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The spin superfluid analogy can be extended to include Josephson-like oscillations of the spin
current. In a system of two antiferromagnetic insulators (AFMIs) separated by a thin metallic
spacer, a threshold spin chemical potential established perpendicular to the direction of the Néel
vector field drives terahertz oscillations of the spin current. This spin current also has a non-
linear, time-averaged component which provides a ‘smoking gun’ signature of spin superfluidity.
The time-averaged spin current can be detected via the inverse spin Hall effect in a metallic spacer
with large spin-orbit coupling. The physics illustrated here with AFMIs also applies to easy-plane
ferromagnetic insulators. These findings may provide a new approach for experimental verification
of spin superfluidity and realization of a terahertz spin oscillator.

I. INTRODUCTION

One main objective in the field of spintronics is the gen-
eration and manipulation of pure spin currents in mag-
netically ordered systems. Pure spin currents in mag-
netic insulators are carried by collective excitations. This
can be achieved by combining elements of conventional
spintronics with magnetic insulators [1], for example,
magnon mediated spin currents can be generated in het-
erostructures composed of ferromagnetic(FM) insulators
and metals [2, 3]. A more exotic method of transport-
ing spin harnesses the ground states of both easy-plane
FMs [4–6] and antiferromagnetic insulators (AFMIs) [7].
It has been long appreciated that magnetically ordered
systems with spontaneously broken U(1) symmetry [8, 9]
support metastable spin spiral states that can transfer
spin angular momentum without dissipation [10]. In this
regard, heterostructures composed of AFMIs are advan-
tageous to those composed of easy-plane FMs, since they
are less sensitive to stray fields or dipolar interactions,
which can destroy dissipationless spin transport in easy-
plane FMs [11].

It is difficult to experimentally distinguish between
spin super-currents and magnon mediated spin currents
in magnetic insulators, since the spin wave decay length
is long due to the small Gilbert damping. Therefore,
other signatures of spin superfluidity in magnetically or-
dered systems need to be explored. To this end, it is
advantageous to investigate the connections between su-
perconductivity and magnetism further. One remark-
able phenomena is the Josephson effect [12], which oc-
curs in coupled superfluids and superconductors because
the coupling energy is a periodic function of the rela-
tive phase difference. A similar energy dependence can
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FIG. 1. Schematic diagram of the proposed heterostruc-
ture to detect the Josephson effect in spin superfluids. The
heterostructure consists of two antiferromagnetic insulators
(AFMIs) separated by a thin non-magnetic metallic (NM)
spacer. The magnetization of the AFMIs lies in the xy-plane
as indicated in the inset showing the direction of the Néel
vector and phase φ, with a spin canting in the ẑ-direction.
A spin chemical potential of up spins on the left interface of
the AFMI can drive an oscillating spin current through the
metallic spacer via spin pumping. The spin Hall effect in a
heavy metal (HM) can inject a spin current. The spin current
flowing through a spin-orbit (SO) coupled metallic spacer can
be detected via the inverse spin Hall effect.

be anticipated for exchange coupled AFMIs and easy-
plane FMs. This insight suggests that it is instructive to
analyze the effect of exchange coupling on the spin cur-
rents in heterostructures composed of exchange coupled
AFMIs and easy-plane FMs. Josephson dynamics were
also predictied in dipole coupled nanomagnets [13].

In this article, we propose a lateral spin valve het-
erostructure, which consists of two AFMIs separated
by a thin metallic spacer [14]. We show that the spin
superfluid analogy can be further extended to realize
Josephson-like oscillations of the spin currents flowing
through exchange coupled antiferromagnetic insulators
(AFMIs). This oscillatory spin current can be detected
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by injecting a pure spin current on the left side of the
heterostructure illustrated in Fig. 1. A spin chemical
potential established perpendicular to the direction of
the Néel vector field, drives an oscillatory spin supercur-
rent which can be converted to a charge current via the
inverse spin Hall effect through a metallic spacer with
large spin-orbit coupling. Furthermore, this oscillatory
spin current induces a non-Ohmic IS-VS characteristics
of AFMI exchange coupled heterostructures, which pro-
vides a “smoking gun” signature of the spin superfluidity.

