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We present a diagrammatic theory for determining consistent electromagnetic response functions
in strongly correlated fermionic superfluids. While a gauge invariant electromagnetic response is well
understood at the BCS level, a treatment of correlations beyond BCS theory requires extending this
theoretical formalism. The challenge in such systems is to maintain gauge invariance, while simul-
taneously incorporating additional self-energy terms arising from strong correlation effects. Central
to our approach is the application of the Ward-Takahashi identity, which introduces collective mode
contributions in the response functions and guarantees that the f -sum rule is satisfied. We outline a
powerful method which determines these collective modes in the presence of correlation effects and
in a manner compatible with gauge invariance. Since this method is based on fundamental aspects
of quantum field theory, the underlying principles are broadly applicable to strongly correlated su-
perfluids. As an illustration of the technique, we apply it to a simple class of theoretical models
that contain a frequency-independent order parameter. These models include BCS-BEC crossover
theories of the ultra cold Fermi gases, along with models specifically associated with the high-Tc
cuprates. Finally, as an alternative approach, we contrast with the path integral formalism. Here,
the calculation of gauge invariant response appears more straightforward. However, the collective
modes introduced are those of strict BCS theory, without any modification from additional corre-
lations. As the path integral simultaneously addresses electrodynamics and thermodynamics, we
emphasize that it should be subjected to a consistency test beyond gauge invariance, namely that
of the compressibility sum-rule. We show how this sum-rule fails in the conventional path integral
approach.

I. INTRODUCTION

There has been a recent focus in the literature
on strongly correlated superconductors and superflu-
ids. This interest has arisen in two different contexts,
via ultra cold atomic Fermi gases1,2 and via high-Tc
superconductors3–6. A major challenge in studying these
two different systems is to arrive at correct expressions for
the electromagnetic (EM) properties, such as the super-
fluid density and the density-density correlation function,
which characterize superconductors and superfluids.

In strict BCS theory there are two different conven-
tional techniques for addressing electromagnetic response
while ensuring gauge invariance: the path integral7–9 and
the Ward-Takahashi identity10. The first of these meth-
ods depends on the derivation of a generating functional
while the second depends on the form of the diagram-
matic self energy. This body of work has enabled a com-
plete understanding of the gauge invariant electromag-
netic response at the BCS level. It does not, however,
answer the important questions about how to incorpo-
rate stronger correlation effects.

Studies of high-Tc superconductors, which necessarily
require a beyond-BCS formalism, are better suited to the
Ward-Takahashi based approach. These studies focus on
different models for the self energy associated with a nor-
mal state that includes pairing, known as the pseudogap
phase3–6. This correlation contribution to the self energy
has been extensively characterized11 above the transition
temperature Tc. In the superfluid phase, presumably one
adds to this normal state self energy3,6 an additional
BCS self energy contribution. The challenge in study-

ing strongly correlated superfluids, however, is ensuring
gauge invariance. This means that the self-consistent col-
lective modes, compatible with gauge invariance, must
be properly included. In this paper we show that a dia-
grammatic self energy and the gap equation provide all
the ingredients required to unambiguously establish the
exact electromagnetic response at all temperatures. Our
main goals are:

(i) To show how to arrive at the exact gauge in-
variant electromagnetic response of strongly correlated
superfluids. This is based upon an implementation of
the Ward-Takahashi identity given an arbitrary diagram-
matic scalar self energy.

(ii) To provide a powerful method for obtaining the col-
lective modes in a gauge invariant manner for strongly
correlated superfluids. This is based on the gap equation,
and the results derived above in (i).

The electrodynamics of superconductors is also widely
addressed via the path integral approach7–9 which re-
quires the introduction of Gaussian-level (beyond saddle
point) fluctuations. Incorporating gauge invariance is rel-
atively straightforward, which is in large part due to the
fact that the collective modes that enter at this level and
beyond are those of strict BCS theory12. We shall later
revisit this conventional calculation of response functions
at the strict BCS level, while simultaneously considering
thermodynamics. We find there is a serious shortcoming
that has not previously been identified in the literature.
This arises from an inconsistency between electrodynam-
ics and thermodynamics, which is manifested as a failure
of the compressibility sum-rule.

Our emphasis here is not on a critique of previous
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work since, quite generally, in the literature the fo-
cus has been on either the thermodynamics2 or the
electrodynamics7–9, but not on both simultaneously.
Nevertheless, the violation of the compressibility sum-
rule is a serious shortcoming. The source of this sum-rule
violation comes from the fact that the BCS-level electro-
dynamics is derived by incorporating beyond-BCS Gaus-
sian fluctuations. This would seem to require that we
also include Gaussian fluctuations in the number equa-
tion. However, this in fact leads to the failure of the
compressibility sum-rule. A detailed discussion of how
to implement consistency between electrodynamics and
thermodynamics is presented elsewhere12.

It is crucial when studying transport phenomena to
ensure that all conservation laws, such as energy, mo-
mentum, and charge, are satisfied13,14. In particular, en-
suring gauge invariance, and thus charge conservation,
in a superconductor has long been a problem of great
importance10,15–18. The key insight in the challenge of
preserving gauge invariance, even in the presence of a
Meissner effect, was the inclusion of long-wavelength col-
lective excitations15,19. Following this initial insight, a
more diagrammatic approach, based on the establish-
ment of gauge invariance in quantum electrodynamics,
was developed by Nambu10. Nambu’s method of estab-
lishing a gauge invariant electromagnetic response was
to set up a gauge invariant vertex at the same level
of approximation as the self energy. He then showed
that this leads to a full vertex that satisfies the Ward-
Takahashi identity (WTI), a condition equivalent to
gauge invariance20.

A modern understanding of the role of gauge invari-
ance in a superconductor is best understood from this
field theoretic point of view: collective modes are exci-
tations which restore gauge invariance. In the language
of quantum field theory they can be interpreted as the
Nambu-Goldstone bosons arising from spontaneous sym-
metry breaking in the condensed phase. Strictly speak-
ing, in a superconductor or superfluid local gauge invari-
ance is never broken21. Quite generally, the impossibility
of breaking local gauge invariance without explicit gauge
fixing, at least for abelian gauge fields, was proved early
on by Elitzur22. Rather, due to the presence of a conden-
sate, global phase invariance is spontaneously broken. In
the case of a neutral order parameter the excitation spec-
trum contains a gapless mode, which corresponds to the
collectives modes discussed throughout this paper. For
a charged order parameter the Goldstone modes couple
to the longitudinal degrees of freedom of the gauge field,
and are gapped out.

In going beyond the BCS theory of superconductivity
it is essential that charge conservation is maintained in
any approximation scheme. We note that the Kadanoff-
Baym approach13,14, extended below Tc, provides a suf-
ficient, but not necessary, condition for a theory to sat-
isfy macroscopic conservation laws. It is inapplicable to
the strongly-correlated theories considered in this paper,
where the self energy is not derivable from a Luttinger-

Ward functional of the full Green’s function. Nonethe-
less, the exact gauge invariant EM response can be ob-
tained using the diagrammatic formalism based on points
(i) - the WTI and (ii) - self-consistent collective modes,
discussed on the previous page.

In particular, above the transition temperature,
Refs.23,24 implemented the WTI for a number of different
exotic normal phases, which led to a consistent frame-
work for computing all vertex corrections. The challenge
in the present paper is then to extend this body of work
and formulate a gauge invariant theory below the transi-
tion temperature. In this context, Ref.25 used the WTI
to formulate a gauge invariant response for a specific
BCS-BEC approximation valid at all temperatures. This
theory accounted for non-condensed fermionic pairs by
adding a t-matrix self energy to the standard BCS self
energy. Inspired by this work, in this paper we will use
the WTI to study a broader class of theories, addressed
in the context of high Tc superconductors and atomic
Fermi superfluids, which are based on an extension of a
BCS-based self energy.

Within these approaches we go beyond the pioneering
work of Nambu and show by extending the method of
Ref.25, that both the full vertex and the collective modes
can be explicitly derived for a class of strongly correlated
superfluids. In particular we derive closed form expres-
sions for the response functions. Theories which belong
to this class include the work of Refs.23,24 along with ad-
ditional theories such as that proposed in Ref.3, Ref.4

and Refs.26–28.

II. CORRELATION EFFECTS BEYOND BCS
THEORY: WARD-TAKAHASHI IDENTITY

A. Kubo formulae

The goal of this section of the paper is to address corre-
lations which go beyond the mean-field BCS theory and,
making use of Kubo formulae, arrive at properly gauge
invariant linear response functions. We begin by sum-
marizing the Kubo formalism for a many-body theory of
interacting fermions. In what follows we shall primar-
ily be concerned with neutral superfluids. Incorporat-
ing Coulomb effects can be done through the random
phase approximation (RPA) formalism8, once the exact
response functions are obtained for the neutral system.

