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We consider a graphene sheet suspended above a conducting surface. Treating graphene as an
elastic membrane subjected to Casimir force, we study its stability against sagging towards the
conductor. There exists a critical elevation at the edges below which the central part of the suspended
graphene nucleates a trunk that sinks under the action of the Casimir force. The dependence of the
critical elevation on temperature, dimensions, and the elastic stress applied to the graphene sheet
is computed.
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Graphene is a remarkable allotrope of carbon in the
form of a honeycomb lattice [1]. This 2D material is ex-
pected to mark a major breakthrough in the future of
technology due to its unique mechanical, thermal, and
electronic properties [2, 3]. Micro-electromechanical sys-
tems that involve suspended graphene should take into
account interaction of graphene with surrounding ele-
ments. One important source of such interactions is
Casimir force [4–7]. It has been intensively studied in
recent years in application to graphene heterostructures
[8–17].

In the conventional approach to Casimir interactions
one considers forces between two surfaces of fixed ge-
ometry. Here we take a different approach. We treat
suspended graphene as an elastic membrane and con-
sider its deformation due to Casimir forces. Microme-
chanical studies of elastic membranes have a long history
[18]. They have been recently revived in application to
graphene [19–24]. In this paper we show that there exists
a critical separation from the underlying conductor below
which a suspended graphene becomes unstable against
sagging towards the conductor, see Fig. 1.

A 2D elastic membrane is described by the energy [18,
19]

Hm =
1

2

∫
d2r

[
κ(∇2h)2 + λu2

αα + 2µu2
αβ

]
, (1)

where κ(T ) is the flexural stiffness constant, λ and µ are
Lamé elastic coefficients, h(r) is the flexural deformation
perpendicular to the plane of the membrane, u(r) is the
displacement field in the plane of the membrane, and

uαβ =
1

2
(∂αuβ + ∂βuα + ∂αh∂βh) (2)

is the strain tensor. The stress tensor is given by

σαβ =
δHm

δ(∂βuα)
= λuγγδαβ + 2µuαβ . (3)

The Euler equations for u and h are

λ∂αuββ + 2µ∂βuαβ = 0 (4)

κ∇2∇2h− λ∂α(uββ∂αh)− 2µ∂α(uαβ∂βh) = 0. (5)
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FIG. 1: (Color online) Suspended graphene attracted to a
solid surface by Casimir force.

In principle, these equations are non-linear on h. This
leads to a plethora of well-known anharmonic effects in
graphene, see, e.g., Ref. 24 and references therein. How-
ever, in a typical experiment with a suspended graphene
sheet it is stretched in the x-direction and held by the
edges running in the y-direction. In this case the trans-
lational invariance along the y-axis allows one to consider
the extremal solutions of Eqs. (4) and (5) that depend
on the coordinate x only, that is, the elastic problem be-
comes one-dimensional. This reduces the equations to

∂xuxx = 0, ∂xuyx = 0 (6)

κ∂4
xh− (λ+ 2µ)∂x(uxx∂xh) = 0, (7)

rendering constant values of uxx and uyx strains. The
stress σ in the x-direction generates the strain uxx ≡ s =
σ/(λ+ 2µ). The equation for h(x) then becomes

κ∂4
xh− σ∂2

xh = 0. (8)

This linearization of the theory based upon non-linear
Eq. (5) in the presence of the stress is well known [19]. It
is completely analogous to the case of transversal modes
of a massive string: When a tension along the string is
applied, one ends up with a linear wave equation for the
transversal displacement, whereas without tension the
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anharmonic terms should be taken into account [25]. Eq.
(8) can be derived from the effective energy of the mem-
brane

Heff =

∫
d2r

[κ
2

(∂2
xh)2 +

σ

2
(∂xh)2

]
(9)

that we will use below.
Before proceeding it is useful to discuss the relative

magnitude of the two terms contributing to Eq. (8) and
Eq. (9). From their structure it is clear that the (∂xh)2

term dominates over the (∂2
xh)2 term at curvature radii

exceeding rc =
√
κ/σ. The typical value of the flexural

stiffness constant for graphene is of order κ ∼ 1 eV. The
Lamé coefficients are in the ballpark of 102 J/m2 and
the typical elastic strain for a suspended graphene sheet
is s ∼ 0.001 − 0.01. This gives σ ∼ 0.1 − 1 J/m2. Con-
sequently, the critical curvature corresponds to rc ∼ 1
nm. We, therefore, conclude that for all effects involving
curvature radii in the excess of 1 nm the energy of a sus-
pended graphene sheet is dominated by the second term
in Eq. (9).

