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First-order phase transitions, classical or quantum, subject to randomness coupled to energy-like variables

(bond randomness) can be rounded, resulting in continuous transitions (emergent criticality). We study perhaps

the simplest such model, quantum three-color Ashkin-Teller model and show that the quantum critical point in

(1+1) dimension is an unusual one, with activated scaling at the critical point and Griffiths-McCoy phase away

from it. The behavior is similar to the transverse random field Ising model, even though the pure system has a

first-order transition in this case. We believe that this fact must be attended to when discussing quantum critical

points in numerous physical systems.

I. INTRODUCTION

The effect of quenched randomness on thermodynamic

properties could be varied. The systems that behave less and

less random at larger and larger length scales, i.e., the ran-

domness averages out, are described by pure fixed points. On

the other hand, if the randomness is competitive at all scales,

the system is controlled by random fixed point and the prop-

erties of the system is altered by rare spatially localized ac-

tive regions.1–3 In the extreme limit, the fixed point is cap-

tured by the infinite randomness fixed point: the main features

are a strong dynamical anisotropy and a broad distribution of

physical quantities which is manifest through drastically dif-

ferent average and typical correlation functions. Some exam-

ple of such systems are the quantum critical point of random

quantum Ising and Potts models,4–7 the random singlet states

of certain random antiferromagnetic spin chains,8–12 quantum

critical points separating random singlet states and the Ising

antiferromagnetic phase, or the Haldane state in the random

spin-1 Heisenberg chain.13

In addition to the singularities of the thermodynamic quan-

tities at the quantum critical point, there is a whole param-

eter range around the phase transition point in which phys-

ical observables display singular and even divergent behav-

ior in spite of a finite correlation length.5,14–17 Within this

Griffiths-McCoy phase, there is a continuously varying dy-

namical exponent, z, that relates the scale of energy and length

via ε ∝ ξ−z , with z diverging as z ∝ δ−ψν . Here, δ is the de-

viation from the critical point, ψ is some dimensionless pos-

itive constant, and ν is the correlation length exponent. A

signature of the existence of infinite randomness fixed point

is the divergence of the dynamical critical exponent z at the

critical point, δ = 0. In that case, the system exhibits acti-

vated dynamical scaling, ξτ ∝ econst×ξ
ψ

, where ξτ represents

a characteristic time scale of the system.

Both quantum and classical first-order phase transitions are

ubiquitous in nature, because they do not require fine tuning

of a control parameter of the system. Understanding the effect

of quenched randomness that couples to energy-like variables

on the thermodynamic properties of the systems that exhibit

a first-order phase transition has been a challenge of experi-

mental and theoretical studies for many years.18–28

Here we investigate the effect of quenched disorder on the

quantum three-color Ashkin-Teller model in (1 + 1) dimen-

sion, which exhibits a first-order quantum phase transition in

the absence of impurities. We employ discrete-time quan-

tum Monte-Carlo method. Because there is no frustration in

this system, we are able to use highly efficient cluster algo-

rithms.22 For this disorder rounded quantum critical point, we

find activated scaling at criticality and the off-critical region is

characterized by Griffiths-McCoy singularities.

The outline of this paper is as follows: in the next section,

we introduce the N -color quantum Ashkin-Teller model. In

Sec. III, we explain how we find the critical point. We show

the evidence for activated scaling in Sec. IV. Our results for

correlation function and local susceptibility are presented in

Sec. V and Sec. VI. Lastly, in Sec. VII we provide a discus-

sion of our findings.

