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We report on a comprehensive first-principles study of phase stability in the Ni-Al binary, both at
zero Kelvin and at finite temperature. First-principles density functional theory calculations of the
energies of enumerated orderings on FCC and the sublattices of B2 not only predict the stability
of known phases, but also reveal the stability of a family of previously unknown ordered phases
that combine features of L12 and L10 in different ratios to adjust their overall composition. The
calculations also confirm the stability of vacancy ordered B2 derivatives that are stable in the Al
rich half of the phase diagram. We introduce strain order parameters to systematically analyze
instabilities with respect to the Bain path connecting the FCC and BCC lattices. Many unstable
orderings on both FCC and BCC are predicted around compositions of xNi = 0.625, where a
martensitic phase transformation is known to occur. Cluster expansion techniques together with
Monte Carlo simulations were used to calculate a finite temperature-composition phase diagram
of the Ni-Al binary. The calculated phase diagram together with an analysis of Bain instabilities
reveals the importance of anharmonicity in determining the phase bounds between the B2 based β
phase and the L12 based γ′ phase, as well as properties related to martensitic transformations that
are observed upon quenching Ni rich β.

I. INTRODUCTION

Nickel based superalloys have found a wide range of
industrial applications thanks to their high temperature
mechanical properties and corrosion resistance 1. The Ni-
superalloys of turbine engines for propulsion and power
generation usually contain many alloying additions, but
primarily build on the Ni-Al binary. This binary has
been studied extensively and contains a variety of inter-
metallic compounds with unique properties. The Ni rich
phases of the Ni-Al binary are all orderings on an FCC
parent crystal structure and include the Ni rich solid so-
lution, γ, the γ′-Ni3Al phase having L12 ordering and
the Ni5Al3 phase. FCC ordering gives way to BCC or-
derings at equiatomic mixtures of Ni and Al where the
β phase having B2 ordering on a BCC parent crystal
structure is favored. Coherent two-phase mixtures con-
sisting of γ and γ′ are used to realize high strength and
creep resistance at elevated temperatures2, while the β
phase, having favorable oxidation behavior, is used as a
bond coat on turbine engine blades made of a superalloy
core3,4.

In contrast to most intermetallic compounds, the β
phase can tolerate a high degree of off-stoichiometry
through the introduction of antisite defects and vacan-
cies5. β-NiAl accommodates excess Ni by forming anti-
site Ni defects on its Al sublattice. Ni rich β phases are
susceptible to a martensitic transformation upon quench-
ing6, whereby the high temperature, Ni-rich B2 ordering
on BCC transforms to an FCC variant through a diffu-
sionless process7–9. Many fundamental questions remain
about the thermodynamics and kinetics of these marten-
sitic transformations. Excess Al in β-NiAl, in contrast,
is realized with Ni vacancies on the Ni sublattice of the
B2 ordering and can reach unusually high vacancy con-
centrations for an intermetallic compound. In fact the
high vacancy concentrations can lead to vacancy order-

ing within the B2 crystal structure, however, the phase
relations among the various vacancy ordered derivatives
have yet to be established.

Here we report on a combined first-principles density
functional theory (DFT) and statistical mechanics study
of phase stability in the Ni-Al binary. We focus in par-
ticular in elucidating the thermodynamic properties of
the Ni-Al binary at concentrations where the alloy transi-
tions from FCC to BCC. To this end, we introduce strain
order parameters to determine the onset of instabilities
between FCC and BCC based orderings along the Bain
path. These instabilities are discussed in the context
of the observed martensitic transformation, which has
been the subject of both experimental7,8,10 and compu-
tational11 work. We also investigate the thermodynamic
properties associated with vacancy ordering over the Ni-
sublattice of Al-rich β-NiAl and discover the stability of
a family of hybrid phases that combine features of L10
and L12 in the Ni rich half of the Ni-Al binary.

II. METHODS

A. DFT calculations

First-principles density functional theory (DFT) cal-
culations were performed to predict ordering preferences
in the Ni-Al binary and to investigate instabilities with
respect to the Bain path. All first-principles calculations
were performed within the generalized gradient approxi-
mation (GGA-PBE) using the projector augmented wave
(PAW) pseudopotential method12 as implemented in the
Vienna ab initio Simulation Package (VASP)13–15. The
CASM5,16–19 software package was used to enumerate
symmetrically distinct orderings over FCC and BCC, al-
lowing Ni and Al to occupy the FCC lattice, and Ni, Al
and vacancies to occupy the sublattices of a BCC based
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B2 ordering. A k-point mesh of 23×23×23 was found to
converge the energy of a FCC primitive Ni cell to within
1meV per atom, while a density of 17 × 17 × 17 was
found to do the same for a NiAl B2 cell. The k-point
meshes for the configurations enumerated in supercells
of FCC Ni and of B2 NiAl were scaled appropriately to
maintain the same k-point density. All DFT-PBE cal-
culations were initialized with a spin polarized ferromag-
netic ordering20. To ensure accuracy in our calculations,
a plane wave energy cutoff of 560eV was used. Numer-
ical k-space integration through the Brillouin zone was
performed using a smearing parameter of 0.2eV with the
Methfessel-Paxton method (first order). The DFT-PBE
energies were calculated allowing atomic positions and
lattice parameters to relax to minimize the total energy.

B. Metrics of relaxation and Bain instabilities

With the exception of Al3Ni, every phase in the Ni-
Al binary can be described as an ordering over either an
FCC or BCC lattice. Most orderings over FCC or BCC
break the original cubic symmetry of their parent crystal.
These configurations therefore relax into structures that
lack the initial connectivity between atoms of their ideal
parent crystal structure. Every atom in FCC, for exam-
ple, has exactly 12 nearest neighbors, while each atom
in BCC has 8 nearest neighbors. Upon relaxation, the
atomic connectivity of configurations with broken sym-
metry usually differ only slightly from that in the undis-
torted starting crystal, largely retaining the same num-
ber of nearest neighbors within a small tolerance. These
configurations are dynamically stable and represent the
lowest energy state for that ordering on the starting par-
ent crystal structure. However, particular decorations on
FCC and BCC may be dynamically unstable, undergoing
significant deformation when relaxing atomic coordinates
and lattice vectors during energy minimization. They
change their connectivity to the point that the resulting
structure more closely resembles a different parent crys-
tal structure from the one they started on.