As is common in the literature, and nicely discussed
in Ref.29, we introduce a fictitious vector potential, Aµ,
to establish gauge invariance in neutral superfluids. We
emphasize that Aµ is a non-dynamical external field, in-
corporated here merely to derive the EM response kernel
in the context of linear response.

In the presence of a weak and externally applied EM
field, with four-vector potential Aµ = (φ,A), the four-
current density Jµ = (ρ,J) is given by

Jµ(q) = Kµν(q)Aν(q), (2.1)
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where q = (iΩm,q) is a four-momentum, with a bosonic
Matsubara frequency iΩm. The quantity Kµν is the
EM response kernel, which is of principal interest here.
Charge conservation (qµJ

µ = 0) implies that the re-
sponse kernel Kµν must satisfy the condition qµK

µν = 0.
The satisfaction of this condition is what we will mean
by a gauge invariant many-body theory. Once the EM
response is obtained, Aµ is set to zero8.

The response kernel Kµν can be written in a general
form as30

Kµν(q) = 2
∑
k

G(k+)Γµ(k+, k−)G(k−)γν(k−, k+)

+
n

m
δµν(1− δ0µ), (2.2)

where the full and bare vertices are Γµ(k+, k−),
γµ(k+, k−) respectively, and k± ≡ k±q/2 is the incoming
(+) or outgoing (−) momenta of a vertex. The particle
number is n and m denotes the fermion mass. The full
Green’s function is denoted by G(k), which we define in
terms of the bare Green’s function, G−1

0 (k) = iω − ξk,
in Eq. (2.4). Here the single particle dispersion is
ξk = k2/2m − µ, where µ is the chemical potential.
Throughout we set ~ = e = 1.

It is useful to briefly comment about our notation.
Rather than begin with the Nambu representation of a
matrix self energy31, it is more convenient to turn di-
rectly to the Gorkov representation of the Green’s func-
tion which has two components: G(k) and the Gorkov
F -function Fsc(k), associated with the order parameter.

We now introduce a framework that encapsulates both
BCS theory and stronger correlations beyond BCS the-
ory. The general principles we outline (in particular,
in the next two sections) should be applicable to more
complicated theories such as Eliashberg theory32, where,
because of the dynamics of the order parameter, the es-
tablishment of a gauge invariant EM response may be
prohibitively difficult to implement. Nevertheless, one
can argue that without such a theory of EM response,
it is difficult to distinguish between the physics of the
normal-Eliashberg33 and superfluid phases.

To understand what is meant by these correlation ef-
fects, here we consider a correlated (scalar) self energy
Σcorr(k). In order to simultaneously describe a wide va-
riety of theories, we define the partially dressed Green’s
function

(Gα0 )
−1

(k) = G−1
0 (k)− αΣcorr(k). (2.3)

This depends on the strong correlation contribution to
the self energy Σcorr for α = 1, and does not include
strong correlation effects for α = 0. The fermionic
Green’s function is then given by Dyson’s equation

G−1(k) = G−1
0 (k)− Σ(k), (2.4)

where the self energy consists of two terms:

Σ(k) = Σcorr(k)− |∆sc|2Gα0 (−k), (2.5)

for a superconducting order parameter ∆sc.
For convenience we assume that ∆sc is frequency inde-

pendent, as contrasted with Eliashberg theory. Equiv-
alently, Σ(k) = Σcorr(k) + Σsc(k), where Σsc(k) =
−|∆sc|2Gα0 (−k) is the scalar superconducting self en-
ergy contribution. Note that, when α = 0 the par-
tially dressed Green’s function Gα0 (k) reduces to the bare
Green’s function G0(k), so that there are no correlation
effects incorporated in the superconducting self energy
term Σsc(k). However, for α = 1 the partially dressed
Green’s function Gα0 (k) does depend on the strong cor-
relations, via Eq. (2.3), and thus gives rise to correlation
effects present in the superconducting self energy Σsc(k).

Finally, the gap equation can be written3,6 as 1 −
g
∑
kG

α
0 (−k)G(k) = 0. Multiplying both sides of this

equation by ∆sc, we obtain

∆sc/g =
∑
k

∆scG
α
0 (−k)G(k) ≡

∑
k

Fsc(k). (2.6)

In this expression the Gorkov F -function Fsc(k) has de-
pendence on Σcorr(k) via Gα0 (k) and G(k), and there is
also implicit dependence on α through Gα0 (k).

This represents a fairly generic class of strongly cor-
related superfluid systems. When Σcorr = 0 the system
reverts to conventional BCS theory. Thus, the challenge
is to include the correlation effects associated with the
self energy Σcorr. Models of this sort are associated with
the work of Yang, Rice, and Zhang3, and also with the
work of Refs.26–28, who address BCS-BEC crossover ef-
fects via a t-matrix theory. Also belonging to this class is
an alternate t-matrix theory of BCS-BEC crossover6,25,
which, in contrast to the work of Ref.26, is more directly
associated with a BCS-based ground state.

B. The Ward-Takahashi identity

In order to derive the gauge invariant EM response,
we now apply the Ward-Takahashi identity (WTI). For
a quantum field theory with a U(1) gauge symmetry the
WTI is an exact relation between the many-body vertex
function that appears in correlation functions and the self
energy which enters in the Green’s function. Moreover, as
shown in Appendix (D), given a full vertex that satisfies
the WTI, the f -sum-rule is satisfied and thus charge is
conserved.

Given the bare Green’s function G0(k), and the full
Green’s function G(k), the WTI constrains the full vertex
Γµ(k+, k−) so that it satisfies20

qµΓµ(k+, k−) = G−1(k+)−G−1(k−),

= qµγ
µ(k+, k−) + Σ(k−)− Σ(k+). (2.7)

The bare WTI, qµγ
µ(k+, k−) = G−1

0 (k+) − G−1
0 (k−), is

satisfied for a bare vertex γµ(k+, k−) = (1,k/m). There-
fore, given a self energy Σ(k), the above equation pro-
vides a constraint which can be used to determine the
full vertex.
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The WTI is equivalent to self-consistent perturbation
theory, and allows one to compute the exact n-loop full
vertex, given any n-loop self energy. If the self energy
depends on the full Green’s function, then applying the
WTI leads to an integral equation for the full vertex
of the Bethe-Salpeter form34. However, if the self en-
ergy depends on only a finite number of bare or partially
dressed Green’s functions, then this integral equation ter-
minates, and the full vertex can be obtained exactly. This
is the situation with regard to the strong correlation ap-
proaches we consider in Secs. (II D 1-II D 2) of this paper.

We now turn to the superconducting case. For a su-
perconductor, where gauge invariance is “spontaneously
broken”, the presence of a condensate below the transi-
tion temperature leads to a more complicated formula-
tion of the WTI. Imposing gauge invariance in the pres-
ence of a condensate requires excitations known as col-
lective modes. The explicit form of the collective modes,
however, must be derived from the gap equation25.

The Ward-Takahashi identity is equivalent to requir-
ing that the full vertex be obtained by performing all
possible vertex insertions into the self energy10. Below
the transition temperature, however, we must account
for the effect of an external (non-dynamical) vector po-
tential Aµ on the self-consistency condition (Eq. (2.6)).
This necessitates the introduction of collective mode ver-
tices Πµ(q), Π̄µ(q) in the full vertex, which are inserted
into every location of the condensate terms ∆sc, ∆∗sc, re-
spectively. In the next section we discuss these collective
mode vertices in greater detail. As shown in Appendix
(A), performing all vertex insertions into the self energy
of Eq. (2.5), and using Eq. (2.7), then gives the full
vertex:

Γµ(k+, k−) = γµ(k+, k−) + Λµ(k+, k−)

−∆∗scΠµ(q)Gα0 (−k−)−∆scΠ̄µ(q)Gα0 (−k+)

− |∆sc|2Gα0 (−k−)Gα0 (−k+)×
[γµ(−k−,−k+) + αΛµ(−k−,−k+)]. (2.8)

Here we have introduced the vertex correction
Λµ(k+, k−), which relates to the correlated self
energy contribution and satisfies qµΛµ(k+, k−) =
Σcorr(k−) − Σcorr(k+). The collective mode vertices
in this expression are (as yet) unknowns which satisfy
qµΠµ(q) = 2∆sc, qµΠ̄µ(q) = −2∆∗sc. However, by en-
suring that these collective mode vertices are consistent
with the gap equation, a unique expression for them can
be obtained25. This will be outlined in the next section.
Using these relations, along with the bare WTI, one
can check explicitly that this full vertex satisfies the full
WTI in Eq. (2.7).