II. COUPLED MAGNETIZATION DYNAMICS

Consider the heterostructure in Fig. 1, consisting of
two bipartite lattice AFMIs separated by a thin non-
magnetic metallic spacer that provides a local interlayer
exchange coupling between the two AFMIs. Each AFMI
has a staggered spin orientation si(r) = Si(r)/S where
i = ± denotes the left (right) AFMI and S is the satu-
rated spin density. The long-wavelength effective Hamil-
tonian describing the fluctuation of the AFMIs can be ex-
pressed in terms of two continuum fields ni(r) (the Néel
vector field) and mi(r) (the canting field), with the local

spin orientation si(r) = ηi,rni(r)
√

1− |mi(r)|2 + mi(r)
with the constraints |ni| = 1 and ni · mi = 0, where
ηi,r = ±1 for the A(B) sublattices [15]. Assuming that
the Néel vectors lie in the xy-plane with an interlayer ex-
change interaction

∑
r,r′ Jr,r′sL,r · sR,r′ [16], the effective

Hamiltonian capturing the long-wavelength dynamics of
this system is,

H =
1

V

∫
dr
∑
i=±1

[
ρ

2

(
∇ni(r)

)2
+
λ

2
m2
i (r) (1)

+
J

2
ni(r) · n−i(r) +

J

2
mi(r) ·m−i(r)

]
,

where V is the volume, J is the inter-layer exchange cou-
pling of the two AFMIs, λ > 0 is the homogenous AFMI
exchange coupling, and ρ is the spin stiffness assumed
equal for both AFMIs [17]. The energy of each AFMI is
independent of the direction of the Néel vector ni indi-
cating U(1) symmetry, and λ > 0 ensures that mi = 0
in equilibrium.

The long wavelength dynamics of the isolated system
can be captured by the Landau-Lifshitz-Gilbert(LLG)
equations, which subjected to the AFMI constraints, can
be expressed as,

~ṅi = λmi × ni + Jm−i × ni − ~αni × ṁi, (2)

~ṁi = ρni ×∇2ni + Jni × n−i − ~αni × ṅi, (3)

where (ṁi, ṅi) denote the time derivatives of the fields
(mi,ni), α is the damping constant assumed the same
for both AFMIs, and henceforth we neglect the spatial
dependence of the fields (∇2ni ∼ 0). To implement
the AFM constraints in the above equation we define:
ni = (cos θi cosφi, cos θi sinφi, sin θi), where φ is the az-
imuthal angle, θ is the relative angle to the xy-plane and

mi = (−mθ,i sin θi cosφi−mφ,i sinφi,−mθ,i sin θi sinφi+
mφ,i cosφi,mθ,i cos θi). With these substitutions the
long-wavelength dynamics of the coupled AFMIs can be
described in terms of a pair of canonically conjugate fields
(mθ,i, φi) and (mφ,i, θi) for both AFMIs. For small vari-
ations about the Néel ordered state θi ≈ 0, the LLG
equations for (mθ,i, φi) neglecting the quadratic terms,
are decoupled from the (mφ,i, θi) fields, reducing to,

~ṁθ,i = J sin(φi − φ−i)− ~αφ̇i,

~φ̇i = λmθ,i + Jmθ,−i + ~αṁθ,i. (4)

For zero damping (α = 0), the above equations de-
scribing the magnetization dynamics for exchange cou-
pled systems of AFMIs are remarkably similar to the
Josephson equations of coupled superconductors. This
becomes evident after defining the relative magnetization
mθ = mθ,L −mθ,R and the relative phase φ = φL − φR.
Then, Eqs. (4) give

~ṁθ = 2J sin(φ); ~φ̇ = (λ− J)mθ. (5)

The time dynamics of the relative phase is governed
by φ̈ = ω2

0 sin(φ), where the characteristic frequency

ω0 =
√

2J(λ− J)/~, depends on the nature of the inter-
layer exchange of the coupled AFMIs. The equation de-
scribing the phase dynamics resembles the equation of
a simple pendulum with tilt angle φ or equivalently the
motion of a particle with unit mass moving in a potential
U(φ) = ω2

0 cos(φ). This mechanical analogue provides an
intuitive understanding of the rich magnetization dynam-
ics of Eqs. (4).