Strain can serve as an order parameter to track the ex-
tent of lattice relaxation. A reference lattice with vectors
~a, ~b and ~c

L =

ax bx cx
ay by cy
az bz cz

 (1)

is related to a deformed lattice L′ by a deformation gra-
dient tensor F according to

L′ = FL. (2)

This deformation tensor can be factored into a rotation
R and a symmetric stretch tensor U using polar decom-
position as

F = RU. (3)

Because R corresponds to a rigid body rotation, the en-
ergy of the crystal is unaffected by it, and any metric
of strain should depend only on the stretch tensor U.
The rotation R can be eliminated by multiplying F by
its transpose (since R−1 = Rᵀ), yielding the commonly
used right Cauchy-Green stretch tensor21

U2 = FᵀF (4)

There are several strain tensors that can be defined in
terms of the stretch tensor U. In this study, we use the
Hencky strain defined as

E = lnU. (5)

Similar to U, this strain metric is also symmetric, with
only 6 independent strain components

E =

εxx εxy εxz
εxy εyy εyz
εxz εyz εzz

 = Eᵀ (6)

However, instead of working directly with the six inde-
pendent Hencky strain elements of eq. (6), it is more
convenient to use an equivalent set of symmetry adapted
strain metrics defined as linear combinations of the
Hencky strains according to22:

e1 =
εxx + εyy + εzz√

3
(7)

e2 =
εxx − εyy√

2
(8)

e3 =
2εzz − εyy − εxx√

6
(9)

e4 =
√

2εyz (10)

e5 =
√

2εxz (11)

e6 =
√

2εxy (12)

e1 is a measure of dilation, and is proportional to the vol-
ume change provided the Hencky strain metric is used. It
is for this reason that we use the Hencky strains, as it un-
couples any volume dependence from e2-e6. The e2 and
e3 strains together describe tetragonal and orthorhombic
distortions of the crystal, while the e4,e5 and e6 strains
represent shears.

A common instability for both FCC and BCC based or-
derings is the Bain path. The above symmetry adapted
strain metrics enable a representation of all symmetri-
cally equivalent Bain paths that connect FCC to BCC in
the two dimensional space spanned by e2 and e3. A con-
ventional FCC cell with its cubic axes oriented along the
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x-y-z Cartesian directions can be transformed to BCC
by a contraction along the z direction and a simultane-
ous expansion along the x and y directions. The Bain
path along the z axis is most easily visualized with a 2
atom tetragonal FCC unit cell as shown in fig. 1. There
are three symmetrically equivalent Bain paths as a result
of the cubic symmetry of an FCC crystal. Equivalent
transformations can be realized by contracting along the
y direction and expanding along the z and x directions,
or by contracting along the x direction and expanding
along the y and z directions. The Bain path involving a
compression along the z-direction (fig. 1) follows the neg-
ative e3 axis, holding e2=0 when using FCC as a refer-
ence for strain. The two other symmetrically equivalent
Bain paths follow the dashed lines of fig. 2, which are
related to the e3 axis by 120◦ rotations in e2-e3 space.
The dashed lines in e2-e3 space in fig. 2 correspond to
tetragonal distortions of the reference FCC lattice, while
any other points that deviate from these lines correspond
to orthorhombic distortions of FCC. When using Hencky
strains, any distortion corresponding to a path in this
space at fixed e1 occurs at constant volume.

(a) (b)

FIG. 1. A Bain transformation from a FCC (fig. 1a) to a BCC
(fig. 1b) crystal structure. The transformation of this FCC
ordering corresponds to a path in the negative e3 direction.

Strain transformations from BCC to FCC can also be
mapped out in e2-e3 space using the BCC crystal as the
reference to measure strain. The axes of the conventional
cubic BCC unit cell must be aligned along the x-y-z di-
rections. The BCC crystal then resides at the origin in
e2-e3 space. The pathways are the same as the Bain
paths described for FCC, but are taken in the opposite
direction: a path in the positive e3 direction with no e2
contribution results in an expansion in the z direction
and a contraction in the x and y directions. There are
three equivalent paths in e2-e3 space that convert BCC
into FCC. These paths are also related to each other by
120◦ rotations in e2-e3 space as illustrated in Figure 3(b).

While the Bain path can be fully described in terms
of strains, many other paths connecting a pair of parent
crystal structures combine a lattice strain with an inter-
nal shuffle of the basis atoms within the unit cell. An
example is the Burgers path23, which connects BCC to
HCP. To map relaxed orderings onto their closest parent
crystal structure, we therefore rely on a composite score
that is a function of both the strain (deformation) of the
unit cell vectors as well as the displacements of the ba-
sis atoms within the unit cell. A deformation score is

e2

e3

FIG. 2. Schematic of the possible deformations in e2-e3 space
relative to a cube. All deformations preserve the volume of the
reference structure, with distortions along dashed lines being
purely tetragonal. Shapes that share the same color have had
a symmetrically equivalent deformation applied along differ-
ent directions, resulting in identical structures that differ only
by a spatial rotation.

defined as proportional to the sum of the squares of the
Biot strain after removal of any volumetric expansion or
contraction, i.e. U/ det (U)− I where U is the symmet-
ric stretch tensor and det (U) relates the relaxed volume
to the reference volume. A displacement score is defined
as the sum of the squares of the displacements (normal-
ized by the number of atoms in the unit cell) relative to
the ideal positions of the prototype crystal having relaxed
unit cell vectors. A weighted sum of the deformation and
displacement score is then used to assign a relaxed con-
figuration to the prototype it most closely maps onto. An
in depth description can be found in the work of Thomas
et al24.

In this study, we compared all relaxed configurations
to ideal FCC, BCC and HCP parent crystal structures.
In the strictest sense, the great majority of orderings will
not be perfect FCC, BCC or HCP, as they will lack cubic
and hexagonal symmetry. Nevertheless, we will refer to
relaxed orderings as FCC, BCC or HCP depending on
which of these parent crystal structures they are most
closely related to.

C. Cluster Expansion Method

Phase stability at finite temperature was studied us-
ing cluster expansions to extrapolate first-principles DFT
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FIG. 3. Bain paths relative to FCC (fig. 3a) and BCC (fig. 3b)
structures in e2-e3 space holding all other strain metrics con-
stant. The origin represents the unstrained crystal and can
take three symmetrically equivalent Bain paths to transform
from FCC/BCC to BCC/FCC. The locations in e2-e3 space
that correspond to FCC and BCC structures are labelled for
reference throughout this work. The origin (reference struc-
ture) is indicated by a “0”, while strain values at the end of
equivalent Bain paths are indicated by “x”, “y” or “z”. La-
bels beginning with “f ” correspond to strain values relative to
a FCC structure, while labels beginning with “b” correspond
to strains relative to BCC.

energies within Monte Carlo simulations. A cluster ex-
pansion describes the energy of a multicomponent crystal
as a function of its degree of order/disorder. For binary
solids, occupation variable σi are assigned to each crys-
tal site i that take on a value of 0 or 1 depending on the
occupant of the site (e.g. Ni vs Al). A particular arrange-
ment over the N -sites of a crystal is then specified by the
collection of occupation variables ~σ = {σ1, σ2, · · · , σN}.
The dependence of the energy of the crystal on arrange-
ment, ~σ, can be written as 25–27

Ef (~σ) =
∑
α

Vαφα (~σ) (13)

where φα are cluster basis functions defined as

φα (~σ) =
∏
i∈α

σi (14)

and correspond to products of occupation variables be-
longing to sites of clusters α, which include point, pair,
triplet etc. clusters. The coefficients Vα are expansion
coefficients called effective cluster interactions (ECI) and
need to be determined from first principles.