By way of comparison, we note that the full vertex in
Eq. (2.8) is analogous to the BCS full vertex, but with
the mapping γµ → γµ + αΛµ, G0 → Gα0 . The many-
body effect of the correlation term Σcorr (in the partially
dressed Green function Gα0 ) is therefore to modify both
the bare vertex and the single particle Green’s function
appearing in the superconducting part of the full vertex.

The expression in Eq. (2.8) is completely general, given
a self energy of the form in Eq. (2.5). In what follows we
will illustrate how to compute the full vertex, and corre-
sponding response kernel, for some examples of strongly
correlated superfluids.

Two important limiting cases of the full vertex in
Eq. (2.8) can be checked against known results. When
Σcorr = 0, then Λµ = 0, and the full vertex reduces to
the known strict BCS case18. If we set ∆sc = 0, then the
full vertex also reduces to the known full vertex in the
exotic normal state23,24.

C. Collective mode vertices

The challenge in studying strongly correlated superflu-
ids, at all temperatures, is to treat the collective modes
in a manner compatible with gauge invariance. In this
section we implement a powerful method of obtaining the
expressions for the collective mode vertices Πµ(q), Π̄µ(q),
which applies even in the presence of correlation effects.
Gauge invariance alone requires that qµΠµ(q) = 2∆sc,
qµΠ̄µ(q) = −2∆∗sc. The gap equation imposes a self-
consistency condition on both vertices which we will use
in order to determine the explicit form of these vertices.
This gap equation is written in Eq. (2.6) and in what
follows we also consider the conjugate gap equation.

∆sc/g =

1

Gα
0 (−k) G(k)

∆sc

1

FIG. 1. Feynman diagram for the gap equation ∆sc/g =
∆sc

∑
kG

α
0 (−k)G(k).

In Fig. (1) the gap equation is expressed as a Feyn-
man diagram. Diagrammatically, the collective mode
vertices are obtained by performing all possible vertex
insertions into the gap equation. In Fig. (1) there are
three possible vertex insertions: (1) at the ∆sc location
one can insert Πµ(q), (2) at the full Green function G(k)
location one can insert the full vertex Γµ(k+, k−), (3) at
the partially dressed Green function Gα0 (−k) location one
can insert the partially dressed vertex γµ(−k−,−k+) +
αΛµ(−k−,−k+). After performing these vertex inser-
tions we obtain the equation in Fig. (2) expressed in
terms of Feynman diagrams.

Mathematically, Fig. (2) implies that the collective
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Πµ(q)/g =

q

Gα
0 (−k−) G(k+)

Πµ(q)

+

q

Gα
0 (−k−)

G(k+)

G(k−)

∆sc

Γµ(k+, k−)

q

Gα
0 (−k−)

G(k+)

Gα
0 (−k+)

∆sc

+ γµ(−k−,−k+)

q

Gα
0 (−k−)

G(k+)

Gα
0 (−k+)

∆sc

+ αΛµ(−k−,−k+)

1

FIG. 2. Self consistent equation for the collective modes after
performing all possible vertex insertions into the gap equation.

mode vertices must satisfy the following equation

Πµ(q)/g = Πµ(q)
∑
k

Gα0 (−k−)G(k+)

+ ∆sc

∑
k

Gα0 (−k−)G(k+)Γµ(k+, k−)G(k−)

+ ∆sc

∑
k

(
Gα0 (−k−)Gα0 (−k+)G(k+)

× [γµ(k+, k−) + Λµ(k+, k−)]

)
. (2.9)

Notice that the full vertex Γµ(k+, k−) appears in this
expression. The full vertex was already determined in
Eq. (2.8) using the Ward-Takahashi identity. Therefore
if we insert the expression for the full vertex, which con-
tains the collective mode vertices, into Eq. (2.9) (and its
conjugate), then Eq. (2.9) (and its conjugate) becomes
a self-consistent set of equations for the collective mode
vertices Πµ and Π̄µ. The solution to this self-consistent
set of linear equations will uniquely determine the collec-
tive mode vertices.

Inserting the full vertex into Eq. (2.9), and doing the
same analysis for the conjugate gap equation, then gives
the following two self-consistent equations for the collec-
tive mode vertices:

Πµ(q)/g = Πµ(q)
∑
k

G(k+)Gα0 (−k−) [1−∆∗scFsc(k−)]

− Π̄µ(q)
∑
k

Fsc(k+)Fsc(k−)

+
∑
k

[γµ(k+, k−) + Λµ(k+, k−)]G(k+)Fsc(k−)

+
∑
k

(
[γµ(−k−,−k+) + αΛµ(−k−,−k+)]×

Fsc(k+)Gα0 (−k−) [1−∆∗scFsc(k−)]

)
. (2.10)

Π̄µ(q)/g = Π̄µ(q)
∑
k

G(k−)Gα0 (−k+) [1−∆scF
∗
sc(k+)]

−Πµ(q)
∑
k

F ∗sc(k+)F ∗sc(k−)

+
∑
k

[γµ(k+, k−) + Λµ(k+, k−)]F ∗sc(k+)G(k−)

+
∑
k

(
[γµ(−k−,−k+) + αΛµ(−k−,−k+)]×

Gα0 (−k+)F ∗sc(k−) [1−∆scF
∗
sc(k+)]

)
. (2.11)

This is conveniently expressed as a matrix equation if
we define the two-point correlation functions

Q+−(q) = 1/g −
∑
k

G(k+)Gα0 (−k−) [1−∆∗scFsc(k−)] ,

Q++(q) =
∑
k

Fsc(k+)Fsc(k−),

Pµ+(q) =
∑
k

[γµ(k+, k−) + Λµ(k+, k−)]G(k+)Fsc(k−)

+
∑
k

(
[γµ(−k−,−k+) + αΛµ(−k−,−k+)]×

Fsc(k+)Gα0 (−k−) [1−∆∗scFsc(k−)]

)
, (2.12)

and Q−+(q) = Q∗+−(q), Q−−(q) = Q∗++(q), ∆∗scP
µ
+(q) =

∆scP
µ
−(−q). To connect to the literature, we define an

alternative set of of two-point correlation functions Qab
and Qaµ, where a, b = 1, 2 through, Q11 = Q+− +
Q−+ + Q++ + Q−−, Q22 = Q+− + Q−+ − Q++ −
Q−−, Q12 = i(Q+− − Q−+ + Q−− − Q++), Q21 =
−i(Q+−−Q−+ +Q++−Q−−), and Q1µ = −

(
Pµ+ + Pµ−

)
,

Q2µ = −i(Pµ− − Pµ+). Similarly, we define the collective
mode vertices Πµ

1,2(q) through Πµ(q) = Πµ
1 (q) + iΠµ

2 (q),

Π̄µ(q) = Πµ
1 (q) − iΠµ

2 (q). This amounts to a change of
basis from a complex to a real and imaginary parameter-
ization. From Eq. (2.10) and Eq. (2.11), these vertices
satisfy the relation

(
Πµ

1

Πµ
2

)
= −

(
Q11 Q12

Q21 Q22

)−1(
Q1µ

Q2µ

)
. (2.13)

The form of these collective mode vertices is structurally
similar to the BCS case18,25, and in the strict BCS limit
they agree with the literature18. The matrix Qab can be
interpreted as a propagator for bosonic degrees of free-
dom. However, the explicit response functions entering
on the right hand side of Eq. (2.13) are modified due to
the presence of the self energy Σcorr.

In Appendix (B) we verify that the collective mode
vertices Πµ(q) and Π̄µ(q) satisfy the gauge invariant con-
ditions qµΠµ(q) = 2∆sc, qµΠ̄µ(q) = −2∆∗sc, which was
assumed in their definitions.
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D. Vertex correction Λµ

We can now summarize the central results of this pa-
per, and repeat key equations. The full electromagnetic
response kernel can generically be written as

Kµν(q) = 2
∑
k

G(k+)Γµ(k+, k−)G(k−)γν(k−, k+)

+
n

m
δµν(1− δ0µ), (2.2)

where the full vertex

Γµ(k+, k−) = γµ(k+, k−) + Λµ(k+, k−)

−∆∗scΠµ(q)Gα0 (−k−)−∆scΠ̄µ(q)Gα0 (−k+)

− |∆sc|2Gα0 (−k−)Gα0 (−k+)×
[γµ(−k−,−k+) + αΛµ(−k−,−k+)], (2.8)

contains contributions due to both the collective mode
vertices Πµ and Π̄µ (computed in Eq. (2.13)) and the
vertex contribution Λµ arising from the self energy Σcorr.

