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Two-dimensional (2D) BNSi2 has been recently proposed to be a viable candidate material with
a graphene-like structure. We have carried out ab initio evolutionary ground state searches and
uncovered a number of 2D structures in the (BN)xSi1−x pseudobinary system with considerably
lower energies. Nevertheless, our formation energy analysis shows that none of these or previously
proposed polymorphs are stable with respect to phase separation into 2D Si and BN. Examination
of the related CSi, BNC2, and BNSi2 2D compounds indicates that the lack of miscibility in the last
two systems is due to limited involvement of nitrogen electronic states in the covalent bonding.

The growing interest in 2D materials is fueled by ob-
servations and predictions of exotic properties in systems
with reduced dimensionality. Graphene displays an array
of exceptional mechanical and electronic features, from
record tensile strength to supreme electron mobility1–4.
Downsized to a monolayer, MoS2 develops a direct and
wide bandgap suitable for optoelectronic devices5. Re-
cently synthesized silicene, germanene, and stanene are
being actively studied for manifestations of quantum Hall
effect and topologically nontrivial electronic features6–8.
2D boron has been predicted to have a markedly differ-
ent structural motif9, now confirmed10, and to exhibit
low-temperature superconductivity11.

An attractive route to finding new synthesizable ma-
terials is consideration of multicomponent systems which
leads to a combinatorial explosion of possible configura-
tions. One promising strategy involves identification of
bulk compounds with layered morphologies suitable for
exfoliation into 2D structures. Examples of such pre-
dictive work include high-throughput screening of large
experimental databases and rational design of new bulk
materials with desired frameworks12,13. An alternative
strategy involves a direct search for sufficiently stable
2D structures for synthesis with deposition techniques.
Evolutionary structure searches, in particular, have been
used to identify low-energy structures in C-Si, Sn-S and
InP systems14.

Elemental Si and binary BN systems, being isoelec-
tronic to C, are known to form buckled and flat hexag-
onal sheets, respectively. The (BN)xSi1−x pseudobinary
system also satisfies the 8-electron rule and could po-
tentially have stable composite 2D structures with de-
sired band gaps. Andriotis et al.15 have considered four
hexagonal structures and showed dynamical stability of
one-atom-thick BNSi2 configuration. In this study, we
have performed an ab initio evolutionary search for pla-
nar BN-Si compounds and found significantly more sta-
ble structures at the BNSi2 composition. However, our
assessment of candidate materials’ formation energies il-
lustrates a clear tendency for the pseudobinary to de-
compose into the known BN and Si 2D phases. We have
constructed phase boundary geometries and estimated
the 1D interface energy to be only a factor of two higher

than that in BNC2. A comparative analysis of the den-
sity of states (DOS) in BN, Si, C, BNSi2, CSi, and BNC2

2D phases provides an explanation for the lack of stabil-
ity of both BNSi2 and BNC2 ordered 2D materials.

The problem of global structure optimization can be
tackled with various methods based on evolutionary al-
gorithms, particle swarm optimization, minima hopping,
random sampling, etc.16–25 In searches for low-energy
2D structures one needs to introduce a constraint or a
selection rule to prevent the structures from becoming
3D14. Since BN forms a flat 2D sheet and Si gains only
19 meV/atom from sheet buckling, we adopted a purely
flat geometry of the composite structures in our searches.
Following examinations of phonon dispersions and non-
planar geometry optimizations showed that some of the
considered BNSi2 structures have a tendency to buckle
but the distortions lead to insignificant energy gains.

Density functional theory (DFT) calculations have
been performed with VASP26 unless specified otherwise.
We employed projector augmented wave potentials27 and
Perdew-Burke-Ernzerhof (PBE) exchange-correlation
(xc) functional28 in the generalized gradient approxi-
mation (GGA)29. A 500 eV energy cutoff and dense
Monkhorst-Pack30 k-meshes ensured tight numerical con-
vergence. The evolutionary structure optimizations were
performed with MAISE package31 as detailed below. The
dynamical stability of select structures was examined
with QUANTUM ESPRESSO32 and PHON33. Structure
parameters are given in the Supplementary Material34.

Figure 1 shows competing structures considered in this
study at the BNSi2 composition with different number of
formula units (n) per cell. All atoms in the previously
proposed structure, denoted as (i), have three-fold coor-
dinations but the hexagonal symmetry is broken due to
the particular decoration of the lattice with three differ-
ent species. The centered lattice can be represented with
a rectangular conventional cell twice the size of the prim-
itive one. The particular geometry was explained to be
favorable as it allows for coexistence of 2.24-Å Si-Si and
1.47-Å B-N bonds close to their near-natural lengths in
2D structures.