While the sum in Eq. 13 extends over all clusters of
sites α within the crystal, to be practical, it must be trun-
cated at a particular cluster size and radius. The ECI of
Eq. 13 can then be fit to the DFT energies of a set of
symmetrically distinct configurations using one of sev-
eral inversion methods28,29. First-principles parameter-
ized cluster expansions usually require only a relatively
small number of nonzero ECI to accurately predict the
formation energy of any configuration. With an accurate
cluster expansion it is possible to rapidly evaluate the for-

mation energy within Monte Carlo simulations to calcu-
late thermodynamic averages. In this study of the Ni-Al
binary, two cluster expansions were constructed, one for
the FCC parent crystal and one for sublattice disorder in
B2, which it self is an ordering over the BCC parent crys-
tal structure. The construction and parameterization of
the cluster expansion and the Monte Carlo simulations
were performed with the CASM software package5,16–19.

III. RESULTS

A. Formation Energies

The first step to understanding the thermodynamics of
the Ni-Al system from first principles is to establish the
ground states at zero Kelvin. A large number of orderings
on the FCC and BCC lattice were systematically enu-
merated within symmetrically distinct supercells. FCC
configurations were enumerated from a one atom FCC
primitive cell, allowing either Ni or Al to occupy each site.
BCC configurations were enumerated relative to a B2 (2
atom) primitive cell. Previous studies5,30–33 showed that
off stoichiometry in B2 NiAl is accommodated by vacan-
cies on the Ni sublattice and by Ni antisite defects on
the Al sublattice. For this reason, the occupancy of the
enumerated BCC configurations were limited to allow Ni-
Va disorder on one sublattice and Al-Ni disorder on the
other.

Figure 4 shows the calculated formation energies of
all enumerated configurations over FCC and B2. For-
mation energies were calculated relative to pure FCC Ni
and FCC Al, and were normalized per number of atoms
according to

Ef =
EDFT −NAlEDFTAl −NNiEDFTNi

NAl +NNi
(15)

Throughout we will use atomic fraction, defined as

xNi =
NNi

NNi +NAl
(16)

as our composition variable. The vertices of the convex
hull (dashed line in fig. 4) of the formation energies cor-
respond to the lowest energy groundstates, which are line
compounds at 0 K.

Pure Ni (xNi = 1) is stable in the FCC crystal struc-
ture. At finite temperature it can dissolve Al, forming the
Ni rich solid solution that is referred to as the γ phase.
The next vertex of the convex hull at xNi = 0.75 in Fig-
ure 4 is the L12 ordering, commonly referred to as γ′.
The unit cell for this ordered phase can be constructed
by replacing the corners of a Ni FCC conventional cell
with Al, which preserves cubic symmetry (fig. 5b). The
ground state at xNi=0.625 has orthorhombic symme-
try and corresponds to the experimentally characterized
phase Ni5Al3

5,8, referred to in this work as δ. In addition
to δ and γ′, there is a large number of configurations be-
tween xNi=0.625 and 0.75 that also have low formation
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FIG. 4. Calculated formation energies relative to FCC Ni and
FCC Al. Configurations stable as a BCC structure are shown
in orange, while configurations stable as a FCC structure are
shown in purple. Groundstates have been colored gray and
are connected by the convex hull of the energies.

energies. One of these configurations, having a composi-
tion of xNi = 2

3 , is a groundstate, residing on the convex
hull. Many others have energies that are only several
meV above the convex hull. We elaborate on the order-
ings of these structures and their relation to the δ phase
in section III B.

(a) (b)

FIG. 5. Unit cells for the unstable L10 ordering (fig. 5a) and
the L12 ordering of the γ′ phase (fig. 5b). The ordering of
L10 on the FCC crystal reduces the symmetry from cubic to
tetragonal, while L12 preserves cubic symmetry. Ni atoms are
shown in orange, while Al atoms are shown in purple.

The next set of ground states are all BCC based order-
ings. At xNi = 0.5, perfect B2 ordering is stable in which
the corners of a conventional BCC unit cell are occupied
by Ni and the body center is occupied by Al. Remark-
ably, two additional B2 derived ground states exist that
are Al rich. Both can be viewed as B2 superstructures
with vacancy ordering over the Ni sublattice. The first,
having chemical formula Ni3Al4, has cubic symmetry, a
full Al sublattice, and vacancy pairs ordered in a three
dimensional pattern. This ordering requires a 4 × 4 × 4

B2 supercell and was not enumerated directly, but was
taken from the work of Ellner et al34. It is isostructural
with the Ni3Ga4 compound. The vacancies are arranged
in such a manner that any row of the Ni sublattice in B2
along any of the x, y or z directions has three filled sites
followed by a single empty one, as shown in fig. 6c. The
second B2 derived ground state, having chemical formula
Ni2Al3, is even more Al rich as a result of a higher va-
cancy concentration on the Ni sublattice. The vacancy
ordering in Ni2Al3 is achieved by removing every third Ni
layer of B2 along the {111} direction. In the literature,
stoichiometric B2-NiAl is referred to as the β phase. In
view of their similarity to B2, we will refer to Ni3Al4 and
Ni2Al3 as β′ and β′′ respectively in the remainder of the
text.

The final intermetallic ground state, Al3Ni, is dis-
tinctly different from all the other phases of the Ni-Al
binary as it cannot be mapped to a particular ordering on
FCC or BCC. Instead, it has the D020 structure, which is
isomorphic with Fe3C (cementite) and has orthorhombic
symmetry.