The techniques described above are sufficient to cal-
culate the gauge invariant response function for a large
class of theories. All that is required to derive the full
gauge invariant electromagnetic response is to arrive at
a form of Λµ. This vertex depends on the details of the
correlation self energy Σcorr, so we must consider it on
a case by case basis. We now consider three relevant
examples from the literature.

1. Pairing pseudogap

The first type of strong correlations we study is that
proposed in Ref.5 at a phenomenological level and in
Ref.6 from a more microscopic perspective. In Ref.35

an early attempt to address how collective modes are af-
fected by these pseudogap effects was performed. This
model is based on a BCS like self energy but with a nor-
mal state gap ∆pg. For this model, which we call the
“pairing pseudogap approximation”, α = 0 in Eq. (2.3),
and the correlated self energy in Eq. (2.5) is given by

Σcorr(k) = −∆2
pgG0(−k). (2.14)

The pairing gap ∆pg is non-zero in the range of temper-
atures T ∗ > Tc > 0, where T ∗ is the mean-field transi-
tion temperature (∆pg(T ∗ = 0)). At a more microscopic
level6 ∆pg is to be associated with non-condensed (finite
momentum) pairs and is distinct from the superconduct-
ing order parameter ∆sc which corresponds to a conden-
sate of pairs at zero net momentum.

Unlike the order parameter ∆sc, the gap ∆pg does not
fluctuate in the presence of Aµ. Nevertheless, its inclu-
sion in the self energy will lead to a vertex correction.
Using this form of Σcorr(k), along with the definition
qµΛµ(k+, k−) = Σcorr(k−)− Σcorr(k+), we obtain

Λµ(k+, k−) = ∆2
pgG0(−k−)γµ(−k−,−k+)G0(−k+).

(2.15)

Inserting this expression into Eq. (2.8), along with α = 0,
then gives the full superconducting vertex in the pseudo-
gap approximation.

Note that the pseudogap self energy is an approx-
imation of a theory with α = 0 and Σcorr(k) =∑
l tpg(l)G0(l−k), where tpg(l) is a t-matrix. This theory

was considered in Ref.25, and the vertex Λµ was calcu-
lated exactly. The exact tpg depends on the full Green’s
function, so the exact Λµ will itself depend on the full
vertex Γµ, and thus a self-consistent integral equation
will arise for Γµ. In the pairing pseudogap approxima-
tion, ∆pg is constructed such that it contains no external
momentum. Thus no vertex insertions into the gap are
possible in Λµ, resulting in the above condition that ∆pg

does not fluctuate with Aµ.

2. YRZ model

As a second model we consider a phenomenological self
energy developed for the high-Tc superconductors and
associated with Yang, Rice, and Zhang3. This is known
as the YRZ model. For the YRZ model, in Eq. (2.3) and
Eq. (2.5) one sets α = 1 and

Σcorr(k) = −∆2
pgG0(−k). (2.16)

Since Σcorr(k) is the same as in the pairing pseudogap
approximation, in the YRZ model we also obtain

Λµ(k+, k−) = ∆2
pgG0(−k−)γµ(−k−,−k+)G0(−k+).

(2.17)
Inserting this vertex correction into Eq. (2.8), along with
α = 1, then gives the full superconducting vertex in the
YRZ model. In the normal state, this full vertex, along
with the response kernel in Eq. (2.2), is in agreement
with the results obtained in Ref.23. Here we have ex-
tended this work to the superconducting case.

3. Particle-only t-matrix

A third and final model was introduced by Strinati
and collaborators using a generalized t-matrix26–28. In
this model the self energy is obtained from Eq. (2.3) and
Eq. (2.5) by setting α = 1 and

Σcorr(k) =
∑
l

t(l)G(l − k). (2.18)

Here G is the full Green’s function, t(l) is a t-matrix,
the details of which are presented in Appendix (C 3). In
Ref.28, the authors propose “good candidates” for the re-
sponse function Feynman diagrams. Here we emphasize
that the WTI provides a direct procedure to determine
not just good candidates but the exact full vertex, given
in Eq. (2.8), which is manifestly gauge invariant.

The challenge here is in determining the exact vertex
correction Λµ(k+, k−). This is more complicated than in
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the previous two cases. Nevertheless, following the proce-
dure outlined above, the vertex correction due to this self
energy can be obtained by performing all possible vertex
insertions into all internal lines. That is, by inserting all
possible vertices into both the Green’s function and into
the t-matrix. In Sec. (C 3) we explicitly derive the vertex
correction Λµ for the self energy appearing in Eq. (2.18).
We should note that the authors of this body of work do
not presume a self-consistent gap equation, such as that
appearing in Eq. (2.6), and such as we have assumed in
arriving at Eq. (2.13). Rather, they fix the order param-
eter to be the same as in BCS theory, and add additional
correlations to the number equation only.

In summary, this section has shown how to derive a
gauge invariant full vertex for a generic self energy of the
form in Eq. (2.5). Using the Ward-Takahashi identity
there is an exact procedure to determine the full vertex.
Moreover there is an analogous procedure to determine
the collective modes and thus maintain gauge invariance.
The resulting Feynman diagrams, which are shown in
Fig. (3) of Appendix (A), are then completely deter-
mined.

III. ALTERNATIVE SCHEME TO
WARD-TAKAHASHI: PATH INTEGRAL

A. Gauge invariant electrodynamics

A large class of theories in the literature derive the
gauge invariant electromagnetic response using a path
integral approach7–9. We now connect, when possible,
the above results using the Ward-Takahashi identity to
the EM response as calculated in the path integral lit-
erature. Here we will include both amplitude and phase
fluctuations of the order parameter1,2. This is in contrast
to previous studies7–9 which incorporate only phase fluc-
tuations. We introduce these amplitude fluctuations in
order to address the compressibility sum-rule.

The inverse Nambu Green’s function is G−1 = G−1
0 −

Σ, where G−1
0 = iω − ξkτ3 and the self energy is Σ =

−∆(x)τ+ − ∆∗(x)τ−. The Nambu Pauli matrices are
τ1,2,3, which define the raising and lowering operators
τ± = 1

2 (τ1 ± iτ2). We begin with the action functional

in terms of the Hubbard-Stratonovich field ∆1:

S[∆∗,∆, Aµ] = −Tr ln
[
−G−1

]
+

∫
dx
|∆(x)|2

g
, (3.1)

and following convention, the trace Tr represents a trace
over both Nambu and position indices. As in Sec. (II),
here we consider only neutral superfluids. In Eq. (3.1)
we have introduced a non-dynamical external field Aµ

through minimal-coupling to obtain the EM response;
at the end of the calculation Aµ → 0. (Note that, the
minimal-coupling is through the electric charge, e, and
not the charge of the neutral superfluid. As is conven-
tional in the literature29, Aµ is viewed as a fictitious vec-
tor potential.) We now follow the literature and perform

the saddle point expansion. To lowest order the effec-
tive action is Seff [∆∗,∆, Aµ] = Smf [∆

∗
mf ,∆mf ], where the

mean-field (mf) action is

Smf [∆
∗
mf ,∆mf ] = −Tr ln

[
−G−1

mf

]
+

∫
dx
|∆mf |2
g

, (3.2)

and the inverse mean-field Nambu Green’s function is
G−1

mf = G−1
0 − Σ[∆(x) → ∆mf ]. The BCS gap equation

then follows upon setting δSmf [∆
∗
mf ,∆mf ]/δ∆

∗
mf = 0. It

is straightforward to see that the resulting response ker-
nel is not gauge invariant.

We now calculate the gauge invariant EM response
kernel Kµν . In order to implement gauge invari-
ance, the conventional literature introduces fluctuations
η(x) about the mean-field value of the order param-
eter ∆mf , expressing ∆(x) = ∆mf + η(x). (In Sec.
(II), ∆sc ≡ ∆mf for strict BCS theory.) Expand-
ing the action functional to second order in η(x) gives
S[∆∗,∆, Aµ] ≈ Smf [∆

∗
mf ,∆mf ] + S(2)[η∗, η, Aµ]. To cal-

culate S(2)[η∗, η, Aµ], we first consider fluctuations of the
Green’s function about the mean-field solution:

G−1 − G−1
mf = −δΓ− Ση, (3.3)

where δΓ = Γ1+Γ2, with Γ1 = γµA
µ, Γ2 = (A2/2m)τ3, is

a vector potential fluctuation and Ση = Σ[∆(x)→ η(x)]
is a gap fluctuation. Expanding to second order in η and
Aµ, the second order action functional is

S(2)[η∗, η, Aµ]

=
1

2

∑
q

[
Aµ(q)Kµν

0,mf(q)Aν(−q) + ηa(q)Qabmf(q)ηb(−q)
]

− 1

2

∑
q

[
Aµ(q)Qµbmf(q)ηb(−q) + ηa(q)Qaνmf(q)Aν(−q)

]
.