II. THE MODEL

The Hamiltonian of the N -color quantum Ashkin-Teller

model in (1 + 1) dimension is given by18

H =−

N
∑

α=1

L
∑

i=1

(J2,iσ
z
α,iσ

z
α,i+1 + h1,iσ

x
α,i)

−

N
∑

α<β

L
∑

i=1

(J4,iσ
z
α,iσ

z
α,i+1σ

z
β,iσ

z
β,i+1 + h2,iσ

x
α,iσ

x
β,i),

(1)

where L is the length of the lattice, Greek sub-indices de-

note the colors, Latin sub-indices denote the lattice sites, and

σ’s are the Pauli operators. The J2,i and J4,i are the random

nearest-neighbor coupling constants. The h1,i and h2,i are the

random transverse fields. The random coupling constants and

the transverse fields are taken from a distribution restricted to

only positive values. The model is self-dual, which amounts

to the invariance of the Hamiltonian in Eq. (1) under the trans-

formation J2,i ↔ h1,i, J4,i ↔ h2,i, µ
x
α,i ↔ σzα,iσ

z
α,i+1, and

σxα,i ↔ µzα,iµ
z
α,i+1, where µ’s are the dual Pauli operators.

The pure version of this model has been studied in the past. It

is known that for N ≥ 3, J4,i/J2,i > 0 and h2,i/h1,i > 0,

there is a first-order phase transition from a paramagnetic to

an ordered state.29–32

To study the d-dimensional quantum Hamiltonian in

Eq. (1), we propose an effective classical model in (1 + 1)
dimension, where the extra imaginary time dimension is of
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size β ≡ 1/T and is divided up into Lτ ≡ β/∆τ intervals

each of width ∆τ in the limit ∆τ → 0. We introduce disor-

der only in the horizontal direction. This emulates a quenched

disordered quantum system whose disorder is perfectly corre-

lated in the imaginary time direction. Hence, we expect the

behavior of this system to be in the universality class as the

original quantum Ashkin-Teller model in Eq. (1). This proce-

dure is the same as the McCoy-Wu random Ising model,4,10–12

which is shown to be equivalent to the random transverse field

quantum spin- 12 Ising model in the large imaginary time limit.

The partition function is Z = lim∆τ→0Tr e
−S , with the

proposed effective action given by

S =−
∑

α,τ,i

JiSα,i(τ)Sα,i+1(τ)

−
∑

α,τ,i

JSα,i(τ)Sα,i(τ + 1)

−
∑

α6=β,i,τ

KiSα,i(τ)Sβ,i(τ)Sα,i+1(τ)Sβ,i+1(τ)

−
∑

α6=β,i,τ

KSα,i(τ)Sα,i(τ + 1)Sβ,i(τ)Sβ,i(τ + 1),

(2)

where the Si(τ) = ±1 are classical Ising spins, the indices

α and β denote the colors, the index i runs over the sites of

the one-dimensional lattice, and τ = 1, 2, . . . , Lτ denotes a

time slice. For computational convenience, we set ∆τ = 1
and equivalently take the limit Lτ → ∞ implying T → 0.

The two- and four-spin couplings, Ji andKi, are independent

of τ , because they are quenched random variables. We inde-

pendently take the couplings Ji and Ki from the following

rectangular distributions

π(Ji) =

{

1, if J − ∆J
2 < Ji < J + ∆J

2

0, otherwise

ρ(Ki) =

{

1, if K − ∆K
2 < Ki < K + ∆K

2

0, otherwise

(3)

Suppose we keep one of the colors in Eq. (2) fixed, for in-

stance α = 1. Then, we can write the Eq. (2) as

S = S1

−
∑

τ,i



Ji +
∑

β 6=1

KiSβ,i(τ)Sβ,i+1(τ)



S1,i(τ)S1,i+1(τ)

−
∑

τ,i



J +
∑

β 6=1

KSβ,i(τ)Sβ,i(τ + 1)



S1,i(τ)S1,i(τ + 1),

(4)

where the first term, S1, does not contain the color 1.

