transition metal dichalcogenides. This 2D superconducting state is characterized by the so-
called Ising spin-orbit coupling (SOC), which produces strong oppositely oriented effective Zeeman fields per-
pendicular to the 2D layer in opposite momentum space valleys. We examine the Yu-Shiba-Rusinov (YSR)
bound states localized at magnetic impurities in Ising superconductors and show that the unusual SOC man-
ifests itself in unusually strong anisotropy in magnetic field response observable in STM experiments. For a
chain of magnetic impurities with moments parallel to the plane of Ising superconductors we show that the
low energy YSR band hosts topological superconductivity and Majorana excitations as a direct manifestation of
topological effects induced by Ising spin-orbit coupling.

I. INTRODUCTION.

An unusual form of Cooper pairing, called Ising pair-
ing, has recently been uncovered in two-dimensional super-
conducting states in mono- and few-layered transition metal
dichalcogenides (TMDs). TMDs are materials with a 2D
honeycomb lattice similar to graphene1,2, but with broken in-
plane mirror symmetry, resulting in a special type of intrinsic
spin-orbit coupling (SOC), called Ising SOC3–7. Ising SOC
acts as an effective Zeeman field which strongly polarizes the
electron spins perpendicular to the 2D plane. This is in stark
contrast to the more familiar Rashba SOC, which produces a
2D helical liquid with electron spins polarized in the in-plane
directions. In TMDs the spin polarizations due to Ising SOC
are in opposite directions near opposite momentum space val-
leys (K and −K), keeping time reversal symmetry intact, un-
like in the case of a conventional Zeeman coupling. In this
work, we describe unusual effects of SOC on 2D supercon-
ductivity in TMDs (called Ising superconductivity8–14), in-
cluding predicting a topological superconducting (TS) phase
with Majorana fermion excitations for a chain of magnetic
impurities with moments parallel to the 2D plane. Our the-
oretical predictions, besides being of immediate experimental
interest, makes the study of Ising superconductivity important
for fundamental physics as well as applications.

Since in TMDs the spin polarizations in opposite momen-
tum space valleys are opposite, Ising SOC favors inter-valley
pairing, where electrons with opposite momenta and spin
from valleys centered around K and −K form Cooper pairs
(Ising pairing)12–16. For conventional spin-singlet supercon-
ductors it is well known that superconductivity is quenched
under the application of a magnetic field. Ignoring orbital ef-
fects of the magnetic field, the quenching of superconductiv-
ity is due to Zeeman coupling of the magnetic field to elec-
tron spins, and can be estimated by equating the binding en-
ergy of Cooper pairs with Zeeman splitting (Pauli limit). In
Ising superconductivity the intrinsic SOC protects the elec-
trons from alignment with external magnetic field when it is
applied parallel to the plane. This has been experimentally
confirmed with recent observations of in-plane upper critical
field of more than six times the Pauli paramagnetic limit in
superconducting MoS2 and NbSe2 samples12–14. In this work
we discuss the experimental signatures of the unusual Ising

SOC on magnetic impurity induced Yu-Shiba-Rusinov (YSR)
bound states and the emergence of topological superconduc-
tivity and Majorana fermion excitations in YSR bands in two-
dimensional Ising superconductors.