Starting with initial conditions φ(t = 0) = 0 and

mθ,0 = 0.05 ∝ φ̇(t = 0), we solve Eqs. (4) for both FM
and AFM interlayer exchange coupling J . The magneti-
zation exhibits periodic oscillations with frequencies ω ∼
1− 10 THz, as indicted in Fig. 2, with different dynam-
ics for the FM and AFM inter-layer exchange. Fig. 2(a)
shows the periodic variation of the phase dynamics for
an FM exchange |J |/λ = 1/300 with λ = 30meV , which
oscillates about the equilibrium point φ = 0. The mag-
nitude of the oscillations depends on the initial veloc-
ity φ̇0 ∝ (λ − J)mθ,0/~. The individual magnetizations
(mθ,L and mθ,R) also exhibits coupled periodic oscilla-
tions and as indicated in Fig 2 (b), and the total mag-
netization is conserved for the isolated system in the ab-
sence of any damping. When the initial magnetization is
above a critical value m > m0,c = 2

√
2|J |/(λ− J), the

Néel vector performs full rotations in the xy-plane, this
critical value corresponds to an initial angular velocity
of the pendulum φ̇c ≥ 2|ω0|. The effect of the Gilbert
damping with α = 0.05 denoted by the dotted lines in
Fig. 2, results in an exponential damping of the phase in
time, which in turn, leads to an exponential damping of
the total magnetization.

The mechanical analogue for the antiferromagnetic in-
terlayer exchange coupling J > 0 corresponds to a simple
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FIG. 2. Dynamics of mL (blue), mR (red), φ, and the total

spin current IS/IS,0 = φ̇ with the initial conditions m0 =
0.05 and φ = 0. (a)-(c) are for the case of a FM inter-layer
exchange J < 0, and (d)-(f) represent the case for an AFMI
inter-layer exchange J > 0. All dashed lines represent the
dynamics for non-zero damping with α = 0.05. The equations
are solved for |J |/λ = 1/300 and λ = 30 meV.

pendulum with the initial condition φ(t = 0) = π, or the
π-phase Josephson junction in superconductors. For this
case, as shown in Fig. 2(d), irrespective of the initial con-
ditions, the Néel vector performs complete rotations in
the xy-plane. mθ,L and mθ,R oscillate in-phase leading
to an oscillation in mθ which is conserved in the absence
of damping. With damping, (α = 0.05), the individual
magnetizations decay exponentially as indicated by the
dashed lines in Fig. 2, and as before the total magneti-
zation decays exponentially.

III. SPIN-CURRENT DYNAMICS

A. Oscillatory spin-current

The oscillations in the relative magnetization induced
by the dynamics in the Néel vector fields of the AFMIs
pump a spin current through the metal spacer. This spin
current can be written as IS = IS,L − IS,R, where

IS,i = ~
Gr
4π

(ni × ṅi + mi × ṁi)− ~
Gim
4π

(ṁi), (6)

with i = L(R) and IS,L(IS,R) is the spin current in-
jected from the left (right) side of the metallic spacer,
G = Ag↑↓/NS is the spin-mixing conductance at the
AFMI/spacer interface, A is the interface area, g↑↓ =

g↑↓r + ig↑↓im is the spin-mixing conductance per unit area
[18, 19], and N = V/a30 denotes the total number of spins.
Restricting to the ẑ-component of the spin, the spin cur-
rent pumped into the metallic spacer by the AFMIs can
be expressed as,

IS = ~
Gr
4π
φ̇L − ~

Gr
4π
φ̇R = ~

Gr
4π
φ̇, (7)

valid for |mi| � |ni|. For simplicity, we assume the
spin-mixing conductance is real and equal at both AFMI-
spacer interfaces.

The normalized IS/IS,0 spin current flowing through
metallic spacer, where IS,0 = ~Gω0/(4π) is the charac-
teristic spin current supported by the junction, is plotted
in Figs. 2(c) and (f) for the FM and the AFM inter-layer
exchange. Eq. 7 states that the spin current is propor-
tional to the rate of change of the relative phase, different
from the Josephson voltage phase relation in a supercon-
ductor. Similarly, we anticipate that the spin chemical
potential must act, via spin transfer torque, as a source
term for the rate of change of the relative magnetization.

B. Steady state spin-current

Non-equilibrium spin accumulation at the left interface
of the first AFMI, via the spin hall effect[20] or anomalous
Hall effect, can transfer angular momentum by inducing
a spin transfer torque on the coupled AFMI system. The
spin-transfer torque can be expressed as

τS =
Gr
4π

n× µS × n +
Gim
4π

µS × n, (8)

where µS = µ0−~n×ṅ denotes the total non-equilibrium
spin accumulation at the left interface, µ0 is the spin ac-
cumulation, and ~n× ṅ denotes the spin pumping back-
action due to the precession of the Néel vector, satisfying
Onsager reciprocity [7]. This non-equilibrium spin accu-
mulation leads to a non-zero relative magnetization via
spin-transfer torque, resulting in the precession of the
Néel vector field that drives an oscillatory spin current
through the metallic spacer, which we analyze next.