A quick visual examination of the structure suggests
a simple way of lowering the total energy. The electro-
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FIG. 1: (color online) Competing planar structures with Si, B, and N shown as blue, green, and grey spheres, respectively. (a)
proposed in Ref. 15; (b) constructed by swapping B and N in the bottom rows; (c-e) identified in evolutionary searches; (f)
constructed as a phase boundary between Si and BN hexagonal frameworks.

static interaction between B and N atoms would likely
get stronger if the B and N atoms in the lowest two
rows in Fig. 1(a) were swapped. The adjusted configu-
ration shown in Fig. 1(b) seems more favorable because,
while the B-N bonds remain unchanged, the first neigh-
bors across the Si-Si strip are now B-N and N-B instead
of B-B and N-N. Our DFT calculations indeed show a
higher stability of structure (ii) by 42 meV/atom.

A more systematic search for low-energy structures
was performed with an evolutionary search for (BNSi2)n,
n = 1−4. The algorithm evolved 16 members in the pop-
ulations over 50-200 generations depending on the system
size. Three runs initiated with different random struc-
tures were carried out to illustrate convergence to the
same most stable configuration for a given size16–18. Fig.
2 shows a typical energy profile for a population in which
70% of children were created via the crossover operation
and 30% via mutation. As described in our previous
studies35,36, the former involves merging approximately
halves of two random parents and the latter consists of
(i) displacing atoms randomly with the Gaussian distri-
bution of width σatom = 0.2 Å; (ii) distorting the lattice
vectors using a symmetric matrix37 with random strain
components of Gaussian width σlat = 0.2; and (iii) swap-
ping atoms with a 30% probability in a random parent.
The c axis was kept at 10 Å and the relaxations of in-
plane lattice constant and atomic positions were done via
conjugate gradient within VASP.

Evolutionary optimizations of n = 1 and n = 2 unit
cells revealed a common motif substantially more sta-
ble than the previously proposed one for BNSi2. Fig.
1(c) shows the preference for Si atoms not to form direct
bonds with each other which has been seen previously in
the related CSi binary (structure (vi) in Ref. 14). There

are several ways the non-Si sites can be decorated with B
and N. The best n = 1 CSi-type structure (not shown) is
already 2 meV/atom below (i) while the best n = 2 one
in Fig. 1(c) is 71 meV/atom below (i).
The key challenge of identifying lowest-energy periodic

configurations, as demonstrated in previous studies36, is
that they can occur at arbitrarily large n. Our search
for n = 3 reveals an even more stable structure, Fig.
1(d), which could have unlikely been constructed man-
ually. The exotic motif still has three-fold coordinated
atoms but they are now connected into a network of pen-
tagons, hexagons, and heptagons. According to Euler’s
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FIG. 2: (color online) Distribution of energies during an evo-
lutionary optimization of 8-atom unit cells at the BNSi2 com-
position. Candidate structures marked with (ii) and (iii) are
shown in Fig. 1.
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FIG. 3: (color online) Formation energies of planar BN-Si
pseudobinary phases with respect to flat hexagonal BN and
buckled hexagonal Si structures. The top group of points
correspond to considered structures with small (BNSi2)n unit
cells (up to n = 3). The bottom group of points show the
energies of interface configurations comprising strips of Si and
BN hexagonal networks.

theorem, the matching number of 5- and 7-member rings
ensures the same genus of the framework, as discussed in
Ref. 38. The network rearrangement lowers the energy
further by 11 meV/atom with respect to that of (iii). In-
terestingly, optimizations of n = 2, 4 unit cells produced
metastable networks comprised entirely of the 5-7 poly-
gons (Fig. 1(e)) and the most favorable distribution of
species corresponded to 31 meV/atom above (i).

Identification of more stable structures is encouraging
but does not answer the question regarding their syn-
thesizability until their formation energies are examined.
The cohesive energy, defined with respect to atomic en-
ergies, gives little information about structure’s thermo-
dynamic stability. For 3D crystals, for example, negative
formation energy with respect to elemental ground state

energies is a necessary starting check-point but construc-
tion of the convex hull across the full composition range
is required39. For 2D systems the analysis is complicated
by the fact that the elemental 2D phases are already only
metastable relative to the bulk ground states14 and can
only be produced via specific kinetics-driven routes. In
the Si and BN systems of interest, the naturally occur-
ring hexagonal α-BN material is held together by a weak
0.03-eV/atom interlayer bonding40 but the Si diamond
3D phase is 0.64 eV/atom below its 2D layered counter-
part.