We shall assume that the graphene sheet is suspended
above a flat surface of the perfect conductor and will ap-
proximate the energy of the Casimir attraction per unit
area of the graphene sheet at a distance a from the con-
ductor by [10]

f = −βh̄c
(

1

a3
+

1

ata2

)
, (10)

where

β =
αN

128π

[
ln

(
1 +

8

αNπ

)
+

1

2

]
= 0.0003606235 (11)

and

at(T ) =
16πβ

ξ(3)

h̄c

kBT
= 0.01508

h̄c

kBT
(12)

with α = (4πε0)−1e2/(h̄c) = 1/137.036 being the fine-
structure constant, N = 4 being the number of fermion
species for graphene, and ζ(3) = 1.20205 being the value
of Riemann zeta function ζ(x) at x = 3. The first term
in Eq. (10) is due to quantum fluctuations of the electro-
magnetic field, while the second term is due to thermal
fluctuations. The crossover from the low-temperature
regime with f ∝ 1/a3 to the high-temperature regime
with f ∝ 1/a2 on increasing separation occurs at a = at.
At T = 300 K the crossover takes place at a = 115 nm,
while at T = 4 K it occurs at a = 8.63µm.

One observation is in order related to the range of the
applicability of Eq. (10), which is often omitted in litera-
ture. In the original approach developed by Casimir the
force arises from the quantized oscillations of the electro-
magnetic field in a confined space [4]. A more general
formula for the force was later obtained by Lifshitz in a

macroscopic approach that studies electrostatic interac-
tion between two bodies in terms of their susceptibilities
[5]. For two ideal conductors the two results coincide. In
the Casimir approach the assumption that the electro-
magnetic radiation is confined between conducting sur-
faces breaks down at frequencies that are higher than
the plasma frequency. Similarly, the Lifshitz approach
based upon macroscopic susceptibilities breaks down at
frequencies that exceed the absorption resonances of the
materials. The corresponding cut-off frequency, ωc, does
not explicitly enter Eq. (10). However, it is present there
indirectly. Indeed, at T = 0 the dominant contribu-
tion to the force comes from the photon wave vectors
[7] k ∼ 1/(4a). The requirement that photon energies
satisfy E < Ec = h̄ωc then translates into the lower limit
on the separation, a > h̄c/(4Ec). At, e.g., Ec ∼ 1 eV this
gives a > 50 nm. In line with that estimate the exper-
iments on Casimir force performed down to a ∼ 0.1µm
agree well with theoretical formulas. However, the lower
separations would require not only a significantly greater
experimental effort but also a much more involved theory
that takes into account the structure of the materials at
the atomic level.

We will be interested in a situation when the size of
the suspended graphene sheet is large compared to its
distance from the underlying surface. The curvature of

FIG. 2: (Color online) Casimir-driven sagging and instability
of a rectangular graphene sheet against attachment to the
underlying surface.

the graphene sheet will be small so that the expression
(10) for f derived for a flat graphene must be approxi-
mately valid locally. In this case the total energy can be
approximated by H = Heff +

∫
d2rf , that is

H =
1

2

∫
d2r

[
κ(∂2

xh)2 + σ(∂xh)2
]

− βh̄c

∫
d2r

[
1

(a− h)3
+

1

at(a− h)2

]
, (13)

where a is a fixed distance from the conductor at the
edges and h(x) describes the sagging profile (with h = 0
at the edges),
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The energy (13) is minimized by h(r) satisfying the
Euler equation

∂2
x

δH

δ∂2
xh
− ∂x

δH

δ∂xh
+
δH

δh
= 0 (14)

which gives

(
κ∂4

x − σ∂2
x

)
h = βh̄c

[
3

(a− h)4
+

2

at(a− h)3

]
. (15)