As with pure Ni, pure Al is also stable in FCC. In con-
trast to pure Ni and the intermetallic compounds in the
Ni-Al binary, though, FCC Al has a low melting temper-
ature of around 660◦C.35

In addition to enumerating different orderings in small
supercells (containing up to 8 atoms for FCC and 16
atoms for BCC), we also systematically enumerated anti-
site defects in large supercells of the ground state order-
ings. Supercells of L12, B2 and δ were perturbed with
point, pair and triplet antisite defects. To minimize inter-
actions between periodic images of the anti-site defects,
supercells containing 108 atoms for L12, 96 atoms for δ,
and 128 atoms for B2 were used. The formation ener-
gies for these orderings are depicted in green in fig. 4 and
fig. 7. While the formation energies of supercells con-
taining anti-site defects are normalized by the number of
atoms in the supercell and their distance from the convex
hull is not a direct measure of anti-site defect formation
energies, fig. 4 and fig. 7 clearly show a large qualitative
difference in anti-site defect formation energies between
L12 and B2 on the one hand, and δ on the other. The
formation energies for dilute antisite defects in L12 and
B2 supercells all have values that are only slightly above
the convex hull. The opposite is true for anti-site defects
in δ, which have formation energies that are substantially
above the convex hull. This suggests that while L12 and
B2 may tolerate anti-site disorder at elevated tempera-
ture, δ will not and will behave as a line compound.

B. An infinity of groundstates

The calculated formation energies of Figure 4 and Fig-
ure 7 show that there are a large number of configura-
tions between 0.625 < xNi < 0.75 having formation en-
ergies that lie below the common tangent between δ at
xNi=0.625 and γ′ at xNi=0.75. The final relaxed crystal
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(a) (b)

(c)

FIG. 6. Unit cells for the β (fig. 6a), β′ (fig. 6c) and β′′

(fig. 6b) phases. All three phases have an underlying B2 or-
dering, with Ni (orange) and Al (purple) atoms arranged on
a BCC crystal. The β′ and β′′ phases have ordered vacancies
on the Ni sublattice, shown with black boxes.

structures for each of these configurations were found to
most closely map onto FCC. Examination of their atomic
positions and arrangements revealed that they can be
viewed as hybrids of L10 and L12 orderings. The crystal
structures of L10 and L12 are compared in fig. 5. L10
consists of alternating Ni and Al layers along the {001}
direction of FCC. L12 can be derived from L10 by replac-
ing half the Al in the Al (001) layers of L10 by Ni in a
checker board pattern.

The δ ordering at xNi = 0.625, which is the first
ground state of the series of hybrid orderings (Figure 7),
is made up of alternating layers of L12 and L10 along the
{101} direction as illustrated in fig. 8. Additional layered
configurations were systematically enumerated by vary-
ing the number and order of L10 and L12 layers along

FIG. 7. Close up of formation energies near δ and γ′ com-
positions. Configurations that are combinations of L10 and
L12 result in new groundstates that break the convex hull.
Energies colored green correspond to orderings of δ0121 and
L12 with a dilute amount of antisite defects. Dilute defect
energies in the δ0121 and L12 orderings have been highlited.

the {101} direction. Configurations with single L10 lay-
ers separated by one or more L12 layers were found to
have formation energies that dip below the common tan-
gent connecting δ at xNi = 0.625 and L12 at xNi = 0.75.
Aluminum rich configurations having an excess of L10
layers in contrast were found to have high formation en-
ergies that are substantially above the common tangent
between δ at xNi = 0.625 and B2 NiAl at xNi=0.5.

Hybrid orderings are common in alloys and ox-
ides19,36–38. A naming convention has been established
to label families of hybrid phases36, which we adopt here.
Since the first hybrid phase Ni5Al3 is referred to as δ, we
use this label to refer to the whole family of hybrid order-
ings. Subscripts are then added to distinguish the various
hybrid orderings based on their number of L12 and L10
subunits. A “0” indicates a L10 layer, while a “2” indi-
cates a L12 ordering. Exponents on each subscript denote
the number of each layer used to construct the full or-
dering. The unit cell of the groundstate at xNi = 2

3 , for
example, is composed of a single L10 layer followed by
two L12 layers (fig. 8). This groundstate is, therefore, la-
beled as δ0122 . The ground state at xNi = 0.625, Ni5Al3,
consists of alternating layers of L10 and L12, such that
its label would be δ0121 .

C. Navigating strain space

Many orderings on FCC and BCC in the Ni-Al bi-
nary are dynamically unstable and relax to a different
parent crystal structure.39 The strain order parameters
described in section II B can be used to quantify the dis-
tance of a relaxed structure to either FCC or BCC. We
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FIG. 8. L10 (left) and L12 (right) orderings and their relation
to the Ni5Al3 δ structure (bottom). Alternating layers of L10

and L12 unit cells along the [101] plane result in the δ0121 and
δ0121 ordering.

systematically analyze relaxation strains in this section.
High symmetry points and lines in e2-e3 space will be
referred to using the labelling outlined in fig. 3.

1. Pure Ni (γ) and L12 (γ′) strain surface

The simplest phase to explore in e2-e3 space is pure Ni
(γ phase) as it lacks a symmetry breaking Ni-Al ordering.
Wang et al39 have already shown that if a pure element is
stable as FCC at 0K, then the BCC form of that element
must be unstable. The global energy minimum for Ni lies
at the origin (fig. 9, located at f.0 ) when using FCC as a
reference for strain. Three equivalent Bain paths connect
FCC at the origin to three symmetrically equivalent BCC
lattices (b.z, b.y, b.x ). These equivalent BCC lattices
appear as three saddle points (instabilities along the Bain
path) on the energy surface. Extending further along
these Bain paths yields a local minimum, corresponding
to a BCT structure, consistent with the findings of Wang
et al39.

The γ′ phase, having L12 ordering, has FCC connec-
tivity, and is the groundstate when xNi = 0.75. The
global minimum for the strain energy plot of the γ′ phase
(fig. 10) using FCC as a reference again resides at the ori-
gin (f.0 ). The L12 ordering preserves the original FCC
cubic point group symmetry, reflected in the threefold

FIG. 9. Strain energies relative to FCC Ni. Strain values
corresponding to FCC are indicated with f, while values cor-
responding to BCC are shown with b. Any straight path
connecting the origin to a marked location is a Bain path.

FIG. 10. Strain energies relative to the L12 ordering.

symmetry of the energy surface in e2-e3 space. The BCC
variants (indicated by locations b.z, b.y, b.x ) do not re-
side in a local minimum and are therefore unstable and
will spontaneously relax back to FCC L12.