The second and third terms of the Eq. (4) can be regarded

as the Ising model action with coupling constants Ji +
∑

β 6=1KiSβ,i(τ)Sβ,i+1(τ) in the spatial direction and J +
∑

β 6=1KSβ,i(τ)Sβ,i(τ + 1) in the temporal direction. We

can implement any cluster Monte-Carlo algorithm suited for

the Ising model. We use the generalization of the Swendsen-

Wang33 cluster Monte-Carlo algorithm suggested by Nieder-

mayer.34

In our simulation on a square lattice of size L × Lτ we

use periodic boundary conditions in both spatial and imagi-

nary time directions. The equilibration “time” is estimated

using the logarithmic binning method, i.e., we compare the

average values of each observable over 2n Monte-Carlo steps

and make sure that the last three averages are within each oth-

ers error bars. Each observable is obtained by averaging over

10000 disordered configurations and for each disordered con-

figuration, 10000 thermal averages is conducted. The error

bars are calculated using the Jacknife procedure.35–37

III. CRITICAL POINT

We estimate the location of the quantum critical point along

the analysis of Rieger and Young38 for the quantum spin glass

systems using the magnetic Binder cumulant39

Vm = 1−
[〈m4〉]

3[〈m2〉2]
, (5)

where

m =
1

LτL

[〈

∑

α

|mα|

〉]

, (6)

with mα =
∑

τ,i Sα,i(τ). The square and angular brack-

ets, [· · · ] and 〈· · · 〉, denote the disorder and thermal aver-

ages, respectively. In the disordered phase, Vm ∝ L−d → 0
as L → ∞.40,41 In the ordered phase, we have spontaneous

magnetization at ±m and Vm → 2/3 as L → ∞.40,41 Fur-

thermore, in the paramagnetic phase, for small Lτ , the sys-

tem is disordered and effectively classical at a finite temper-

ature, therefore Vm → 0. For Lτ → ∞, the system is

quasi one-dimensional in the imaginary time direction, there-

fore Vm → 0 also. There exists an intermediate point where

Vm acquires a maximum value V max
m . This maximum value

decreases as L increases if the system is in the paramagnetic

phase, whereas it increases as L increases if the system is in

the ferromagnetic phase. There is an intermediate point at

which the V max
m is a constant for all L which is the quantum

critical point; see Fig. 1A. For our model with the parameter

set (K,∆K ,∆J ) = (0.08, 0.04, 0.2), we estimate the critical

point to be Jc = 0.245± 0.001.

We also found the critical point of the system with the

parameter set (K,∆K ,∆J ) = (0.1, 0.05, 0.2), with Jc =
0.205 ± 0.002. Careful analyses of two parameter sets

(K,∆K ,∆J) = (0.08, 0.04, 0.2) and (0.1, 0.05, 0.2) yielded

very similar results. Henceforth, we will be reporting only on

the former parameter set in the rest of our paper.
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IV. FINITE-SIZE SCALING

The Binder cumulant (5) has the finite-size scaling form39

Vm = V

(

J − Jc
Jc

L1/ν ,
Lτ
Lz

)

. (7)

As shown in Fig. 1A, the value of V max
m at the critical

point is independent of the system size L and Lτ at the max-

imum varies as Lz . Therefore, we naively would expect that

a plot of the Vm against Lτ/L
max
τ at the critical point should

collapse the data, but from Fig. 1B we see that it does not.

In contrast, if we assume that the logarithm of the charac-

teristic time scale is a power of the length scale, as in the

quantum spin- 12 Ising chain, the scaling variable should be

lnLτ/ lnL
max
τ with lnLmax

τ ∝ Lψ, for some positive con-

stant ψ. As shown in the bottom of Fig. 1C, the data do col-

lapse well for ψ = 0.37.

V. CORRELATION FUNCTION

The equal time correlation function,

Cα,i(r) = [〈Sα,i(τ)Sα,i+r(τ)〉], (8)

is calculated at criticality for spins r = L/2 apart. As

shown in Fig. 2, the distribution of the correlation function,

P (C(L/2)), is getting broader and broader as L increases.

This indicates that the rare events dominate the critical prop-

erties of the system.