Formation energy plot in Fig. 3 demonstrates that
none of the discussed structures are expected to form,
as they are thermodynamically unstable by over 0.4
eV/atom with respect to not only 3D but also to 2D
phases. Since no energetically favorable short-ranged or-
dering is observed in the rather small unit cells, stable

long-ranged ordering is unlikely to occur in larger cells.
In other words, one can expect to see lowering of en-
ergy via a phase separation into elemental most stable
2D structures.

We constructed a possible grain boundary by taking
advantage of the nearly 3:2 ratio between the equilib-
rium Si-Si (2.25 Å)41 and B-N (1.45 Å)42 bond lengths.
One can then maintain a three-fold coordination for half
of the B-Si and N-Si bonds. Even though the other half
are forced to be in a fairly awkward planar four-fold coor-
dinated environment, the overall energy is indeed consid-
erably lower than that of any small-sized configurations
with mixed interspecies bonds.

The energy penalty scales only with the length of the
interface which explains why the energy per atom in Fig.
3 drops when the size of the Si and BN domains is ex-
tended in the transverse direction. We obtained a consis-
tent value43 of 0.51± 0.01 eV/Å for a set of ((BN)lSim)n
structures with l:m ratios of (BN):Si and n formula units:
(3:4)4, (1:2)12, (3:4)8, (1:2)24, and (3:8)4. For compar-
ison, the Si-C interface modeled with the same site ar-
rangements was found to have a 0.54±0.01 eV/Å forma-
tion energy. Considering the size similarity of the B-N
and C-C bonds, the close energy penalties are not unex-
pected. However, the two BN-Si and C-Si systems dis-
play different propensity for short-range mixing. While
the small-cell BNSi2 structures are highly unstable, the
hexagonal 2-atom CSi structure has a negative forma-
tion energy with respect to the C and Si 2D ground
states14 (-36 meV/atom in our calculations) which is
consistent with the observation of CSi flakes in a recent
experiment44.

The density of states (DOS) results presented in Fig.
4 elucidate the underlying reasons for the calculated rel-
ative stabilities. A commonly observed structure stabi-
lization feature is the placement of the Fermi level near
the bottom of a DOS minimum or, better yet, the full
separation of the filled bonding and empty antibonding
states. Comparison of the DOS for structures (i) and
(ii) in Fig. 4 shows that the B and N swap leads to an
overall small upshift of all states but pushes the bonding
pz states near the Fermi level further down deepening
the DOS valley. The atomic site decoration in structure
(iii) with no direct Si-Si bonds opens up a true bandgap,
likely underestimated in the PBE treatment.

The s and pz states of N, shown as short-dot and solid
green lines in Fig. 4, deserve a closer look. For the
s-N orbitals in 2D BN, the large overlap with the s or-
bitals on the 6 N second neighbors along with the small
overlap with the s and pxy orbitals on the 3 B nearest
neighbors cause a 3.6 eV dispersion. The deep s-N or-
bitals below -17 eV in the BNSi2 structures (Fig. 4(b-d))
show little overlap with any orbitals other than s-N and,
consequently, this band’s width depends directly on the
number of N-N neighbors. In structures (i-iii), the closest
N neighbors are: 2+1 in the third shell, 2 in the third
shell, and 2 in the second shell, respectively. The disper-
sions scale accordingly as 0.6, 0.5, and 1.1 eV. The pz-N



4

0.0

0.5 pz-Sipxy-Sis-Si(e) Si

0.0

0.5
(b) BNSi2-(i)

0.0

0.5 (c) BNSi2-(ii)

D
O

S 
(s

ta
te

s/(
eV

 sp
in

 a
to

m
))

0.0

0.5

s-Si

pz-N

s-N
(d) BNSi2-(iii)

0.0

0.5

pxy-B
s-B

s-N pz-N(a) BN

0.0

0.5 pxy-Si
s-Cs-Si(f) CSi

0.0

0.5 pz-Cpxy-Cs-C(g) C

-20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0 2 4
0.0

0.5
s-N

pz-N(h) BNC2

E - E Fermi (eV) 

Hform

(eV/atom)

C

BNC2

+0.23
CSi
0.04

BNSi2

+0.42Si BN

     s
   pxy

    p z

total

(h)

(g)

(f)

(e) (b-d) (a)

DOS
legend

FIG. 4: (color online) The top left diagram shows considered
compositions with the corresponding calculated formation en-
ergies in the BN-Si-C system. The top right diagram explains
the order of the following DOS plots and the legend used to
denote DOS characters. Namely, for each Si (red), B (black),
N (green), and C (blue) atom, DOS projections on s, pxy,
and pz orbitals are shown as dotted, shaded, and solid lines,
respectively. DOS characters for select peaks are labeled ex-
plicitly. As discussed in the text, a comparison analysis of
the presented 2D materials reveals the width of the s- and
pz-N states to be a key compound stability-defining feature.
All DOS values are given per atom to show the total and the
partial DOS profiles on the same scale.

bands around -5 eV have a similarly small width, below
2 eV in all (i-iii) structures. Since the bonding and an-
tibonding states for both s- and pz-N orbitals in BNSi2
are fully filled, their contribution to the total binding is
insignificant.