2. B2 (β) strain surface

The β phase has a B2 ordering on the BCC crystal
structure. Figure 11a shows that its energy is at a global
minimum at the origin in e2-e3 space (b.0 ) when B2 is
used as the reference for strain. This structure also has
cubic symmetry, which is once again reflected in the 3-
fold symmetry in e2-e3 space. Straining B2 along any
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(a)

(b)

FIG. 11. Strain energies relative to the B2 ordering (fig. 11a)
and the L10 ordering (fig. 11a). Non B2 based BCC orderings
are mechanically unstable.

of the three Bain paths results in three equivalent FCC
L10 orderings (f.z, f.y, f.x ). The plot reveals that these
three FCC variants do not coincide with any local minima
and will spontaneously collapse to the BCC B2 ordering.
NiAl having L10 ordering is therefore mechanically un-
stable.

Interesting properties are revealed about Ni-Al order-
ings on BCC when using FCC L10 as a reference for
strain. Since the Ni-Al ordering in L10 (fig. 5a) has
tetragonal symmetry, the three-fold symmetry in e2-e3
space is broken (fig. 11b). One Bain path connects L10
(f.0 ) to the B2 ordering on BCC (b.z ), and the two other
Bain paths connect symmetrically equivalent orderings
on BCC (b.x, b.y) consisting of alternating Ni and Al
layers along the {110} directions, as shown in fig. 12. As
is clear in fig. 11b, not only is L10 at the origin unstable
(f.0 ), the two non-B2 Ni-Al orderings (fig. 12, residing

on b.x and b.y) are also unstable. Figure 11b shows that
alternating layers of Ni and Al along {110} in BCC will
spontaneously collapse to a B2 ordering, which is also
BCC. This is an example where an instability of an or-
dering on BCC causes a structural relaxation to another
ordering on BCC (fig. 12).

FIG. 12. Unstable ordering on BCC. Alternating Ni and Al
layers along {110} directions will spontaneously relax into the
favorable B2 ordering. The ordering shown here corresponds
to strain locations f.y and f.x in fig. 11b.

3. δ0121 strain surface

Strain energy surfaces in e2-e3 space for δ Ni5Al3 (i.e.
δ0121) are shown in fig. 13. Figure 13a shows the strain
energy surface when using FCC as a reference for strain.
As is clear in fig. 13a, the minimum of the energy sur-
face does not reside at the origin corresponding to perfect
FCC (f.0 ), but is shifted due to the orthorhombic sym-
metry of the Ni-Al ordering of δ0121 . The three Bain
distortions that originate from FCC are therefore also no
longer symmetrically equivalent. While the three BCC
orderings that can be generated by application of Bain
distortions to δ0121 are all dynamically unstable (fig. 13a),
one of the BCC variants (b.z ) clearly resides in a more
shallow energy valley than the two others. Interestingly,
the energies of the δ0121 -ordering of ideal FCC and of
ideal BCC in the lowest energy valley are very close to
each other, and have a low value of roughly 30meV/atom
above the global minimum.

It is also revealing to consider the strain energy surface
using the BCC variant in the lowest energy valley (b.z of
fig. 13a) as a reference, shown as b.0 in fig. 13b. While
the minimum of the strain energy surface of fig. 13b re-
sides close to the FCC variant corresponding to δ0121
(f.z ), the energy surface is nevertheless very shallow even
for the other FCC variants (f.x, f.y) that can be reached
by application of Bain distortions to the BCC variant
at the origin of fig. 13b. Furthermore, it illustrates that
there are two orderings on FCC at xNi = 0.625 (i.e. f.x
and f.y in fig. 13b) that are dynamically unstable and
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(a)

(b)

FIG. 13. Strain energy values for the δ0121 ordering on FCC
(fig. 13b) and BCC (fig. 13b). Unlike other groundstates, the
global minimum for this structure is neither FCC (f.0 ) or
BCC (b.0 ).

that, instead of collapsing to a BCC structure along a
Bain path, will relax to another ordering on FCC (i.e.
δ0121 , located at f.z ). The shallow strain energy surface
and its strong deviation from parabolic behavior, along
with dynamical instabilities not only of BCC, but also of
FCC orderings, indicates a strong degree of anharmonic-
ity at compositions around xNi = 0.625. The strain en-
ergy surfaces of fig. 13a suggest that the alloy exhibits
ambiguity about its preference for either FCC or BCC.
Since the minimum of the energy surface lies closer to
FCC than to BCC, the δ0121 phase will resemble FCC
more than BCC at low temperatures. At elevated tem-
perature, though, anharmonicity may shift the lattice di-
mensions more towards BCC. We revisit this point when
discussing phase stability at finite temperature.

D. Relaxation of enumerated structures

The previous section showed examples where a par-
ticular ordering on FCC will spontaneously relax along
a Bain path to BCC and vice versa. Quantifying the
amount of strain experienced by a particular ordering
during relaxation does not require a full mapping of the
energy surface in e2-e3 space as was done in the previous
section. Only the minimum energy strains relative to the
ideal reference parent crystal are needed, which are ob-
tained by comparing the enumerated configuration before
and after relaxation. For example, a Ni-Al arrangement
on FCC having L10 ordering will relax into the BCC B2
ordering. The resulting relaxation strain coincides with
the global minimum of fig. 11b. Figure 14 shows the re-
laxation strains of orderings enumerated over FCC and
over the sublattices of BCC based B2 relative to their
ideal starting parent structure. Each relaxation has been
color coded to indicate the prototype structure (FCC,
BCC or HCP) it most closely maps onto as determined
using the metrics outlined in section II B.

Figure 14 shows that structures with small relax-
ation strains mapped onto their original parent crystal
structure, while those with very large relaxation strains
mapped onto another parent crystal structure. Interest-
ingly, without accounting for shear strains, a sharp tran-
sition between FCC and BCC is evident in fig. 14. Fig-
ure 14a shows that almost every FCC ordering with a
relaxation strain beyond a e2-e3 radius of about 1.5 has
transformed into a structure that resembles BCC more
than FCC (see section II B). Similar behavior is evident
in fig. 14b, which shows that BCC orderings with relax-
ation strains in e2-e3 space beyond a radius of about 1.2
more closely map onto FCC than BCC. The clustering of
points in this space also reveals that many of the relax-
ations followed a Bain path. Especially the large relax-
ation strains tend to fall along the Bain path, resulting
in clearly visible arms extending from the origin.

Whether or not a configuration on a particular crystal
structure is mechanically unstable is strongly correlated
with its concentration. The fraction of enumerated order-
ings that are unstable in different composition intervals
is shown in the histograms and energy plots of fig. 15.
Figures 15a and 15c plot relaxation histograms and for-
mation energies for orderings that were enumerated over
FCC, while figs. 15b and 15d only show results for order-
ings enumerated over B2.