As a result of the breadth of the distribution, the average

and typical quantities behave differently. The typical corre-

lation function is defined here as the exponential of the av-

erage of the logarithm.42 In Fig. 3, we show that the aver-

age correlation function, Cavg(L/2), falls off as a power law,

Cavg(r) ∝ r−η , whereas the typical correlation, Ctyp(L/2),
has a downward curvature and falls off faster than the average

value. Our result is consistent with the existence of a stretched

exponential decay, Ctyp(r) ∝ e−const×rσ , at the critical point.

VI. LOCAL SUSCEPTIBILITY

We now turn our attention to off-critical region and cal-

culate the linear susceptibility, χl, in the disordered phase,

J < Jc. In the imaginary time formalism38

χl =

Lτ
∑

τ=1

〈Sα,i(0)Sα,i(τ)〉. (9)

The dynamical exponent, z, can be calculated from the prob-

ability distribution of linear local susceptibility. Away from

the critical point the distributions for different system sizes

are well localized. Close to the critical point, however, the

probability distribution of lnχl gets broader with L as shown

in Fig. 4. This broadening of the probability distribution is a

strong support for the existence of strongly coupled rare re-

gions in the vicinity of the critical point.
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FIG. 1. (Color online) Magnetic Binder cumulant Vm for the pa-

rameter set (K,∆K ,∆J ) = (0.08, 0.04, 0.2) at J = Jc = 0.245.

Top (A): V max

m is L independent indicating that the system is at the

critical point. Middle (B): the horizontal axis is Lτ/L
max

τ , Lmax

τ

is the value of the Lτ at the peak. The curves do not scale but get

broader for larger system sizes, indicating activated scaling. Bottom

(C): Vm versus lnLτ/L
ψ with ψ = 0.37. The curves scale well and

is consistent with activated scaling. The actual value of ψ is quite

uncertain, however, and can range between 0.3− 0.5.
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FIG. 2. (Color online) A plot of the distribution of the equal-time

correlation of spins L/2 apart for the parameter set (K,∆K ,∆J) =
(0.08, 0.04, 0.2) at Jc = 0.245. One sees that the distribution gets

broader and broader asL increases. For this plot we used 105 realiza-

tions of disorder. The values ofLτ are chosen such that Vm ≈ V max

m ,

namely, L× Lτ ∈ {8× 9, 16× 16, 32× 37, 64× 106}.

We examine the behavior of the distribution of local suscep-

tibility following Refs. 15–17, and 43. Given that the proba-

bility distribution of logarithm of local susceptibility P (lnχl)

has a power law tail with P (lnχl) ∝ χ
−d/z
l , then its inte-

gral, Q(lnχl) =
∫∞

lnχl
P (lnχ′

l)d lnχ
′
l, behaves similarly to

P (lnχl) with38

ln[Q(lnχl)] = −
d

z
lnχl + const. (10)

It is more accurate to extract the exponent, z, from the cumula-

tive distribution,Q(ln(χl)). In Fig. 4, we show the cumulative

distribution of the logarithm of local linear susceptibility.

From the conservation of the probability distribution, we

have
∫

P (lnχl)d lnχl =
∫

P̃ (χl)dχl. Therefore P̃ (χ) =

χ−1
l P (lnχl) ∝ χ

−d/z−1
l and for the average local suscepti-

bility we get

χ
(avg)
l ∝

∫

dχl χlP̃ (χl) =

∫

dχl χ
−d/z
l . (11)

In Fig. 5, we show z as a function of J in the paramagnetic

phase. We see that the value of z is larger than 1 for a wide

range of J which indicates the divergence of the average local

susceptibility in this region; also z → ∞ as J → Jc ≈ 0.245,

compatible with activated dynamical scaling at the criticality.