Magnetic impurities in superconductors can support
sub-gap bound states known as Yu-Shiba-Rusinov (YSR)
states17–19. The mid-gap YSR bound states emerging due to
a single localized magnetic impurity located on a s-wave su-
perconductor can give rise to a zero bias peak (ZBP) in the
local density of states (LDOS) measurement, signaling a level
crossing and change in ground state parity of the many-body
wave function20. This transition occurs when the impurity
strength J is tuned near a critical value Jc. The ZBPs in-
duced by YSR states can be split by an external Zeeman field
which couples to the spin 20. Here we show that the ZBPs aris-
ing from YSR states localized at magnetic impurities in Ising
superconductors are robust to an unusually high in-plane mag-
netic field. We demonstrate with a T -matrix calculation that
Ising SOC is directly responsible for the anomalously large
critical in-plane magnetic field where the ZBP splits away
from zero energy. This behavior, which correlates with the
anomalously large anisotropy in upper critical fields between
magnetic fields applied perpendicular and parallel to the 2D
plane12–14, can be tested in STM experiments. Moreover,
for a chain of a dilute concentration of magnetic impurities
with moments parallel to the plane of Ising superconductors,
we establish the emergence of a topological superconducting
phase with end-state Majorana fermions by numerical diago-
nalization of the Bogoliubov de-Gennes (BdG) equations. In
the complementary band (or ‘wire’) limit, where the impurity
orbitals of neighboring adatoms strongly overlap, the impurity
chain realizes a ferromagnetic wire with moments parallel to
the plane of the superconductor. Since Ising SOC engenders
a triplet pair potential with Cooper pair spins parallel to the
plane16, in this case the ferromagnetic wire becomes a topo-
logical superconductor (in BDI class) by proximity effect21,22.
This is similar to the case of a half-metal on Ising supercon-
ductor discussed elsewhere16. We thus establish Ising super-
conductors with magnetic adatoms with moments parallel to
the plane as a robust platform for topological phenomena and
Majorana fermions. That moments need to be parallel to the
plane is a direct consequence of Ising SOC (which is perpen-
dicular to the plane), in marked contrast to superconductors
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with Rashba SOC where adatom moments need to be perpen-
dicular to the plane to support topological phases and Majo-
rana fermions.

This paper is organized as follows: In Section II we in-
troduce the Hamiltonian for MoS2 as a prototype for TMD
systems and examine its Fermi surface. Even though we start
with a Hamiltonian (Eq. 2) that has only a spin-singlet s-wave
order parameter, because of the spin-orbit coupling a spin-
triplet p-wave term is generated in the Green’s function of the
superconductor (Eq. 6) 16,23–25. In Section III we compute the
LDOS for a localized Yu-Shiba-Rusinov state, and study its
response to an external magnetic field. In Section IV we dis-
cuss how a YSR band, formed with a dilute magnetic impurity
chain, can host topological superconductivity. Using the BdG
equations for a chain of magnetic atoms embedded in a host
Ising superconductor, we explicitly demonstrate the existence
of Majorana fermion excitations by exact numerical diagonal-
ization and also by mapping on the one dimensional Kitaev
model. We end with discussions and conclusion in Section V.

II. HAMILTONIAN

We start with the Hamiltonian for a representative Ising su-
perconductor, MoS2, which in the basis Ψ†k = (c†k,↑, c

†
k,↓)

T

can be written as12,16 H =
∑
k

Ψ†kH0(k)Ψk, where

H0(k) = ζkσ0 + Fkσz (1)

The Pauli matrix σz acts in the spin space and σ0 ≡ I2. The
operator ck,σ annihilates an electron with spin σ and mo-
mentum k. The function ζk = t|2 cos(kx

√
3/2)eiky/2 +

e−3iky/2| − µ, is the non-interacting dispersion for MoS2

which generates six valley points in the first Brillouin zone1

(K points), where ζK − µ = 0. The function Fk =

α(sin(kx) − 2 cos(
√

3)ky/2) sin(kx/2)) is the Ising SOC
term12,14,16. Importantly, F−k = −Fk, and therefore the
system lacks inversion symmetry. This particular form of
the Ising SOC term Fk suffices to discuss the low energy
physics in the vicinity of each valley point, and reproduce
the Fermi surface of MoS2. The nearest neighbor hopping
integral t is fixed to t = 0.5eV in this paper. For all our cal-
culations we will choose the SOC strength α = 8meV , and
µ = 0.25t12. Figure 1 shows the Fermi surface for MoS2

as obtained from Eq. 1. The spin degeneracy is lifted by the
Ising SOC, producing spin-polarized Fermi pockets. Since the
SOC strength changes sign near each valley, the spin splitting
is also opposite at each valley point. At valley points +K
and −K, the electrons are subjected to an effective Zeeman
field in opposite directions (+αFK and −αFK). One can
approximate the low-energy Hamiltonians near K and −K
as Hk=k′+εK ≈ k′2/2m + εα|FK|, where ε = +1/−1, for
+K/−K respectively. However, in this paper we will con-
sider the full band structure given by Eq. 1 for all our calcula-
tions.