In contrast, the CSi DOS in panel (f) shows a high

degree of mixing for C and Si orbitals across the full
energy range: s-C and s-pxy-Si between -13.6 and -10.1
eV, s-pxy-C and s-pxy-Si between -7.8 and -1.3 eV, and
pz-C and pz-Si between -3 and 0 eV. As a result of the
strong overlaps the material boasts a 2.6-eV bandgap.
Based on these considerations, all valence electrons in
CSi contribute to the chemical bonding while half of the
N valence electrons in BNSi2-(iii) occupy the more or less
localized s and pz states and do not partake in structure
stabilization. It should be noted that the band energy
is one of several terms in the DFT total energy but this
comparison analysis provides a qualitative explanation
for the markedly different calculated formation energies
for CSi and BNSi2.

The identified stability factor can be tested on a re-
lated BN-C system that has been a subject of numer-
ous studies45–51. The poor miscibility of BN and C in
2D has been established both experimentally47,48 and
computationally49,50. We examined the most stable
structure at the BNC2 composition reported in Refs.
45,46. The DOS plotted in Fig. 4(h) illsutrates that
BNC2 is part-way between CSi and BNSi2 in terms of
the contribution of N electronic states to the covalent
bonding: the pz states are well dispersed as in the for-
mer while the s states show insignificant mixing as in the
latter. One can then anticipate the formation energy for
BNC2 to be positive and near the average of those for
CSi and BNSi2. Our calculated results proved to be in
good agreement with this expectation, as 0.23 eV/atom
is mid-way between −0.04 eV/atom and 0.42 eV/atom
(see top diagram in Fig. 4).

For evaluation of interface energetics in BNC2, we used
previously considered armchair, zigzag-A, and zigzag-B
geometries51 on a shared hexagonal network and found
the respective interface energies to be 0.23, 0.30, and
0.71 eV/Å. The findings are in good agreement with pre-
viously calculated results51 as well as with experimen-
tal observations of phase boundaries, predominantly of
the armchair and zigzag-A type, in synthesized BN-C
2D hexagonal frameworks47. Notably, the energy of the
interface with mismatched lattices in BNSi2 is only about
a factor of two higher than the lowest one in BNC2. It
would be interesting to check experimentally if BN and Si
monoloayers could fuse and form such phase boundaries.

A structure represents at least a local minimum at
T = 0 K if all of the phonon mode frequencies have
real values. Conclusive demonstration of structure’s dy-
namical stability can be a demanding task because ac-
curate evaluation of phonon softening requires a proper
choice of approximations and convergence settings. For
example, the HSE hybrid functional employed in the pre-
vious study of BNSi2 has been recently shown to have
problems assessing lattice stability in metallic systems52.
We calculated phonon dispersions for the (i-iii) struc-
tures using PAW-PBE scalar relativistic pseudopoten-
tials (pbe.0.3.1)53 and the linear response method as
implemented in QUANTUM ESPRESSO. Dense k-meshes
ensured good convergence of the phonon frequencies at
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FIG. 5: Phonon dispersions calculated with the linear response method for three BNSi2 structures. The black thick (thin
red) lines denote results obtained with the ’crystal’ (’simple’) acoustic sum rule as defined in QUANTUM ESPRESSO32. For
the semiconducting structure (iii), the dashed green lines denote the results obtained with the ’simple’ acoustic sum rule but
without the polar corrections and show 20-50 cm−1 splitting for a few high-frequency optical modes near Γ.

each q point and the phonon dispersions were found to be
well converged with respect to the size of the q-meshes54.
However, Fig. 5 shows two very different dispersion sets
depending on which acoustic summation rule, ’simple’ or
’crystal’32,55, was applied. In this postprocessing step
the interatomic force constants are adjusted to prevent
the acoustic mode frequencies from deviating from zero
at the Γ point; the latter implementation, additionally,
minimizes the deviations in the interatomic force con-
stants with respect to the original ab initio set. Note that
the polar correction for the semiconducting structure (iii)
causes a 20-50 cm−1 LO-TO split for the highest optical
modes (Fig. 5(c)) and a small kink for an acoustic mode
near the Γ point (Fig. 6(a)) after the application of the
acoustic sum rule. We repeated the calculations with the
frozen phonon method as implemented in PHON coupled
with VASP. For structure (i), the lowest branch along Γ-X
ended up in the imaginary region with a small ∼ 8i-cm−1

value around the (1/6,0,0) q-point56. For structure (iii),
the X-point frequency of the softest mode was consistent
with the 60i-cm−1 value obtained in the linear response
calculations.