VII. DISCUSSION

We studied the critical and off-critical properties of the

quenched disorder quantum three-color Ashkin-Teller model

in (1 + 1) dimension. Through finite-size scaling analysis of
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FIG. 3. (Color online) Average and typical correlations between

spins L/2 apart at criticality, Jc = 0.245, for the parameter set

(K,∆K ,∆J) = (0.08, 0.04, 0.2) (see Fig. 2. Number of disorder

realization for the size L× Lτ = 96 × 224 is 25× 103). The aver-

age falls off with a power law. The slope of the average correlation

function data suggests that η ≈ 0.15. The curvature of the data for

the typical correlation function shows that this falls off faster than

a power law. The inset shows the linear fit of the logarithm of the

typical correlation function against Lσ for the value of σ = 0.50.

the magnetic Binder cumulant at the quenched disorder in-

duced quantum critical point, we showed that the system ex-

hibits activated scaling. Furthermore, the calculation of the

equal time correlation function showed that the rare events

dominate the critical properties of the system. This results in

a power law behavior of the average quantities, whereas the

typical quantities exhibit a stretched exponential decay. We

also calculated local susceptibility from which we extracted

the dynamical critical exponent and showed the existence of

Griffiths-McCoy phase away from the critical point.

Our fitted value of ψ is 0.37, but we cannot rule out a range

between 0.3 to 0.5, as already mentioned in the caption of

Fig. 1; in Ref. 24 ψ is the same as the strong disorder renor-

malization group (SDRG), which is 0.5. However, our cal-

culated value of η is 0.15, while in Ref. 24 it is the SDRG

value of 0.38. This difference is so large and the linearity (See

Fig. 3) is so precise that it seems to be a real effect, not just

the sizes being too small in the numerics. Average correlations

dominantly come from the rare regions, which are locally in

the ordered phase and decay more slowly. Perhaps it is reason-

able that there is a much larger probability of being locally in

the ordered phase at a first order phase transition. This could

be a reason for the smaller value of η. Further work will be

necessary to shed light on this issue. The calculation of ν ap-

peared to be computationally prohibitive, especially because

of the accuracy demands of our approach; note that one has to

calculate correlation function for many different spatial sepa-

rations and then fit the data.

In summary, the critical behavior of the disorder rounded

quantum first-order phase transition of the three color Ashkin-
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FIG. 4. (Color online) Cumulative probability distribution of ln(χl)
for the parameter set (K,∆K ,∆J) = (0.08, 0.04, 0.2) at J =
0.232. The distributions get broader as L increases. The slope,

−d/z, is extracted by performing a linear fit to the linear part of the

largest calculated system size, namely for L = 64 within the region

1 ≤ lnχl ≤ 2.5.
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z

FIG. 5. (Color online) The dynamical exponent z, for different values

of J in the paramagnetic phase for the parameter set (K,∆K ,∆J) =
(0.08, 0.04, 0.2) for our largest lattice sizeL = 64. The blue vertical

dashed line is the location of the induced quantum critical point. The

horizontal dashed line corresponds to z = 1.

Teller model stands out as an example where the effect of dis-

order in a system is quite complex and considerable care must

be exercised in analyzing quantum critical points where mate-

rial disorder is inevitable.

VIII. ACKNOWLEDGMENT

We are greatly thankful to A.P. Young for important discus-

sions. We also thank the National Science Foundation, Grant

No. DMR-1004520 for support.

1 A. B. Harris, J. Phys. C 7, 1671 (1974).
2 J. T. Chayes, L. Chayes, D. S. Fisher, and T. Spencer, Phys. Rev.

Lett. 57, 2999 (1986).
3 O. Motrunich, S.-C. Mau, D. A. Huse, and D. S. Fisher, Phys.

Rev. B 61, 1160 (2000).
4 R. Shankar and G. Murthy, Phys. Rev. B 36, 536 (1987).
5 D. S. Fisher, Phys. Rev. Lett. 69, 534 (1992).
6 T. Senthil and S. N. Majumdar, Phys. Rev. Lett. 76, 3001 (1996).