The orderings enumerated on the FCC lattice are con-
sistently stable at both high and low Ni compositions. At
compositions close to xNi=0.5, however, many configu-
rations relax from FCC into a B2 derived ordering. The
most pronounced example already discussed is the relax-
ation of L10 ordering on FCC to B2 along a Bain path
(fig. 11b). This configuration is the point with the lowest
energy at a composition of 0.5 Ni. As the histogram of
fig. 15a clearly shows, configurations on FCC with com-
positions close to that of β are increasingly likely to have
an ordering that is unstable with respect to a Bain strain
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FIG. 14. For every enumerated configuration over FCC
(fig. 14a) or B2 (fig. 14b) the strain of the relaxed struc-
tures is calculated relative to the structure used as input to
DFT. This strain is then projected onto e2-e3 space. Order-
ings that undergo small e2 and e3 distortions appear closest to
the origin. Combining the strain metrics with the Hungarian
algorithm the relaxed structures are binned into FCC, BCC
or HCP, indicated by the color of each point.

to BCC.
The configurations enumerated from the B2 unit cell

also show an increase of instabilities within a narrow
composition range. At compositions close to xNi=0.5, al-
most all of the lower energy structures maintain the orig-
inal BCC parent lattice, but as the composition passes

xNi=0.625 (i.e. the composition of the δ0121), the ma-
jority of the enumerated B2 orderings (with mostly Ni
antisites) collapse into FCC. The three groundstates in
this composition range are either the FCC based γ and γ′

phases, or the family of δ phases, which are more closely
related to FCC than BCC. It is likely that many of the B2
orderings above xNi = 0.625 that maintain BCC connec-
tivity after relaxation actually reside at a saddle point
due to a high symmetry Ni-Al ordering. These phases
would also be dynamically unstable, however, establish-
ing this would require a phonon analysis for each struc-
ture which is beyond the scope of this study.

E. Cluster Expansion and finite temperature

The fully relaxed formation energies of different order-
ings on FCC and over the sublattices of B2 were used
to parameterize cluster expansions. A cluster expan-
sion allows us to rapidly extrapolate the DFT energies
calculated for a small set of orderings to an arbitrary
configuration in substantially larger supercells used in
Monte Carlo simulations to calculate finite temperature
thermodynamic averages. Two separate cluster expan-
sions were constructed to describe the NiAl binary for
0.2 < xNi ≤ 1: one for B2 based orderings on BCC
around xNi = 0.5, and another for Ni rich orderings on
FCC. The sets of training data used to construct a clus-
ter expansion should consist exclusively of orderings that
are stable on their respective parent crystal structure. In
fitting the cluster expansions, we therefore eliminated all
configurations that relaxed to a different parent crystal
structure.

The expansion for FCC contains 26 cluster basis func-
tions and was fit to the energies of 539 orderings that
mapped to FCC after relaxations. The expansion has a
root mean square (rms) error of 0.015 meV/atom rela-
tive to the formation energies used in the fit and a cross
validation (cv) score of 0.016 meV/atom. The FCC clus-
ter expansion was weighted to more accurately predict
formation energies of configurations having Ni rich com-
positions. The rms relative to DFT formation energies
of configurations with 0.73 < xNi ≤ 1 is therefore lower
having a value of 0.010 meV/atom.

The cluster expansion for B2 consists of 68 clusters
and was fit to the energies of 892 enumerated orderings.
The rms error for this fit is 0.012 meV/atom with a cv
score of 0.028 meV/atom. All of the configurations for
this cluster expansion were enumerated from a B2 unit
cell, with different occupants allowed on the two sub-
lattices: one sublattice accommodates Ni and vacancies,
while the other accommodates Al and Ni. The use of a
coupled cluster expansion40,41 to describe disorder over
two separate sublattices in β (B2-NiAl) was motivated by
the early experimental observations of Bradley and Tay-
lor5 and more recent first-principles study33,42. These
studies showed that B2-NiAl accommodates an excess of
Ni with Ni anti-site defects on the Al sublattice and an
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FIG. 15. Enumerated configurations over FCC (figs. 15a and 15c) and B2 (figs. 15b and 15d) comparing the amount of orderings
that are stable.

excess of Al with vacancies on the Ni sublattice. While
other anti-site defects also form, they are entropically sta-
bilized and have exceedingly low compositions such that
they do not affect bulk thermodynamic properties33,42.
A cluster expansion that describes disorder relative to
the B2 orderings on BCC as opposed to a general cluster
expansion for the BCC lattice is also motivated by the
strain energy surface of fig. 11b. As was pointed out in
section III C, the B2 ordering of NiAl is especially stable
with other simple orderings on BCC, such as the one de-
picted in fig. 12, being dynamically unstable and relaxing
directly to B2.

The cluster expansions constructed to predict forma-
tion energies of orderings on FCC and B2 were subjected
to grand canonical Monte Carlo simulations. In the grand
canonical ensemble, the chemical potentials and temper-
ature are controlled variables, while the conjugate vari-
ables, composition and grand canonical energy, are en-
semble averages that can be approximated with Monte

Carlo simulations. Free energies were obtained by in-
tegrating calculated relations between composition and
chemical potential and between grand canonical energy
and temperature33,43. Figure 16 shows calculated free
energies as a function of composition at 705◦C. Included
in fig. 16 are the DFT formation energies of Al3Ni, δ0121
and δ0122 , which are treated as line compounds. As was
shown in section III A, antisite defect formation is sub-
stantially more costly in δ0121 than in B2-NiAl and γ′.
The family of δ phases are therefore more resistant to
antisite defects to realize off-stoichiometric compositions
even at elevated temperatures and are approximated as
line compounds.

Figure 17 shows a first-principles phase diagram for the
Ni-Al binary obtained by minimizing calculated free en-
ergies through a common tangent construction at various
temperatures. The liquid phase was not explicitly con-
sidered in the construction of the phase diagram, which
should form in the yellow region of fig. 17 according to
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experimental phase diagrams.35 The orange regions in
fig. 17 correspond to B2-derived single phase regions.
The β phase, which has B2 ordering but no long-range
vacancy ordering over the Ni-sublattice is stable around
xNi = 0.5. The β′ phase, having Ni3Al4 stoichiometry
is stable at low temperature, but is predicted to decom-
pose through a peritectoid reaction around 820◦C. This
phase, which as described in section III A is derived from
B2 and exhibits long-range vacancy ordering on the Ni
sublattice, is only stable in a narrow composition range.
The β′′ phase, which is also a vacancy ordered derivative
of B2, is stable up to high temperatures and in a wide
composition range. The purple single phase regions in
fig. 17 correspond to FCC derived phases. The calcu-
lated phase diagram shows that the γ solid solution can
tolerate a high Al concentration. The γ′ phase, which
has L12 ordering, is also stable in a wide concentration
range with off-stoichiometry achieved with antisite de-
fects. The two δ phases that reside on the convex hull,
δ0121 and δ0122 , appear as line compounds and, surpris-
ingly, are predicted to remain stable up to high temper-
atures. The Al3Ni phase was similarly treated as a line
compound and also appears strictly at its stoichiometric
composition in the phase diagram.