In order to determine whether these flat configurations
indeed have a propensity toward buckling and to esti-
mate possible values of distortion-induced stabilization
we have examined structure (iii) in more detail. Follow-
ing the eigenvector corresponding to the optical mode
with the imaginary frequency of 60i cm−1 at the X-point,
we obtained a slightly buckled phase34, with maximum
0.4 Å out-of-plane deviations, 2.1 meV/atom below that
of the parent structure (see Fig. 6(b))57. Follow-up
phonon calculations revealed the presence of additional
imaginary modes remaining in the obtained structure
which would need to be dealt with by systematically in-
creasing the unit cell size36,58. The large number and size
of possible derived structures quickly makes the proce-
dure prohibitively expensive. Considering that the (i-iii)
structures have positive formation energies exceeding 0.4
eV/atom, identification of any viable metastable deriva-

tives in this way is highly unlikely. Molecular dynamics
(MD) with material-dependent simulation settings can be
helpful for locating structures’ nearby local minima. For
the covalently bonded BNS2, 12-ps MD runs at 1000 K in
Ref. 15 did not identify the related honeycomb configu-
rations with swapped atoms shown in this study to have
lower energy. MD-based identification of (meta)stable
polymorphs derived from dynamically unstable parent
structures is rather difficult, as it involves considering

FIG. 6: (color online) (a) Low-frequency modes for BNSi2-
(iii) calculated with linear response and postprocessed with
the ’simple’ acoustic sum rule. The dashed green lines cor-
respond to the results obtained without the polar corrections
and indicate insignificant changes in the low-frequency modes.
(b) Energy profiles as a function of the z coordinate of B atom
for the 2 × 1 × 1 supercell modulated along the eigenvector
corresponding to the imaginary frequency at q = (0.5, 0, 0).
The solid line data was calculated with all in-plane structural
parameters fully relaxed and the minimum corresponds to the
buckled structure (iv).
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specific supercells and performing careful annealing.
Use of substrates can preferentially stabilize a par-

ticular phase with a matched lattice59. The interac-
tion of 2D BN with most metallic substrates is fairly
weak60; for Ag(111) it is -0.066 meV/atom in the vdW-
DF treatment61. The interaction between 2D Si and
metallic substrates is of covalent nature and considerably
stronger; for Ag(111) it is -0.652 eV/atom in vdW-DF62.
As a crude estimate, we calculated binding energy for
BNSi2-(i) on Ag(111) which have a lattice mismatch of
8%. Even without considering the stain-induced penalty,
the lowest -0.40 eV/atom obtained with vdW-DF for
BNSi2-(i) turned out to be only -0.04 eV/atom below
the -0.36 eV/atom average binding in the BN/Ag(111)
and Si/Ag(111) systems. Finding a matching lattice for
the more stable but more complex 5-6-7 BNSi2 network
is far more challenging. Even if suitable substrates are
found the relative gain in binding energy is not expected
to make up for the large positive 0.42-0.49 eV/atom val-
ues of the BNSi2 formation energy.
In conclusion, we have demonstrated the presence of

more energetically favorable 2D configurations compared

to previously proposed ones for the BNSi2 compound.
Simple rearrangements of atoms on the hexagonal lattice
lead to a more favorable DOS and turn the metal into a
semiconductor. Even more stable exotic networks with
5-6-7 polygons were identified with an ab initio evolution-
ary search. However, all the structures have been shown
to have relatively high formation energies with respect
to elemental 2D Si and BN polymorphs and are not ex-
pected to form. A comparative analysis of DOS profiles
in related CSi, BNC2, and BNSi2 phases revealed that
not all valence electrons in the last two are fully engaged
in the covalent bonding. The findings are consistent with
the lack of observed ordered BNC2 or BNSi2 2D materi-
als. Future efforts to design stable 2D configurations at
other compositions, e.g., in the expanded BN-C-Si sys-
tem, should take into consideration non-hexagonal mor-
phologies and carefully manage the size and the electronic
state energy characteristics of the constituent elements.

The authors gratefully acknowledge the NSF support
(Award No. DMR-1410514) and helpful discussions with
Roxana Margine and Feliciano Giustino.
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