We can now write down the mean-field superconducting
Hamiltonian in the presence of a spin-singlet s−wave super-

FIG. 1. Top panel: Fermi surface of MoS2 at µ = 0.25t in the
presence of Ising SOC with strength α = 8meV . The Ising SOC,
which acts like an effective Zeeman field, generates spin-polarized
Fermi pockets (‘white: spin up’, ‘black: spin down’) in the vicinity
of six valley points (K points) labeled from ‘a’ to ‘f’. Since the
SOC strength changes sign at each valley, the spin-splitting is also
opposite near each valley point. Bottom panel: Fermi surfaces near
two valley points ‘a’ and ‘d’ have been zoomed to clearly illustrate
the opposite spin-splitting occurring near these two points.

conducting order parameter (∆) as:

Hk =

(
H0(k) ∆σ0

∆σ0 −σyH∗0 (−k)σy

)
(2)

Eq. 2 is written in the Nambu basis Ψ†k =

(c†k,↑, c
†
k,↓, c−k,↓,−c−k,↑)T . For our calculations, we

will use ∆(T = 0) ∼ 1.7kBTc, for a fixed Tc ∼ 10K
throughout in this paper12.

We now introduce a single localized magnetic impurity
with a spin S. Further, we assume the impurity to be purely
classical. The impurity Hamiltonian, which describes the in-
teraction between the conduction electrons and the localized
magnetic moment, can be written as20

Himp = −JS · (Ψ†(r = R)τ0σ̂Ψ(r = R)), (3)

where Ψ(r) is the Fourier transform of Ψk, R is the location
of the impurity, and J is the exchange strength. The Pauli ma-
trices σ and τ act in spin and particle-hole space respectively.
For simplicity, we will set R = 0.

III. YSR STATES AND ANOMALOUS MAGNETIC FIELD
RESPONSE

Magnetic moments have pair-breaking effects on a super-
conducting system, and as a result localized sub-gap excita-
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tions emerge17–19. This section is devoted to studying prop-
erties of the Shiba state with a single magnetic impurity
on superconducting MoS2 surface. The T -matrix approxi-
mation is employed to compute the local density of states
(LDOS) of YSR states bound at the impurity site20,26. In
momentum space, the impurity potential can be written as:
Himp =

∑
k,k′

Ψ†k′Vk,k′Ψk, where Vk,k′ is the scattering poten-

tial: Vk,k′ = −JSτ0σ̂. The T -matrix is the solution of the
following equation20:

T (k,k′, ω) = Vk,k′ +
∑
k′′

Vk,k′′G0(k′′, ω)T (k′′,k′, ω)(4)

In Eq. 4,G0(k, ω) is the Green’s function for the clean system
without the magnetic impurity. Once the T -matrix is obtained,
the Green’s function in the presence of the impurity is then
given by20

G(r, r′, ω) = G0(0, ω) +G0(r, ω)T (ω)G0(−r′, ω), (5)

where G0(r, ω) =
∑
k

G0(k, ω)eik·r. The spin-resolved

LDOS can be computed as Nσ,r = − 1
π Im Gσ,σ(r, r, ω). Fig-

ure 2a shows the zero bias peak (ZBP) in the density of states
of the YSR state for a magnetic impurity with moment per-
pendicular to the plane, occurring at a particular value of the
impurity exchange strength Jc. We find similar ZBPs also
for magnetic impurities with moments parallel to the plane.
Though Jc depends on the material parameters, we specify
that Jc = Jc(α), where α measures the strength of the Ising
SOC. Therefore in Figure 2, the impurity strength has to be
tuned to Jc(α) for different values of the SOC parameter to
obtain a ZBP.

The effect of an external Zeeman field on these ZBPs can
now be studied. Mathematically, the effect of an external Zee-
man field can be introduced by adding the term HZ = h ·στ0
to the Hamiltonian H0(k) in Eq. 1. We will assume that the
superconducting pairing gap remains unchanged on applica-
tion of external magnetic field. However relaxing this assump-
tion does not change our results qualitatively. First, we fix the
impurity spin S = |S|ẑ, and therefore the Shiba bound states
are also spin-polarized along the z direction. We find the ef-
fects of an applied Zeeman field on the impurity induced ZBPs
to be highly anisotropic in the presence of Ising SOC (see
Fig. 2). For instance when the impurity spin points in the z
direction, as shown in Fig. 2a, a ZBP appears for a critical im-
purity strength J = Jc(α), where α is the Ising SOC strength.
As shown in Fig. 2b, an applied magnetic field parallel to the
impurity spin, splits the impurity induced ZBP for a magnetic
field strength as low as ∼ 1 T . However as shown in Fig. 2c,
when the applied field is parallel to the plane of the supercon-
ductor (perpendicular to the impurity spin), the magnetic field
required to split the ZBP is as high as ∼ 32 T . In the inset of
Fig. 2c, we also show the extent of ZBP splitting for Bx = 32
T and α = 0. This dramatic enhancement of the anisotropy
between the effects of the magnetic field when it is applied
parallel and perpendicular to the SOC correlates well with the
similar anisotropy in upper critical magnetic field seen in the
recent experiments12–14.