FIG. 16. Calculated Gibbs free energies for both the FCC
(purple) and B2 (orange) cluster expansions at 705◦C. Phases
that are being approximated as a line compound (such as δ
orderings) appear as a single green point.

IV. DISCUSSION

Our first-principles study of phase stability in the Ni-
Al binary, both at zero Kelvin and at finite temperature,
not only confirms the stability of the well characterized
β and γ′ intermetallic compounds, but also predicts a
variety of ground states derived either from β for Al rich
compositions, or from γ′ for Ni rich compositions. The
β phase, having B2-NiAl ordering, is unique among in-
termetallic compounds in that it can accommodate very

FIG. 17. Gibbs energy minimization for the binary system.

high concentrations of vacancies. While vacancy con-
centrations in intermetallic compounds typically do not
exceed44,45 10−6 they can reach a fraction as high as 0.3
on the Ni sublattice of the β phase. Interactions among
vacancies become important at such high concentrations,
which in the β phase lead to two vacancy ordered deriva-
tive phases of β. At Ni rich compositions, a hierarchy of
hybrid phases, consisting of layers of L10 and L12 order-
ing having different ratios are predicted as ground states
or near ground states between xNi = 0.625 and 0.75. The
energy of these phases as a function of strain order pa-
rameters that describe all symmetrically equivalent Bain
paths are very shallow. These strain energy surfaces show
that the hybrid phases are stable in a composition range
where the Ni-Al chemistry exhibits ambivalence about
its preference for either an FCC or a BCC parent crystal
structure. It is in this composition range where many
orderings are unstable as either FCC or BCC.

The calculated phase diagram of fig. 17 shows that
a cluster expansion parameterized with several hundred
DFT-PBE formation energies predicts a large Al solubil-
ity for γ and a wide concentration range around the sto-
ichiometric L12 composition of xNi = 0.75 in which γ′ is
stable. The two-phase region separating γ and γ′ is quite
narrow, similar to what has been predicted with embed-
ded atom force fields46 and previous cluster expansions47.
The phase diagram of fig. 17 also resolves the finite tem-
perature phase boundaries between the family of vacancy
rich B2 derived phases. The β phase, having B2-NiAl or-
dering, accommodates excess Ni as antisite defects on the
Al sublattice, but relies on vacancies on the Ni sublat-
tice to achieve Al rich compositions. In the β phase, the
vacancies are disordered, however, above a threshold va-
cancy concentration, the vacancies prefer to order form-
ing distinct phases having ideal stoichiometries of Ni3Al4
and Ni2Al3. Since these phases have a group/subgroup
symmetry relationship with β as a result of vacancy or-
dering, we have labeled them as β′ and β′′ respectively.
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The β′ phase, characterized by a three dimensional ar-
rangement of vacancies (fig. 6c), is considered only in
specialized phase diagrams that account for it specifi-
cally, such as the one by Ellener and Predel34. The β′′-
Ni2Al3 compound appears in most phase diagrams, but
is generally not recognized as a derivative structure of
B2 NiAl. The calculated phase diagram shows that the
vacancy ordering of β′′-Ni2Al3 is especially stable per-
sisting to temperatures above 1200

◦
C, in contrast to the

vacancy ordering of β′-Ni3Al4, which disappears through
a peritectoid reaction to β′′ and β at 840◦C. In both β′

and β′′, the vacancies favor positioning themselves diag-
onally from each other (fig. 6c and fig. 6b). The common
underlying atomic ordering of β, β′ and β′′ allowed us to
calculate their free energies with a single cluster expan-
sion using Monte Carlo simulations.

Two of the δ phases are predicted to be stable in the
calculated phase diagram, and because they were mod-
eled as line compounds, they appear as stoichiometric
phases. Though some experimentally based diagrams
show significant solubility for a Ni5Al3 phase (with δ0121
ordering), others appear to also indicate line compound
behavior, or even omit the phase from consideration com-
pletely35,48. The high formation energies of antisite de-
fects in δ0121 (Ni5Al3) suggest that this phase will only
be able to accommodate small amounts of configurational
entropy, even at high temperatures, providing the basis
to model it as a line compound.

An interesting result from the enumerated configura-
tions is the discovery of the many possible low energy
δ orderings that appear between xNi = 0.625 and 0.75
(fig. 7). The construction of these orderings by combin-
ing L10 and L12 layers results in an arbitrary number of
configurations that are either groundstates or lie within
a couple of meV from the global hull. The existence of
these orderings as low energy configurations suggests an
alternative mechanism with which a range of composi-
tions around xNi = 0.625 are stabilized that does not
require energetically costly antisite defects. Instead of
creating antisite defects, an overarching δ phase can in-
stead accommodate an excess of Ni by increasing the ra-
tio of L12 to L10 layers, thereby locally preserving their
ordering. The high degree of degeneracy among the many
possible δ orderings indicate that a range of compositions
are likely to be observed experimentally.

Experimental phase diagrams35 show very high Ni sol-
ubility in β, with one assessment reporting a solubility as
high as xNi ≈ 0.65 at 1200◦35. Yet, as discussed in III D,
a majority of the B2 enumerated configurations (figure
15 b) around xNi = 0.65 are predicted to be dynami-
cally unstable and collapse to an FCC ordering. These
zero Kelvin predictions, however, are not necessarily in-
consistent with the high temperature experimental ob-
servations of a Ni-rich B2 phase. Many high tempera-
ture phases, are in fact predicted to be dynamically un-
stable with DFT at zero Kelvin. Nevertheless, Monte
Carlo simulations applied to anharmonic lattice dynami-
cal Hamiltonians have shown that dynamically unstable

phases can become stable at high temperature as a result
of anharmonic vibrational excitations. TiH2 and ZrH2,
for example, exhibit a cubic to tetragonal second order
structural transition upon cooling49,50. The high tem-
perature cubic phases of these hydrides are predicted to
be dynamically unstable at zero Kelvin with DFT but
become stable at high temperature due to large anhar-
monic vibrational excitations17,49,51. Similar phenomena
have been predicted for perovskites52–55.