In this expression we write η(x) = η1(x) − iη2(x)
with η1(x), η2(x) ∈ R. This decomposes the fluctua-
tions into their (Cartesian) real and imaginary parts,
which amounts to an amplitude and phase decomposi-
tion. Since we keep the saddle point condition at the
mean-field level, an explicit amplitude and phase decom-
position, in polar coordinates, will lead to the same elec-
tromagnetic response. (If one uses a different saddle
point condition, not relevant to this work, then issues
associated with the use of either a Cartesian or polar de-
composition may arise2.) Even within this framework,
we shall point out an inconsistency within the conven-
tional path integral formalism in failing to satisfy the
compressibility sum-rule.

To complete the calculation, we transform to mo-
mentum space, k = (iωn,k) and q = (iΩm,q), where
iωn (iΩm) is a fermionic (bosonic) Matsubara fre-
quency. If we denote the trace over Nambu indices by
tr, then the “bubble” response kernel is Kµν

0,mf(q) =

tr
∑
k Gmf(k+)γµ(k+, k−)Gmf(k−)γν(k−, k+) + n

mδ
µν(1−

δµ0) and the two-point response function Qabmf(q) =
2
g δab + tr

∑
k Gmf(k+)τaGmf(k−)τb can be viewed as
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a bosonic propagator. We also have Qµamf(q) =

tr
∑
k Gmf(k+)γµ(k+, k−)Gmf(k−)τa, and Qbνmf(q) has

(µ, a) ↔ (b, ν). These mean-field response functions are
equivalent to previous results in the literature18. They
are also equivalent to the response functions which ap-
pear in Eq. (2.13) for a theory with only a strict BCS self
energy.

After integrating out the η field, the beyond-mean-field

effective action contribution is given by

Seff − Smf =
∑
q

Aµ(q)Kµν
mf (q)Aν(−q)

+
1

2
Tr ln

[
Qabmf(q)

]
. (3.4)

Thus the fluctuation action decomposes into two sepa-
rate terms. The second term in the fluctuation action
provides a contribution to thermodynamics arising from
Gaussian fluctuations. This form of the Gaussian fluctu-
ation part of the action is equivalent to the standard re-
sults in the literature2. The first term is the gauge invari-
ant EM response kernel, with both amplitude and phase
fluctuations of the order parameter included, defined by

Kµν
mf (q) = Kµν

0,mf(q) −
∑
a,bQ

µa
mf(q)

[
Qabmf(q)

]−1
Qbνmf(−q).

If we expand the response kernel appearing in Eq. (3.4),
then we obtain17,18:

Kµν
mf = Kµν

0,mf −
Q11Q

µ2
mfQ

2ν
mf +Q22Q

µ1
mfQ

1ν
mf −Q12Q

µ1
mfQ

2ν
mf −Q21Q

µ2
mfQ

1ν
mf

Q11Q22 −Q12Q21
. (3.5)

In Ref.18 it is proved that the response kernel in Eq.
(3.5) is both gauge invariant qµK

µν
mf (q) = 0, and charge

conserving Kµν
mf (q)qν = 0. References17,18 used a matrix

linear response formalism known as “consistent fluctua-
tion of the order parameter”. Our derivation, however,
is based on the path integral.

B. Inconsistency with the compressibility sum-rule

We now turn to the implications of the two contribu-
tions to the action in Eq. (3.4). Here we focus on the
compressibility sum-rule, which provides an important
consistency check on the path integral approach12. The
explicit form of the compressibility sum-rule is36:

limq→0

[
K00(ω = 0,q)

]
= −∂n

∂µ
. (3.6)

Here the real frequency ω is the analytic continuation
of the Matsubara frequency iΩm, defined by iΩm =
ω + iγ with γ → 0. This sum-rule shows how to as-
sociate the electromagnetic contributions to the action
with their counterpart contributions to the thermody-
namic response. The compressibility, κ = n−2(∂n/∂µ),
is then related to the density response via Eq. (3.6).

In relation to Sec. (II), we note that satisfying
the WTI does not imply the compressibility sum-
rule is satisfied18,37. In the appropriate limits,
the WTI gives a constraint on the vector compo-
nent of the full vertex: limq→0 [q ·ΓΓΓ(k+, k−)|ω=0] =
−limq→0

[(
G−1(k+)−G−1(k−)

)
|ω=0

]
, whereas the

compressibility sum rule is limq→0

[
Γ0(k+, k−)|ω=0

]
=

1− ∂Σ(k)/∂µ, which is a constraint on the time compo-
nent of the full vertex. Note that, the order in which the
limits are taken is crucial: first the frequency ω is set to
zero, and then the momentum q → 0. Thus the WTI
is not a sufficient condition to ensure satisfaction of the
compressibility sum-rule. In the path integral formalism,
however, both the electrodynamics and thermodynamics
arise from the same action, and so Eq. (3.6) is an
important constraint relating the two responses.

The relationship in Eq. (3.6) is also particularly useful
in characterizing various orders of approximation within
the path integral scheme. This is because at the heart
of the path integral is a close connection between elec-
trodynamics and thermodynamics. With the inclusion of
amplitude fluctuations, which are essential for this sum-
rule, we can now test the compressibility sum-rule within
the standard path integral formalism in the literature.

Note that, this sum-rule depends on the number equa-
tion. Consistency would seem to require that we include
Gaussian fluctuations nfl = −β−1∂Sfl[∆∗mf ,∆mf ]/∂µ to
the number equation coming from the second line in
Eq. (3.4). This is, in fact, incorrect and points to
an underlying inconsistency. Instead, we will show the
proper calculation level for thermodynamics is that of
pure mean-field, giving a mean-field particle number

nmf = − 1

β

∂Smf [∆
∗
mf ,∆mf ]

∂µ
= 2

∑
k

G(k). (3.7)

Taking the derivative of the mean-field number equa-
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tion with respect to µ gives

∂nmf

∂µ
= −2

∑
k

[
G2(k)− F 2(k) + 2G(k)F (k)

∂∆mf

∂µ

]
,

(3.8)
where we henceforth take ∆mf = ∆∗mf for convenience.
Here we define the single particle Green’s function
in terms of the Nambu Green’s function by G(k) =
(Gmf(k))11 = −(Gmf(−k))22, and the Gorkov F -function
is similarly F (k) = ∆mfG(k)G0(−k) = (Gmf(k))12 =
(G∗mf(k))21. The fluctuation of the mean-field gap with
respect to the chemical potential, ∂∆mf/∂µ, can be found
using the BCS gap equation

GAP[∆mf , µ] :=
∆mf

g
−
∑
k

Tr[G(k)τ−] = 0. (3.9)

Since ∆mf depends on µ, by taking the total derivative
with respect to µ, we arrive at the condition

∂∆mf

∂µ
= − ∂GAP/∂µ

∂GAP/∂∆mf
. (3.10)

To see that the compressibility sum-rule is satisfied, no-
tice that ∂GAP/∂µ = 2

∑
kG(k)F (k) and ∂GAP/∂∆ =

2
∑
k F (k)F (k). Therefore, the last term in Eq. (3.8)

can be expressed as 2 (∂GAP/∂µ)2

∂GAP/∂∆mf
. Now, in the limit that

ω = 0,q → 0, the following identifications can be made:
Q10

mf = 2∂GAP/∂µ, and Q11
mf = 2∂GAP/∂∆mf . By com-

puting the summation over Matsubara frequencies, one
also obtains 2

∑
k

[
G2(k)− F 2(k)

]
= K00

0,mf .

Therefore, using Eq. (3.5), Eq. (3.8) now becomes

− ∂nmf

∂µ
= K00

0,mf −
Q10

mfQ
01
mf

Q11
= K00(0,q→ 0). (3.11)

This demonstrates the expected consistency between
−(∂nmf/∂µ) and K00(0,q → 0) and proves the com-
pressibility sum-rule at the BCS level18.

The reason for the need to include amplitude fluctua-
tions in the density-density response can be seen from Eq.
(3.8). This equation shows that fluctuations in the gap
(∂∆mf/∂µ) must be included, and therefore amplitude
fluctuations in the gap are necessary in order to satisfy
the compressibility sum-rule. If only phase fluctuations
are retained, the compressibility sum-rule is violated. For
a different context where amplitude fluctuations are im-
portant see Ref.38.