FIG. 2. (color online). Spin-resolved LDOS in arbitrary units, for a
system with magnetic impurity located at r = 0. For plots (a)-(c), the
impurity spin is pointing in the z direction, for plot (d), the impurity
spin points in the x direction. (a) ZBP occurring at a critical value
of impurity strength Jc = Jc(α) for both spin-up and spin-down
components, with α = 8meV . (b) A perpendicular magnetic field as
small as 1T begins to split the ZBP. (c) The in-plane critical magnetic
field has increased to 32T , when α = 8meV . The inset shows split
ZBP at the same field when α = 0. (d) The in-plane critical magnetic
field (for an impurity spin in x direction) has increased to 25T , when
α = 8meV . Then inset shows split ZBP at the same field when
α = 0. We have defined the critical field as the value of magnetic
field where the ZBP splits from ω = 0 to ω = ±0.05∆.

Some amount of anisotropy in the magnetic field response
of an impurity induced ZBP is expected even without spin-
orbit coupling. This can be qualitatively explained form a
perturbative argument. When the applied magnetic field is
parallel to the impurity spin, first order corrections due to the
applied field to the energies of the YSR states are finite, and
the critical magnetic field for ZBP splitting is small. However,
when the field is perpendicular to the impurity spin, given that
the YSR states are polarized in the direction of the impurity
spin (in the limit of zero field), the first order corrections to
the YSR state energies vanish. In this case a larger applied
field is necessary for splitting of the ZBP due to second order
effects. We see this anisotropy of magnetic field response of
the YSR states even for α = 0 by obtaining different criti-
cal fields (with ratio ∼ 1 : 8), for ZBP splitting for the field
directions parallel and perpendicular to the impurity spin. In
the presence of non-zero α (∼ 8meV ), the spins are strongly
polarized perpendicular to the x− y plane and the anisotropy
of the magnetic field response of the YSR states, as revealed
by critical fields of the ZBP splitting, dramatically enhances
as shown in Fig. 2. This behavior is consistent with a sim-
ilar effect discussed in references [12–14] for upper critical
magnetic fields of the superconducting states.
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IV. TOPOLOGICAL SUPERCONDUCTIVITY IN SUB-GAP
YSR BAND

Motivated by recent experiments on topological supercon-
ductivity on magnetic impurity chains embedded on a super-
conductor27,28, we wish to examine the possibility of topo-
logical phenomena in dilute chain of magnetic impurities de-
posited on Ising superconductors. First we will discuss the
case of a single magnetic impurity, and then extend our dis-
cussion to an 1D array of magnetic impurities arranged in
a chain-like fashion. We begin with writing the momentum
space Green’s function for the Hamiltonian in Eq. 2, which
can be expressed as

G0(k, ω) =


ω+ζk+Fk

A+ 0 ∆
A+ 0

0 ω+ζk−Fk

A− 0 ∆
A−

∆
A+ 0 ω−ζk−Fk

A+ 0

0 ∆
A− 0 ω−ζk+Fk

A−


(6)

where

A± = ω2 − ζ2
k − F 2

k ∓ 2Fkζk −∆2 (7)

In obtaining Eq. 6 we have used the fact that the Ising SOC
function Fk is inversion asymmetric. As a result of Ising SOC,
the Green’s function contains a mixture of both singlet and
triplet terms16,24,25 in the superconducting order parameter, as
A+ 6= A− when F (k) 6= 0. The spin-triplet pairing correla-
tion is given by ∆T (k, ω) = 4∆Fkζk/A

+A−. The d-vector,
which parametrizes the spin-triplet pairing is parallel to the
direction of Ising SOC.