A comparison of the strain-energy surfaces of the dif-
ferent groundstates in the Ni-Al binary reveals a strong
degree of anharmonicity at compositions where Ni-rich
β and the family of δ phases are stable. The strain-
energy surfaces of pure Ni, L12 and stoichiometric B2-
NiAl (figs. 9, 10 and 11a) increase rapidly as these crys-
tals are strained. The quasi-harmonic approximation
should therefore be sufficiently accurate to account for
vibrational excitations in these elastically stiff phases, as
was done in past studies56,57.The shape of the strain-
energy surface of δ0121 , in contrast, is highly anisotropic
and shallow (fig. 13b). While the energy minimum of
δ0121 in e2-e3 space is closer to FCC than to BCC, the
constant energy contours at energies that are only slightly
above the energy minimum in fig. 13b more symmetri-
cally surround ideal BCC than FCC. In fact, the constant
energy contours in fig. 13b exhibit shapes very similar to
the energy surfaces of TiH2 and ZrH2 in e2-e3 space,
compounds that are tetragonal at low temperature, but
transform to cubic symmetry at elevated temperature
through a second order structural transition17,49,51. This
suggests that entropic forces arising from anharmonic vi-
brational excitations are likely to shift the equilibrium
lattice vectors of δ0121 away from the energy well close to
FCC at low temperature more towards BCC symmetry at
elevated temperature. At low temperatures, the system
is limited to sampling states close to the global minimum,
corresponding to the low symmetry martensite phase. As
the temperature is raised, thermal excitations allow the
system to sample higher energy states. The anharmonic
potential results in an uneven sampling of these high en-
ergy states, which shifts the effective symmetry of the
austenite phase towards BCC.

The above considerations about δ0121 suggest that the
BCC symmetry of the Ni-rich β phase is entropically sta-
bilized at high temperature due to large anharmonic vi-
brational excitations and becomes dynamically unstable
at low temperature. This conjecture is consistent with
the martensitic transformations exhibited by Ni-rich β
upon quenching7,8,10,58–62. It also suggests that contri-
butions to the free energy from vibrational excitations
are especially important in the free energy description of
Ni-rich β, more so than for stoichiometric β NiAl and
the other compounds of the Ni-Al binary. Anharmonic
vibrational excitations in Ni-rich β are also likely coupled
to the local degree of ordering. Describing this coupling
will require effective Hamiltonians that are simultane-
ous functions of displacement degrees of freedom17,49 and
configurational degrees of freedom25. Monte Carlo simu-
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FIG. 18. Phase diagrams such as fig. 17, with different amounts of artificial vibrational energy contribution added to the β free
energies. The vibrational contributions increase with Ni composition and temperature, stabilizing the β (BCC) phase over δ
(FCC) orderings.

lations, similar to what was done with EAM potentials11,
will then capture the interplay between anharmonic vi-
brational excitations, dynamical instabilities and varia-
tions in ordering as a function of temperature and reveal
the true nature of the martensitic phase transformations
that occur upon quenching Ni-rich β. A coupled effec-
tive Hamiltonian that combines displacement and con-
figurational degrees of freedom would allow Monte Carlo
simulations to predict the onset of the martensitic trans-
formation as a function of temperature and composition.
Unfortunately, the construction of such a Hamiltonian
currently presents a significant challenge, both for the
amount of DFT calculations required as training data,
as well as the vast number of resulting basis functions
that must be considered in the fit.

While vibrational excitations have not been explic-
itly addressed in this study, we can speculate as to how
their incorporation will qualitatively modify the pre-
dicted phase diagram. The importance of anharmonic
vibrational excitations in Ni-rich β as compared to that
in stoichiometric β (i.e. B2 NiAl), L12 and the family
of δ phases, where vibrations are more harmonic in na-
ture, suggests that Ni-rich β will have more vibrational
entropy than the other compounds in the Ni-Al binary.
The free energy of Ni-rich β should therefore decrease
more than that of the other phases competing for sta-
bility upon inclusion of vibrational contributions. Such
a lowering of the free energy of Ni-rich β improves the
agreement of the calculated phase diagram with experi-
ment. A significant discrepancy between the calculated
phase diagram and those published in the literature is the
width of the two-phase region separating β and γ′. Ex-
periments show a large Ni solubility in the β phase and a
relatively narrow γ′ single phase region. The calculated
phase diagram, in contrast, predicts a lower Ni solubil-
ity in β and a wide stability interval for γ′, with the δ

phases remaining stable above 1200◦C. A lowering of the
free energy of Ni-rich β at high temperature will widen
the single phase region of the β phase by extending its Ni
solubility to higher concentrations, while simultaneously
narrowing the composition range of the γ′ single phase
region. Furthermore, an increased stability of Ni-rich β
will decrease the maximum temperature at which the δ
phases exist, which is significantly overpredicted in the
calculated phase diagram.

We can explore how an increase in the stability of Ni-
rich β affects the calculated phase diagram by paramet-
rically modifying the free energy of the β phase. This
is shown in fig. 18. The calculated free energy of the
β phase above xNi=0.5 was lowered by subtracting off a
term linear in composition and temperature (i.e. the cor-
rection term is zero at xNi = 0.5 but grows linearly with
excess Ni concentration and temperature). Figure 18
shows that a further stabilization of Ni-rich β relative to
the other competing phases increases the Ni-solubility of
β, reduces the peritectoid transformation temperatures
of the δ phases and decreases the width of the γ′ phase.
The effect of a doubling of the stabilization is evident
upon comparison of fig. 18a and fig. 18b. The phase
diagram of fig. 18b closely resembles the reported ex-
perimental phase diagrams. The parametric analysis of
fig. 18 demonstrates that the additional lowering of the
free energy of Ni-rich β relative to the other competing
phases yields a phase diagram that is more consistent
with experiment than that calculated by considering only
configurational degrees of freedom. The strain energy
surfaces of section III C suggest that such a lowering of
free energy in Ni-rich β should occur due to anharmonic
vibrational excitations that are not as important in the
other phases.
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V. CONCLUSION

We have conducted a first principles study of phase
stability in the Ni-Al binary, both at zero Kelvin and
at finite temperature. Our results not only confirm the
stability of the well charaterized β and γ′ intermetallic
compounds, but also predict a new family of ground-
states derived from β and γ′. A comparison between
the calculated phase diagram to experimental data35,48

shows good agreement with several important discrepan-
cies. The discrepancies considered in conjunction with an
analysis of the energy as a function of strain point to the
likely importance of anharmonic vibrational excitations

in stabilizing the Ni rich β phase at high temperature,
which is susceptible to martensitic transformation upon
quenching.
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