The compressibility sum-rule has only been satisfied
by ignoring the Gaussian fluctuations in the number
equation. Had these been included, we would obtain
−∂n/∂µ = −∂nmf/∂µ−∂nfl/∂µ 6= K00(0,q→ 0), which
violates the compressibility sum-rule39.

In summary, the path integral formalism, as currently
applied in the literature, treats electrodynamics and ther-
modynamics inconsistently. In this derivation of gauge
invariant electrodynamics at the BCS level, beyond BCS
fluctuations are necessarily incorporated in thermody-
namics. However, these thermodynamic fluctuations

should not appear in the number equation if the com-
pressibility sum rule is to be satisfied. The discussion
in Sec. (II) provides insights into the resolution to this
inconsistency: there gauge invariance is obtained by de-
termining the collective modes that arise due to vertex
insertions into the gap equation. This suggests that,
within the path integral formalism, one should consider
a new saddle point condition in the presence of a non-
zero vector potential. More details on this resolution are
presented elsewhere12.

IV. CONCLUSIONS

The goal of this paper was to show how to arrive at
a proper gauge invariant description of the electromag-
netic response in strongly correlated fermionic superflu-
ids. In this paper correlation effects are represented
by “correlated self energy” contributions which appear
in addition to the usual superconducting self energy of
the condensate. The theoretical approach is sufficiently
general to apply to a theory that has (1) a “Nambu-
diagonal” diagrammatic self-energy and (2) a frequency
independent self-consistent gap equation. Using (1) the
Ward-Takahashi identity and (2) insertions on the self-
consistent gap equation, the exact gauge-invariant elec-
tromagnetic response can then, in principle, be calculated
for any theory satisfying these conditions. Adopting a
rather generic class of strongly correlated models (widely
used for the high temperature superconductors and ul-
tra cold gases) we are able to give exact expressions for
the electromagnetic response. This method, which ob-
tains expressions for all vertex corrections and collective
modes in a manner compatible with the f -sum-rule, is an
important tool for studying strongly correlated superflu-
ids and superconductors.

For comparison we also discuss an alternative tool
which builds on the path integral approach. With few
exceptions this scheme has been used to address the BCS-
level response, i.e., in the absence of stronger correlations.
In contrast to approaches which build on the Ward-
Takahashi identity, here gauge invariance and the f -sum-
rule are relatively straightforward to ensure. What is
more complicated is to arrive at consistency with the
compressibility sum-rule. This sum-rule relates electro-
dynamics and thermodynamics and provides a natural
test of the path integral scheme, since the two are simul-
taneously calculated. We show that in the conventional
path integral literature for the gauge invariant electrody-
namics at the BCS level, the compressibility sum-rule is
violated.
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Appendix A: Obtaining the full vertex using the Ward-Takahashi identity

Here we show how to apply the Ward-Takahashi identity to obtain the gauge invariant full vertex for a given self
energy. If we define the partially dressed Green’s function Gα0 (k) by

(Gα0 )
−1

(k) = G−1
0 (k)− αΣcorr(k), (A.1)

where Σcorr is a self energy describing strong correlations, then the class of self-energies considered in the main text
are of the form

Σ(k) = Σcorr(k)− |∆sc|2Gα0 (−k). (A.2)

The second term in this expression represents the superconducting self energy Σsc(k) = −|∆2
sc|Gα0 (−k). For conve-

nience we treat ∆sc and ∆∗sc as independent degrees of freedom. This will be important in the next section, but for
now it is not essential. Writing the self energy in this form shows that the second term is a BCS-like self energy,
but with the bare Green’s function G0 replaced by the partially dressed Green’s function Gα0 . Strict BCS theory is
obtained by setting Σcorr = 0. The three models that we will consider are the pairing pseudogap approximation5,6, the
Yang, Rice, and Zhang (YRZ) model3, and the t-matrix model of Ref.26. For the pairing pseudogap approximation,
α = 0,Σcorr(k) = −∆2

pgG0(−k), for the YRZ model α = 1,Σcorr(k) = −∆2
pgG0(−k), and for the t-matrix model

α = 1,Σcorr(k) =
∑
l t(l)G(l − k).

The bare Ward-Takahashi identity is qµγ
µ(k+, k−) = G−1

0 (k+) − G−1
0 (k−). Using this, it follows that the Ward-

Takahashi identity for the full vertex is20

qµΓµ(k+, k−) = G−1(k+)−G−1(k−),

= qµγ
µ(k+, k−) + Σ(k−)− Σ(k+). (A.3)

As discussed in the main text, both the strong correlation self energy Σcorr, and the superconducting self energy Σsc

give rise to vertex contributions. Hence we write Σ(k) = Σcorr(k) + Σsc(k) and derive the vertex contributions from
both self-energies separately. The strong correlation self energy gives a vertex contribution Λµ(k+, k−) defined by

qµΛµ(k+, k−) = Σcorr(k−)− Σcorr(k+). (A.4)

The general form of this vertex depends on the specific model under consideration. In Sec. (C) we will derive the
explicit form of this vertex for three models of interest in the literature. The superconducting vertex is defined by

qµΓµsc(k+, k−) = Σsc(k−)− Σsc(k+). (A.5)

Using these definitions, the full vertex is then

Γµ(k+, k−) = γµ(k+, k−) + Λµ(k+, k−) + Γµsc(k+, k−), (A.6)

which can be found from the full Ward-Takahashi identity in Eq. (A.3).
We now derive the explicit form of Γµsc. The superconducting vertex contributions are most easily found by defining

the collective mode vertices Πµ(q) and Π̄µ(q) such that qµΠµ(q) = 2∆sc, qµΠ̄µ(q) = −2∆∗sc. For now, these will be
left as a definition, but the explicit form of Πµ, Π̄µ, along with the contraction identities, are derived in Sec. (II C)
and Appendix (B), respectively. Using the superconducting self energy given in Eq. (A.2), we then have

Σsc(k−)− Σsc(k+) = −∆∗scqµΠµ(q)Gα0 (−k−)−∆scqµΠ̄µ(q)Gα0 (−k+)− |∆sc|2 [Gα0 (−k+)−Gα0 (−k−)] . (A.7)

The difference of the two partially dressed Green’s functions is

Gα0 (−k+)−Gα0 (−k−) = Gα0 (−k−)
[
G−1

0 (−k−)−G−1
0 (−k+) + α (Σcorr(−k+)− Σcorr(−k−))

]
Gα0 (−k+),

= Gα0 (−k−) [qµγ
µ(−k−,−k+) + αqµΛµ(−k−,−k+)]Gα0 (−k+). (A.8)
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In the second line we have used both the bare Ward-Takahashi identity, as well as the definition of the Λµ vertex.
Substituting Eq. (A.7) and Eq. (A.8) into Eq. (A.5) then gives the superconducting vertex:

Γµsc(k+, k−) = −∆∗scΠµ(q)Gα0 (−k−)−∆scΠ̄µ(q)Gα0 (−k+)

−|∆sc|2Gα0 (−k−) [γµ(−k−,−k+) + αΛµ(−k−,−k+)]Gα0 (−k+). (A.9)

This then produces the exact gauge invariant full vertex given in Eq. (2.8) of the main text:

Γµ(k+, k−) = γµ(k+, k−) + Λµ(k+, k−)−∆∗scΠµ(q)Gα0 (−k−)−∆scΠ̄µ(q)Gα0 (−k+)

− |∆sc|2Gα0 (−k−)[γµ(−k−,−k+) + αΛµ(−k−,−k+)]Gα0 (−k+). (A.10)

From the above expression it is clear that if Σcorr = 0 ⇒ Λµ = 0, then the full vertex reduces to the BCS full
vertex18,25. Similarly if ∆sc = 0, then the full vertex reduces to the paired normal state vertex23,24. In order to
uniquely determine the full vertex, the collective mode vertices Πµ(q), Π̄µ(q) and the vertex correction Λµ(k+, k−)
must be determined. The Feynman diagrams for the full response function are given in Fig. (3).

G(k+)

G(k−)

γν(k−, k+)γµ(k+, k−)

G(k+)

G(k−)

γν(k−, k+)Λµ(k+, k−)

G(k+)

G(k−)Gα
0 (−k−)

γν(k−, k+)Πµ(q)

∆∗
sc

G(k+)

G(k−)

Gα
0 (−k+)

γν(k−, k+)Π̄µ(q)

∆sc

G(k+)Gα
0 (−k+)

G(k−)Gα
0 (−k−)

γν(k−, k+)γµ(−k−,−k+)

∆∗
sc

∆sc G(k+)Gα
0 (−k+)

G(k−)Gα
0 (−k−)

γν(k−, k+)αΛµ(−k−,−k+)

∆∗
sc

∆sc

1

FIG. 3. Feynman diagrams for the two particle response function Pµν(q) = 2
∑
kG(k+)Γµ(k+, k−)G(k−)γν(k−, k+) given a

self energy of the form in Eq. (A.2). The order of appearance of the diagrams from left to right and top to bottom corresponds
directly to the order of appearance of terms in Eq. (A.10). The pseudogap approximation corresponds to α = 0,Σcorr(k) =
−∆2

pgG0(−k), for the YRZ model α = 1,Σcorr(k) = −∆2
pgG0(−k), and for the t-matrix model α = 1,Σcorr(k) =

∑
l t(l)G(l−k).