Consider the spin transfer effect in the ẑ spin direction
at the left interface and drop Gi. In the presence of a spin
accumulation at the left interface, Eq. (3) acquires a spin
transfer torque τS resulting in modified equations for the
canonically conjugate fields (mθ,i, φi). Eliminating mθ

from the modified equations, the time dynamics of the
phase φ satisfy,

(1 + α2)φ̈+
~α̃ω2

2J
φ̇− ω2 sin(φ) =

ω2

2J
VS , (9)

where VS = GLr µ0/(4π), α̃ = α + α′ with α′ = Gr/(4π)
is the enhanced damping due to the spin pumping at the
spacer, and we define a critical spin voltage VS,c = 2J .
Here we assume α′ is small compared to α and take
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FIG. 3. Steady state solution of φ̇ for the FM inter-layer
exchange (J < 0) (a, c), and AFM interlayer exchange (J > 0)
(b, d) as a function of the spin voltage VS . We choose a spin
injection value VS,a = 0.031J that is greater than the critical
spin injection. VS < VS,0 for (a) and (b), and VS,a > VS,0 for
(c) and (d). As before, we set λ = 30meV , |J |/λ = 1/300
and α = 0.001.

αα̃ ∼ α2. This equation has been extensively stud-
ied in the context of superconductivity, and describes
the RCSJ model for superconducting Josephson junc-
tions [21]. Based on this similarity, it is prudent to
define an effective Stewart-McCumber parameter β =
2J(1 + α2)/(α2(λ − J)), which determines over-damped
(β � 1) or under-damped (β � 1) junctions. For typical
values of damping in AFMIs β ∼ 2J/(λα2) � 1, which
corresponds to an under-damped junction where Eq. (9)
must be solved numerically.

Eq. (9) resembles the equation of motion of a par-
ticle of mass ~2(1 + α2)/(2(λ − J)) moving along the
φ axis in the presence of an effective tilted washboard
potential U(φ) = 2J cos(φ) − VSφ with a viscous drag

force ~α̃φ̇. The phase dynamics φ̇ in the presence of
damping α = 0.001 are plotted in Fig. 3 for various
values of a constant spin chemical potential VS . The
steady state solution of φ̇ for both the FM or the AFM
inter-layer exchange interaction shows the same behav-
ior when VS < VS,0 (see Fig. 3(a) & (b)) and different
dynamics when VS > VS,0 (see Fig. 3(c) & (d)), where
VS,0 = 0.031J � VS,c depends on β. When the spin
chemical potential is small VS < VS,0, viscous drag dom-
inates the dynamics, and the oscillations in the phase
decay as a result of the damping for both the FM and
AFM inter-layer exchange interaction. However, if the
spin transfer torque induced by VS is sufficiently large,
the energy gain due to the spin transfer torque can bal-
ance the energy loss due to the damping resulting in a
continual rotation of the Néel vector. In the language
of spintronics, this results from the anti-damping like
torque due to VS fully compensating the damping torque.
For J > 0, which corresponds to the superconducting π-
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with λ = 30 meV and |J |/λ = 1/300.

junction, the system is at an unstable equilibrium point,
therefore, a small driving force (VS � 2J) is enough
to induce a full 2π-rotation of the phase. However, for
J < 0, the system is at an energy minima, so a large
driving force VS ∼ 2J is required to overcome both the
viscous damping force and the force required to push the
particle over the hill.

In the over-damped case β � 1, when VS < VS,c a

static solution for the phase is allowed φ = sin−1(V/(2J))
implying IS = 0. However, when VS > VS,c only time
dependent solutions exist, for β � 1 we can assume
〈φ̈〉 ∼ 0, solving Eq. 9 gives an oscillation frequency

ω = 1/(hα̃)
√
V 2 − 4J2 for the phase φ, independent of

the sign of the inter-layer exchange interaction. Simi-
lar characteristic behavior appears for the case of inter-
mediate damping β ∼ 1, however the critical value of
VS,0 = 2α

√
2|J |λ to induce a non-zero steady state φ̇,

depends on the damping.