The Bogoliubov-de Gennes equation for the superconduct-
ing Hamiltonian (Eq. 2) in the presence of a single localized
impurity potential (Eq. 3) is: (H +Himp)Ψ(r) = ωΨ(r). We
will be interested in impurity states which are deep in the gap:
|ω| � ∆. The BdG equation can be rewritten in the following
form23,29

(I +G0(r = 0, ω)JSτ0σ̂)Ψ(r = 0) = 0, (8)

whereG0(r, ω) is the real space Green’s function obtained by
Fourier transforming Eq. 6. We need to evaluate the following
integrals in order to calculate G0(r = 0, ω) from Eq. 6

J±0 =
∫ [d2k]

A± ; I±0 =
∫ [d2k]ζk

A± ;K±0 =

∫
[d2k]Fk

A±
(9)

Using the above definitions and Eq. 6, the Green’s function
G0(r = 0, ω) takes the form G0(0, ω) =


ωJ
+
0 + I

+
0 + K

+
0 0 ∆J

+
0 0

0 ωJ
−
0 + I

−
0 −K

−
0 0 ∆J

−
0

∆J
+
0 0 ωJ

+
0 − I

+
0 −K

+
0 0

0 ∆J
−
0 0 ωJ

−
0 − I

−
0 + K

−
0


(10)

From the functional forms of Fk, ζk and A±, discussed in
Eq. 1 and Eq. 7, we evaluate the integrals J±0 , I±0 , and K±0
numerically in the limit ω → 0, to obtain G0(0, ω). We note
that J+

0 = J−0 , because Fk is an odd function of k. Therefore,
for a single magnetic impurity with Ising SOC, the problem is

FIG. 3. (color online). Energy spectrum for a single localized impu-
rity YSR state as a function of the impurity strength J , as obtained by
numerical solution of Eq. 11. The inset shows the four energy levels
for a wide range of J . The main figure illustrates the two low-energy
levels which cross each other at zero energy at a certain critical value
of impurity strength Jc. The spin of the impurity is assumed to be
aligned along the x-direction.

identical to the case of a magnetic impurity in an s-wave su-
perconductor without SOC23. Due to the localized δ-function
nature of the magnetic impurity potential, the integrals involv-
ing the spin-triplet pairing terms in the Greens function van-
ish.

Once G0(r = 0, ω) is obtained numerically, we can then
solve Eq. 8 for the impurity bound state Ψ(r = 0) (which is
the YSR state). In our analysis, we limit ourselves only upto
ω- linear terms, since we are interested in solutions which lie
close to the center of the superconducting gap. Denoting the
matrixG0(r = 0, ω)JSτ0σ̂ in Eq. 8 as ωL+M (the matrices
L and M are determined numerically and are now indepen-
dent of k and ω, and only depend on the material parameters),
the subgap spectrum for the YSR state is then given by23

−(L)−1(I +M)Ψ(0) = ωΨ(0) (11)

Eq. 11 can be directly solved for Ψ(0) and the energy spec-
trum ω. Also, Eq. 11 can be solved to obtain the critical ex-
change strength Jc, such that when J = Jc, the YSR state
spectrum admits a solution at exactly zero energy (ω = 0).
In Figure 3 we have plotted the energy levels as a function
of the impurity strength J , obtained by numerically solving
Eq. 11. The figure highlights the existence of a critical impu-
rity strength Jc, where two mid-gap energy levels cross each
other at ω = 0. The inset of Fig. 3 also shows the two energy
levels which are away from mid-gap region. This mid-gap
zero energy YSR bound state emerging due to a single local-
ized magnetic impurity located on a s-wave superconductor
gives rise to a ZBP in the local density of states measurement
as discussed in Sec. III.

In order to discuss topological superconductivity, we will
now consider a ferromagnetic chain of impurities embedded
on superconducting MoS2 substrate. Assuming the chain runs
along the x direction, the impurity Hamiltonian becomes

Himp =
∑
i

[Ψ†(xi)(−JSτ0σ̂)Ψ(xi)] (12)
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FIG. 4. (color online). Top panel: Schematic diagram of a ferromag-
netic impurity chain embedded on superconducting MoS2 surface,
with spins pointing parallel to the plane. The effective tight-binding
model can be mapped onto the 1D Kitaev model resulting in local-
ized Majorana modes at the two ends. Bottom panel: Energy spec-
trum vs. eigenvalue index for the real space BdG equation (Eq. 16
written in the basis of individual YSR states), illustrating an induced
superconducting gap with two zero energy Majorana modes. On the
right panel, the corresponding wavefunctions are plotted showing lo-
calization near the edges. The number of impurity sites was taken to
be N = 72, with impurity spacing d = 4a, where a is the lattice
spacing. Further, the spins of the impurities were aligned along the x
direction, and only nearest neighbor coupling between the impurity
modes was assumed. The value of critical exchange strength chosen
was J = 0.3925.