Appendix B: Collective mode vertices

In this section verify that the collective mode vertices Πµ(q) and Π̄µ(q) satisfy the gauge invariant conditions
qµΠµ(q) = 2∆sc, qµΠ̄µ(q) = −2∆∗sc, which was assumed in their definitions. These vertices are conveniently expressed
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as a matrix equation if we define the two-point correlation functions

Q+−(q) = 1/g −
∑
k

G(k+)Gα0 (−k−) [1−∆∗scFsc(k−)] , (B.1)

Q−+(q) = 1/g −
∑
k

G(k−)Gα0 (−k+) [1−∆scF
∗
sc(k+)] , (B.2)

Q++(q) =
∑
k

Fsc(k+)Fsc(k−) = Q∗−−(q), (B.3)

Pµ+(q) =
∑
k

[γµ(k+, k−) + Λµ(k+, k−)]G(k+)Fsc(k−)

+
∑
k

[γµ(−k−,−k+) + αΛµ(−k−,−k+)]Fsc(k+)Gα0 (−k−) [1−∆∗scFsc(k−)] , (B.4)

Pµ−(q) =
∑
k

[γµ(k+, k−) + Λµ(k+, k−)]F ∗sc(k+)G(k−)

+
∑
k

[γµ(−k−,−k+) + αΛµ(−k−,−k+)]Gα0 (−k+)F ∗sc(k−) [1−∆scF
∗
sc(k+)] . (B.5)

From Eqs. (2.10-2.11) of the main text, the collective modes can then be written as(
Πµ

Π̄µ

)
=

(
Q+− Q++

Q−− Q−+

)−1(
Pµ+
Pµ−

)
. (B.6)

We now contract each side of Eq. (B.6) with qµ. In order to calculate the right-hand side, we calculate the contraction
qµP

µ
±(q):

qµP
µ
+(q) = qµ

∑
k

[γµ(k+, k−) + Λµ(k+, k−)]G(k+)Fsc(k−)

+ qµ
∑
k

[γµ(−k−,−k+) + αΛµ(−k−,−k+)]Fsc(k+)Gα0 (−k−)[1−∆∗scFsc(k−)]. (B.7)

Explicit calculation shows that both lines have the same value, so that

qµP
µ
+(q) = 2

[
∆sc

(
1/g −

∑
k

G(k+)Gα0 (−k−)[1−∆∗scFsc(k−)]

)
−∆∗sc

∑
k

Fsc(k−)Fsc(k+)

]
,

= 2 (∆scQ+− −∆∗scQ++) . (B.8)

Similarly, since ∆∗scP
µ
+(q) = ∆scP

µ
−(−q), we also find qµP

µ
−(q) = −

(
qµP

µ
+(q)

)∗
. The contractions of the collective

mode vertices are then(
qµΠµ

qµΠ̄µ

)
=

(
Q+− Q++

Q−− Q−+

)−1(
2 (∆scQ+− −∆∗scQ++)
−2 (∆∗scQ−+ −∆scQ−−)

)
=

(
2∆sc

−2∆∗sc

)
. (B.9)

This confirms that, for all q, we have the desired relations

qµΠµ(q) = 2∆sc, qµΠ̄µ(q) = −2∆∗sc. (B.10)

Finally, we now show that at q = 0 the gap equation is consistent with the poles of the collective mode vertices.
These poles are given by the solution of det(Qab) = Q+−Q−+ −Q++Q−− = 0, which arises when taking the matrix
inverse of Eq. (B.6). Let q = 0, and suppose ∆sc = ∆∗sc, then the poles occur when Q+− − Q++ = 0. Using the
expressions in Eqs. (B.1-B.3), and the definition of Fsc(k), this reduces to

1− g
∑
k

Gα0 (−k)G(k) = 0, (B.11)

which is the expected gap equation.
In summary, we have obtained the collective mode vertices, and thus obtained the gauge invariant full vertex. The

next section determines the form of the vertex Λµ for three example cases of Σcorr.
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Appendix C: Specific examples for the Λµ vertex

1. Pairing pseudogap approximation

In the pairing pseudogap approximation5,6, Σcorr(k) = −∆2
pgG0(−k), which implies that

qµΛµ(k+, k−) = Σcorr(k−)− Σcorr(k+),

= ∆2
pgG0(−k−)qµγ

µ(−k−,−k+)G0(−k+). (C.1)

Thus, it follows that

Λµ(k+, k−) = ∆2
pgG0(−k−)γµ(−k−,−k+)G0(−k+). (C.2)

2. YRZ

In the YRZ model3, Σcorr(k) = −∆2
pgG0(−k). Thus, as in the case for the pseudogap approximation, we obtain

Λµ(k+, k−) = ∆2
pgG0(−k−)γµ(−k−,−k+)G0(−k+). (C.3)

3. Particle-only t-matrix

In the t-matrix model of Ref.26, Σcorr(k) =
∑
l t(l)G(l − k) =

∑
l t(l + k)G(l). (In Ref.26 the gap is fixed to be the

BCS gap, arising from a BCS Gorkov F -function. However, in the number equation additional correlations are added
via adding Σcorr to the BCS self-energy. In order to implement a consistent framework, based on Ref.26, we take the
self energy to be Σ = Σcorr + Σsc, where Σsc = −|∆sc|2Gα0 (k), and α = 1. The gap is thus set to be ∆sc and the
additional correlations are present in the number equation.) Here G(k) is the full Green’s function, where we define

G−1(k) = G−1
0 (k)− Σ(k),

F (k) = ∆scG
α
0 (−k)G(k). (C.4)

The self energy is Σ(k) = Σcorr(k)−|∆sc|2Gα0 (−k), where ∆sc is the superconducting gap and α = 1 in Gα0 (k), defined
in Eq. (2.3) of the main text. The Gorkov F -function satisfies F (k) = F (−k).

The inverse t-matrix t−1(l) in the formalism of Ref.26 is given by

t−1(l) = χ11(l)− χ−1
22 (l)χ12(l)χ21(l), (C.5)

where the susceptibilities are given by

χ11(l) =
1

g
−
∑
m

G(l +m)G(−m),

χ12(l) =
∑
m

F (l +m)F ∗(−m), (C.6)

where 1/g is the standard s-wave interaction26. Note that χ22(l) = χ11(−l), and because F (m) is even, χ12(l) =
χ∗21(l) = χ21(l).

The vertex correction Λµ for this model is defined by Eq. (A.4). We now proceed to evaluate the right hand side
of Eq. (A.4). From the definition of Σcorr, it follows that

Σcorr(k−)− Σcorr(k+) = 2
∑
l

G(l)t(l + k+)t(l + k−)
(
t−1(l + k+)− t−1(l + k−)

)
−
∑
l

t(l)G(l − k+)G(l − k−)
(
G−1(l − k+)−G−1(l − k−)

)
. (C.7)

The full Green’s function obeys the Ward-Takahashi identity, which defines the full vertex Γµ:

qµΓµ(k+, k−) = G−1(k+)−G−1(k−). (C.8)
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Equivalently, Γµ is given by Eq. (A.10). Thus, we now have

Σcorr(k−)− Σcorr(k+) = 2
∑
l

G(l)t(l + k+)t(l + k−)
(
t−1(l + k+)− t−1(l + k−)

)
+
∑
l

t(l)G(l − k−)qµΓµ(l − k−, l − k+)G(l − k+). (C.9)

From the t-matrix definition in Eq. (C.5), the difference of the two inverse t-matrices is

t−1(l + k+)− t−1(l + k−) = χ11(l + k+)− χ11(l + k−)

+ χ−1
22 (l + k−)χ12(l + k−)χ21(l + k−)− χ−1

22 (l + k+)χ12(l + k+)χ21(l + k+). (C.10)

For the first line of this expression we can use the Ward-Takahashi identity in Eq. (C.8) to obtain

χ11(l + k+)− χ11(l + k−) =
∑
m

G(−m)G(l +m+ k+)qµΓµ(l +m+ k+, l +m+ k−)G(l +m+ k−). (C.11)