IV. IS-VS CHARACTERISTICS

The phase dynamics associated with both the FM
and AFM inter-layer exchange interactions result in non-
Ohmic IS-VS characteristics for the AFMI Josephson
junctions. The time averaged value for the spin current
IS,av can be determined from Eq. (7) for over-damped
and under-damped junctions. For over-damped AFMI
Josephson junctions β � 1, the IS − VS characteristics
can be inferred from IS,av = ~Gω/(4π) giving the simple
relation,

IS,av =
G

4πα̃

√
V 2
S − 4J2 (10)

for VS > 2J , which interpolates smoothly between
IS,av = 0 and Ohmic behavior with an effective spin re-
sistance RS = 4πα̃/G. The IS − VS characteristics for
the under-damped junction β � 1 with an AFM inter-
layer exchange (J > 0) are plotted as function of the spin
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chemical potential VS for different values of the damping
in Fig. 4. In the under-damped case, the spin current
jumps discontinuously from IS = 0 until the spin chem-
ical potential reaches VS,0, and VS,0 is proportional to
β. For under-damped junctions with a FM inter-layer
exchange (J < 0) IS,av = 0 for VS,0 ∼ 2J where the
approximation |m| � |n| breaks down and requires solu-
tions of LLG equations without any approximations. The
IS−VS characteristics of AFMI spin Josephson junctions
are different from the I − V characteristics of Joseph-
son junctions in superconductors. These differences orig-
inate from the spin-current phase relation (see Eq. 7) and
the role of the spin transfer torque in exchange coupled
AFMIs.

V. DISCUSSION AND SUMMARY

This average spin current flowing between the AFMIs
can be detected via the inverse spin Hall effect if the
metallic spacer has large spin-orbit coupling [2, 20].
There are several ways to induce a spin chemical poten-
tial [6, 7, 11]. Here we consider spin injection by the spin
Hall efect. To estimate current densities required to drive
a spin current, consider two 0.1µm×0.1µm×0.01µm NiO
thin films, with the exchange energy λ = 19.01meV[22].
Taking α = 0.007 and J = 0.1 meV we find that a
spin chemical potential VS,0 = 0.039 meV is required
for a spin current IS = 2.2 × 10−2 meV. The criti-
cal current density can be estimated from the relation
VS = ~G/(4πe)θSHIc. Taking the spin mixing conduc-
tance gr of NiO of 6.9 × 1018m−2 [18], and assuming a
10nm thick Pt spin current injector with θSH ∼ 0.1, we
obtain an injection current density Ic ∼ 2.3× 107A/cm2.
The induced charge current, Ic = 2eθSHIS/~ through
a thin film Pt spacer with t = 1 nm and conductivity
∼ 0.095 (µΩcm)−1 gives an induced non-local voltage
V ∼ 0.017µV across the Pt spacer.

The RKKY interaction is one mechanism that can gen-
erate the interlayer exchange coupling between the two
AFMIs [23]. In this case, the interlayer exchange cou-
pling will be an oscillatory function of kF d where kF
is the Fermi wavevector and d is the thickness of the
non-magnetic metallic spacer. The detailed interlayer ex-

change coupling for AFMI multilayers will depend on the
local spin orientation at the AFMI/non-magnetic metal
interface. Exchange coupling between AFMIs has not yet
been studied, and it is an important research direction in
the emerging field of AFM spintronics.

Similar oscillations in the spin current can occur across
exchange coupled easy-plane FMs due to their broken
U(1) symmetry. The out-of-plane anisotropy in FMs will
play the role of λ in AFMIs and determine the property of
the junction. Even in the presence of in-plane anisotropy,
we expect these oscillations to persist as long as the spin
chemical potential is above the anisotropy energy scale.
The higher order LLG terms do not destroy the spin cur-
rent oscillations, but they do affect their detailed dynam-
ics. Lastly, the spatial variation in the order parameter,
neglected here, can nucleate spin solitons or instantons
within the junction, which can lead to a Fraunhofer-like
interference patterns in the non-local voltage similar to
the behavior of critical super-currents in superconducting
Josephson junctions.

In summary, we propose a novel effect in exchange cou-
pled AFMIs that is the analogue of the Josephson effect
in superfluids. Due to periodic dependence of the ex-
change energy on the relative phase difference, an oscil-
latory spin current flows through the metallic spacer that
is proportional to the rate of change of the relative in-
plane orientation of the Néel vector fields. A spin transfer
torque induced by a spin chemical potential at one of the
interfaces results in non-linear IS-VS characteristics that
distinguish the proposed lateral spin valve heterostruc-
ture composed of AFMIs and provide a signature of spin
superfluidity. Furthermore, this heterostructure is an ex-
ample of a pure spin AFMI terahertz oscillator [24].
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