The BdG equation (Eq. 8, 11) can now be generalized to23,29

(I + ωL+M)Ψ(xi) = −
∑
j 6=i

Iij(JSτ0σ̂)Ψ(xj), (13)

where Iij is the correlator Iij = G0(xi−xj , ω) which gener-
ates an effective coupling between the individual YSR states
at impurity site xi and xj . We will work in the regime where
the decoupled impurity states occur at energies close to ω = 0.
Such a condition is guaranteed to occur when the exchange
strength is tuned near the critical impurity exchange strength
Jc, as already highlighted in Figure 3. Now when the coupling
Iij is turned on, it hybridizes the YSR states to drift away from
ω = 0 to form a YSR band near the mid-gap. Analogous to
the single impurity problem, we need to evaluate the follow-
ing integrals in order to compute Iij in the limit ω → 023,29

J±1 =
∫ [d2k]eikx(xj−xi)

A±

I±1 =
∫ [d2k]eikx(xj−xi)ζk

A±

K±1 =
∫ [d2k]eikx(xj−xi)Fk

A± (14)

The coupling Iij = G0(xi − xj , ω) is then given by

Iij =


I+
1 +K+

1 0 ∆J+
1 0

0 I−1 −K
−
1 0 ∆J−1

∆J+
1 0 −I+

1 −K
+
1 0

0 ∆J−1 0 −I−1 +K−1


(15)

In contrast to the single magnetic impurity problem discussed
earlier, the presence of Ising SOC significantly affects the
BdG equations. When the Ising SOC parameter α 6= 0,
J+

1 6= J−1 , implying a non-zero superconducting triplet corre-
lation in the Green’s function G0(xi− xj). This feature gives
rise to a non-zero effective p-wave superconducting compo-
nent as required for topological superconductivity. The cou-
plings Iij can been computed using numerical integration over
the 2D Brillouin zone. The BdG equation (Eq. 13) can then be
rewritten in the following form after evaluating the couplings
in the limit ω → 0.

− (L)−1(I +M)Ψ(xi)

+
∑
j 6=i

(−L)−1Iij(ω → 0)(JSτ0σ̂)Ψ(xj) = ωΨ(xi)(16)

This equation can now be projected on to the basis of indi-
vidual YSR states, to obtain an effective tight-binding Hamil-
tonian which can be mapped on to a 1D Kitaev model for
a topological superconductor with long range couplings be-
tween various impurity sites23,29,30.

Heff =
∑
i

∑
j 6=i

h0
i + hnij + ∆eff

ij (17)

The term h0
i = εγzβ

+ + µγzβ
−, where ±ε and ±µ ≈ 0 are

now the energy levels of the uncoupled YSR states (as illus-
trated in Figure 3, not to be confused with ε and µ in Sec II,
where they stand for the valley index and chemical potential
respectively). The Pauli matrix β now acts on the inter ε-µ
energy space, and γ acts on the intra ε-µ energy space. The
energy levels ±µ lie close to the midgap, while the levels ±ε
are away from the midgap. Therefore these form the ε band
(or the β+ band) and the mid-gap µ band (or the β− band,
where µ ≈ 0), in the absence of any couplings. The term
hnij is the effective hopping integral between sites i and j, and
∆eff
ij is the induced effective superconducting parameter. We

evaluate these terms and retain couplings only upto nearest
neighbor for our calculations. We find hni,i+1 to be of the form
hni,i+1 = wβ−+vβ+, where w and v have been evaluated nu-
merically. Furthermore, ∆eff

i,i+1 is evaluated to be of the form
∆eff
i,i+1 = δ+β+ + δ−β−, which is the p-wave superconduct-