It remains to compute the difference term in the second line of Eq. (C.10). To do this, first note that

χ−1
22 (l + k−)χ12(l + k−)χ21(l + k−)− χ−1

22 (l + k+)χ12(l + k+)χ21(l + k+)

=

{
[χ22(l + k+)− χ22(l + k−)]χ12(l + k−)χ21(l + k−)

+ [χ12(l + k−)− χ12(l + k+)]χ22(l + k−)χ21(l + k−)

+ [χ21(l + k−)− χ21(l + k+)]χ22(l + k−)χ12(l + k+)

}
(χ22(l + k−)χ22(l + k+))−1. (C.12)

This form simplifies the problem to computing the vertex insertions into both χ12, χ21, and χ22 individually, and then
summing the result. Since χ22(k) = χ11(−k), we can use the result in Eq. (C.11) to obtain

χ22(l + k+)− χ22(l + k−) = −
∑
m

G(m)G(−l −m− k−)qµΓµ(−l −m− k−,−l −m− k+)G(−l −m− k+). (C.13)

We now study the χ12 difference term in the third line of Eq. (C.12). This difference amounts to performing all possible
vertex insertions into χ12. If we write χ12(k) = |∆sc|2

∑
mG

α
0 (−m− k)G(m+ k)Gα0 (m)G(−m), then it is clear that

there are six possible positions for vertex insertions; two full vertices can be inserted into the full Green’s functions,
two bare vertices can be inserted into the bare Green’s functions, and two collective mode vertices can be inserted into
the fluctuating gap ∆sc or ∆∗sc. For convenience, in this section only we define γµα(k+, k−) = γµ(k+, k−)+αΛµ(k+, k−).
Performing all these vertex insertions then gives the following result:

2(χ12(l + k+)− χ12(l + k−))

= qµΠ̄µ(q)
∑
m

Gα0 (m+ q)G(−m)F (m+ l + k+) + qµΠµ(q)
∑
m

Gα0 (−m− l − k−)G(m+ l + k+)F ∗(m)

+
∑
m

F (m+ l + k+) [Gα0 (m+ q)qµγ
µ
α(m+ q,m)F ∗(m)−G(−m)qµΓµ(−m,−m− q)F ∗(m+ q)]

+
∑
m

F ∗(m)[Gα0 (−m− l − k−)qµγ
µ
α(−m− l − k−,−m− l − k+)F (m+ l + k+)

−G(m+ l + k+)qµΓµ(m+ l + k+,m+ l + k−)F (m+ l + k−)]. (C.14)

Here we have introduced the collective mode vertices Πµ(q), Π̄µ(q), which satisfy qµΠµ(q) = 2∆sc, qµΠ̄µ(q) = −2∆∗sc.
These are the collective mode vertices discussed in Sec. (II C). Since χ12 = χ21, the same result derived above holds
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for χ21. We can now combine all the previous results from this subsection and define the following vertices

vµ11(l + k+, l + k−) =
∑
m

G(−m)G(l +m+ k+)Γµ(l +m+ k+, l +m+ k−)G(l +m+ k−)

+
∑
m

G(l +m+ k+)G(−m)Γµ(−m,−m− q)G(−m− q). (C.15)

vµ22(l + k+, l + k−) = −χ12(l + k−)χ21(l + k−)

χ22(l + k−)χ22(l + k+)

×
{∑

m

G(m)G(−l −m− k−)Γµ(−l −m− k−,−l −m− k+)G(−l −m− k+)

+
∑
m

G(−l −m− k−)G(m)Γµ(m,m− q)G(m− q)
}
, (C.16)

vµ12(l + k+, l + k−) = −χ21(l + k−)

χ22(l + k+)

{
Π̄µ(q)

∑
m

Gα0 (m+ q)G(−m)F (m+ l + k+)

+ Πµ(q)
∑
m

Gα0 (−m− l − k−)G(m+ l + k+)F ∗(m)

+
∑
m

F (m+ l + k+) [Gα0 (m+ q)γµα(m+ q,m)F ∗(m)−G(−m)Γµ(−m,−m− q)F ∗(m+ q)]

+
∑
m

F ∗(m)[Gα0 (−m− l − k−)γµα(−m− l − k−,−m− l − k+)F (m+ l + k+)

−G(m+ l + k+)Γµ(m+ l + k+,m+ l + k−)F (m+ l + k−)]

}
. (C.17)

vµ21(l + k+, l + k−) =
χ12(l + k+)

χ21(l + k−)
vµ12(l + k+, l + k−). (C.18)

Using the definitions of these vertices, along with Eq. (C.7), finally gives the vertex Λµ(k+, k−) for the t-matrix
model of Ref.26

Λµ(k+, k−) =
∑
l

t(l)G(l − k−)Γµ(l − k−, l − k+)G(l − k+)

+
∑
l

G(l)t(l + k+)

[
vµ11(l + k+, l + k−) + vµ12(l + k+, l + k−)

+ vµ21(l + k+, l + k−) + vµ22(l + k+, l + k−)

]
t(l + k−). (C.19)

It can be shown that this vertex does indeed satisfy qµΛµ(k+, k−) = Σcorr(k−) − Σcorr(k+). Diagrammatically, the
first line in this expression is a Maki-Thompson (MT) diagram. The first term in the parentheses of the second line
represents two identical Aslamazov-Larkin (AL) diagrams25. Similarly the fourth term in parentheses is similar to
two identical Aslamazov-Larkin diagrams. The second and third terms in parentheses are additional diagrams which
must be retained in order to satisfy the gauge invariant condition qµΛµ(k+, k−) = Σcorr(k−)− Σcorr(k+).

Appendix D: f-sum rule and longitudinal sum rule

In this section we show that, given bare and full vertices that satisfy the Ward-Takahashi identity, the density-
density and current-current response functions satisfy the f and longitudinal sum rules, respectively.

The exact response function is constructed from a two point correlation function containing one full vertex,
Γµ(k+, k−) = (Γ0(k+, k−),Γ(k+, k−)), and one bare vertex γν(k+, k−) = (γ0(k+, k−),γ(k+, k−)):

Pµν(q) = 2
∑
k

G(k+)Γµ(k+, k−)G(k−)γν(k−, k+). (D.1)

To show consistency with sum rules, we use the Ward-Takahashi identity (as in Eq. (A.3))

qµΓµ(k+, k−) = G−1(k+)−G−1(k−). (D.2)
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Contracting the response function with qµ, and using the Ward-Takahashi identity, we then have

qµP
µν(q) = 2

∑
k

G(k+)[G−1(k+)−G−1(k−)]G(k−)γν(k−, k+),

= 2
∑
k

G(k)[γν(k, k + q)− γν(k − q, k)]. (D.3)

The ν = 0 component of the bare vertex is equal to one, so that

qµP
µ0(q) = 0 (D.4)

On the other hand, the spatial components ν = j ∈ {1, 2, 3} are

qµP
µj(q) = 2

∑
k

G(k)[γ(k, k + q)− γ(k − q, k)],

=
n

m
q. (D.5)

Here we used the fact that γ(k, k + q)− γ(k − q, k) = q/m is independent of k, and 2
∑
kG(k) = 2

∑
k nk = n.

In terms of components, and real frequencies, these equations become

ωP 00(ω,q)− q ·Pi0(ω,q) = 0, (D.6)

ωP0j(ω,q)− q ·P
↔
ij(ω,q) =

n

m
q. (D.7)

Setting ω = 0 and then operating with −q (on the right) in Eq. (D.7) gives

q ·P
↔
ij(0,q) · q = − n

m
q · q. (D.8)

Now use the identity Im P i0(ω,q) = −Im P 0i(−ω,−q) and Eq. (D.6), Eq. (D.7) to solve for Im P 00 in terms of

Im P
↔
ij . Applying the Kramers-Kronig relations and Eq. (D.8) then gives∫

dω

π
(−ωIm P 00(ω,q)) =

∫
dω

π

(
−q · Im P

↔
ij(ω,q) · q
ω

)
= −q · Re P

↔
ij(0,q) · q

=
n

m
q · q. (D.9)

The density-density and current-current response functions are respectively defined by χρρ(q) ≡ P 00(q), χ↔JJ(q) ≡
P ij(q), i, j ∈ {1, 2, 3}. The f -sum rule is then∫

dω

π
(−ωIm χρρ(ω,q)) =

n

m
q · q. (D.10)

Similarly the longitudinal sum rule is∫
dω

π

(
−q · Im χ↔JJ(ω,q) · q

ω

)
=

n

m
q · q. (D.11)

Therefore, provided the full vertex satisfies the Ward-Takahashi identity, both sum rules will hold exactly for all q in
this continuum limit.
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