7 R. A. Hyman and K. Yang, Phys. Rev. Lett. 78, 1783 (1997).
8 S.-k. Ma, C. Dasgupta, and C.-k. Hu, Phys. Rev. Lett. 43, 1434

(1979).
9 C. Dasgupta and S.-k. Ma, Phys. Rev. B 22, 1305 (1980).

10 B. M. McCoy and T. T. Wu, Phys. Rev. 176, 631 (1968).
11 B. M. McCoy and T. T. Wu, Phys. Rev. 188, 982 (1969).
12 B. M. McCoy, Phys. Rev. 188, 1014 (1969).



6

13 C. Monthus, O. Golinelli, and T. Jolicœur, Phys. Rev. Lett. 79,

3254 (1997).
14 D. S. Fisher, Phys. Rev. B 51, 6411 (1995).
15 H. Rieger and A. P. Young, Phys. Rev. B 54, 3328 (1996).
16 A. P. Young and H. Rieger, Phys. Rev. B 53, 8486 (1996).
17 M. Guo, R. N. Bhatt, and D. A. Huse, Phys. Rev. Lett. 72, 4137

(1994).
18 P. Goswami, D. Schwab, and S. Chakravarty, Phys. Rev. Lett.

100, 015703 (2008).
19 R. L. Greenblatt, M. Aizenman, and J. L. Lebowitz, Phys. Rev.

Lett. 103, 197201 (2009).
20 R. L. Greenblatt, M. Aizenman, and J. L. Lebowitz, Phys. A 389,

2902 (2010).
21 F. Hrahsheh, J. A. Hoyos, and T. Vojta, Phys. Rev. B 86, 214204

(2012).
22 A. Bellafard, H. G. Katzgraber, M. Troyer, and S. Chakravarty,

Phys. Rev. Lett. 109, 155701 (2012).
23 A. Bellafard, S. Chakravarty, M. Troyer, and H. G. Katzgraber,

Annals of Physics 357, 66 (2015).
24 H. Barghathi, F. Hrahsheh, J. A. Hoyos, R. Narayanan, and T. Vo-

jta, Physica Scripta T165, 014040 (2015).
25 Y. Imry and M. Wortis, Phys. Rev. B 19, 3580 (1979).
26 K. Hui and A. N. Berker, Phys. Rev. Lett. 62, 2507 (1989).

27 M. Aizenman and J. Wehr, Commun. Math. Phys. 130, 489

(1990).
28 M. Aizenman and J. Wehr, Phys. Rev. Lett. 62, 2503 (1989).
29 G. S. Grest and M. Widom, Phys. Rev. B 24, 6508 (1981).
30 E. Fradkin, Phys. Rev. Lett. 53, 1967 (1984).
31 R. Shankar, Phys. Rev. Lett. 55, 453 (1985).
32 H. A. Ceccatto, J. Phys. A 24, 2829 (1991).
33 R. H. Swendsen and J.-S. Wang, Phys. Rev. Lett. 58, 86 (1987).
34 F. Niedermayer, Phys. Rev. Lett. 61, 2026 (1988).
35 P. Young, Everything you wanted to know about Data Analysis

and Fitting but were afraid to ask, 1st ed. (Springer, 2015).
36 P. Young, (2012), arXiv:1210.3781v2 [physics.data-an].
37 C. F. J. Wu, Ann. Stat. 14, pp. 1261 (1986).
38 H. Rieger and A. P. Young, Phys. Rev. Lett. 72, 4141 (1994).
39 K. Binder and D. P. Landau, Phys. Rev. B 30, 1477 (1984);

M. S. S. Challa, D. P. Landau, and K. Binder, ibid. 34, 1841

(1986).
40 K. Binder, Phys. Rev. Lett. 47, 693 (1981).
41 K. Binder, Z. Phys. B 43, 119 (1981).
42 J. Kisker and A. P. Young, Phys. Rev. B 58, 14397 (1998).
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