ing order parameter, also inspected to be non-vanishing if the
Ising SOC α 6= 0, and spins of the magnetic impurities lie par-
allel to the MoS2 plane. Physically, this is expected because
a Zeeman type field (which is generated by the impurity spins
in present case) parallel to the spin-orbit field will not create
a quasiparticle gap in the spectrum and thus will not induce
topological superconductivity akin to the 1D semiconductor
Majorana wire platform.
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On numerical diagonalization of the real space BdG equa-
tion (Eq. 16 projected onto individual YSR states), the midgap
YSR states (β− band) hybridize away from ω ≈ 0, however
two protected Majorana edge modes, and an induced super-
conducting gap appear in the YSR band, when the impurity
spins are aligned along the x direction. Figure 4 shows the
energy spectrum, illustrating an induced superconducting gap
with two zero energy Majorana modes, for a 1D chain of 72
sites. The corresponding wave-functions show localization
near the edges of the chain. Though, for our calculations we
assumed only nearest neighbor interaction between the sites,
we have checked that the emergent topological superconduc-
tivity remains intact by including longer range hopping and
pairing terms in the effective tight-binding Hamiltonian.

V. CONCLUSIONS

TMDs are materials with 2D honeycomb lattice similar to
graphene, but have broken in-plane mirror symmetry, result-
ing in a special type of intrinsic spin-orbit coupling, called
Ising SOC. Ising SOC acts as an effective Zeeman field which
strongly polarizes the electron spins perpendicular to the 2D
plane. Interestingly, the spin polarization is not constant in
momentum space, but rather changes sign across the Γ point,
which gives rise to a very high in-plane critical magnetic field
in superconducting TMDs12–14. In this work we showed that
the magnetic field response of STM zero bias peaks from mag-
netic adatoms in Ising superconductors is strongly anisotropic
(with critical Zeeman fields for ZBP splitting applied parallel
and perpendicular to Ising SOC being in the ratio ∼ 1 : 32).
This behavior of YSR states, a direct consequence of Ising
SOC, is of immediate experimental interest. Furthermore,
this response also correlates well with the anomalously large
anisotropy in upper critical fields between directions perpen-
dicular and parallel to the 2D plane as revealed in recent ex-
periments.

Further, we show the emergence of a topological supercon-
ducting phase in the impurity YSR band for a dilute concen-
tration of magnetic impurities arranged in a chain-like config-

uration with moments parallel to the plane of the supercon-
ductor. In the topological superconducting phase, zero en-
ergy Majorana fermions appear at the ends of impurity chain
and can be accessed by scanning tunneling microscopy ex-
periments as in the recent experiments on chains of Iron im-
purities on spin-orbit coupled Pb superconductor27. In con-
trast to the case of the Pb superconductor we find that in order
to support a topological superconducting phase the magnetic
moments of the impurities embedded in Ising superconduc-
tors need to be parallel (or have a parallel component) to the
plane of the superconductor. This is a direct consequence of
Ising SOC which consists of an effective k-dependent Zee-
man field perpendicular to the 2D plane. That the direction
of the SOC should be transverse to the direction of the Zee-
man field (which in the present case is given by the mag-
netic moments) for the existence of the topological super-
conducting phase is also true in the models of topological
superconducting phase in spin-orbit coupled superconductor-
semiconductor heterostructures31–34.

In this paper we considered the limit of dilute concentra-
tion of impurities embedded in the Ising superconductor. In
the complementary band (or ‘wire’) limit, the impurity chain
realizes a topological superconductor (in BDI class) by prox-
imity effect21,22, similar to the case of a half-metal16. We thus
establish Ising superconductors with magnetic adatoms with
moments parallel to the host superconductor as a robust plat-
form for topological superconductivity and Majorana excita-
tions which can be probed in STM experiments.
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Note added: Recently another manuscript (Ref 35) ap-
peared which draws similar conclusions. In Ref. 35 it is also
concluded that TMDs can support a topological superconduct-
ing state in the YSR chain, as long as the magnetic moments
have a finite in-plane component. This result is consistent with
our result, that adatom moments must be parallel (or have a
parallel component) to the 2D plane. This is a crucial point
in both works and the important difference from a Rashba su-
perconductor. Additionally, we also study the magnetic field
response of STM zero bias peaks from magnetic adatoms in
Ising superconductors.
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