Equilibrium sagging profile of a suspended graphene
sheet is determined by three factors: The gain in the
Casimir energy, the loss in the elastic energy, and the
condition h = 0 at the boundary. As we shall see below,
there is a critical separation at which graphene becomes
unstable against attaching to the underlying surface, see
Fig. 2. The curvature radius of a suspended graphene
will always greatly exceed rc ∼ 1 nm. This allows one to
drop the first term in the left-hand side of Eq. (15). In
terms of dimensionless variables

x̄ =
x

a
, ∂̄x = a∂x, h̄ =

h

a
(16)

the resulting equation is

∂̄2
xh̄ = − γ

(1− h̄)4
− δ′t

(1− h̄)3
, (17)

where

γ(a) = 3β
h̄c

σa3
, δt(T ) = 2β

h̄c

σa2at
. (18)

In the low-temperature limit, a� at, Eq. (17) reduces
to

∂̄2
xb̄ =

γ

b̄4
(19)

where b̄ = 1− h̄ is the distance from the conductor in the
units of a. The first integral of Eq. (19) is(

db̄

dx̄

)2

=
2γ

3

(
1

b̄30
− 1

b̄3

)
, (20)

where b̄0 < 1 is the minimal separation of graphene from
the conductor at x̄ = 0. We consider a rectangular
graphene sheet of length 2L. The value of b̄0 must follow
from the boundary conditions b̄(x̄ = ±L/a) = 1 for the
sheet clipped at x = ±L.

The minimal separation at the edges, ac, before sus-
pended graphene sheet becomes unstable under the ac-
tion of Cassimir force (see Fig. 2) can be estimated from
the following argument. The boundary condition, b̄ = 1

at x = ±L, provides
(
db̄/dx̄

)2 ∼ (1− b̄0)2(a/L)2 ∼
(2γ/3)

(
b̄−3
0 − 1

)
, that is, (2γ/3) (L/a)

2 ∼ b̄30(1 −
b̄0)/(1 + b̄0 + b̄20) < b̄0 < 1, which gives a > ac ∼
21/5 (βh̄c/σ)

1/5
L2/5.
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FIG. 3: (Color online) Profile of a sagging graphene due to

Casimir force for three values of parameter l = γ1/2L/a. At
l = 0.1 the effect of Casimir attraction is weak, while at l =
0.44 the graphene sheet is close to the critical separation below
which it becomes unstable against sagging all the way down
to the conductor.

This qualitative analysis is confirmed by numerical so-
lution of Eq. (20) illustrated in Fig. 3. It shows that the
strength of the Casimir effect is determined by the pa-
rameter l = γ1/2L/a =

√
(3βh̄c)/(a5σ)L. The smooth

sagging profile shown in Fig. 3 exists at l < lc = 0.441.
At l > lc it is unstable against nucleation of a sinking
trunk in the central part of the graphene sheet. The
exact numerical result for the critical separation at the
edges in the low-temperature limit reads

ac = 1.73

(
βh̄c

σ

)1/5

L2/5. (21)

Note that at the critical separation one has ac/L � 1,
that is, the graphene sheet is still close to flat in real
space (when unrenormalized units of length are used).
This justifies the use of Eq. (13) with the Casimir po-
tential derived for a flat graphene layer. Another impor-
tant observation is that as the separation at the edges
a approaches ac from above, the minimum critical dis-
tance b0 from the center of the graphene sheet to the
underlying surface remains finite, b̄0 = b0/a → 0.765.
For, e.g., 2L ∼ 2 mm one obtains ac ∼ 0.17µm. These
value is small compared to at at 4 K, which justifies the
low-temperature approximation used to find the critical
separation in Eq. (21).

In the high temperature-limit, a� at, the first integral
of Eq. (17) is (

db̄

dx̄

)2

= δt

(
1

b̄20
− 1

b̄2

)
. (22)



4

The solution is

b̄(x̄) = b̄0

√
1 + δtx̄2/b̄40. (23)

The boundary conditions b̄(±L/a) = 1 give the following
expression for b̄0

b̄20 =
1

2

[
1 +

√
1− 4δt(L/a)2

]
. (24)

The stability of the solution requires 4δ′t(L/a)2 < 1,
which translates into

a > ac =

[
ζ(3)kBT

2πσ

]1/4

L1/2. (25)

As a approaches ac from above, the distance from the
graphene sheet to the underlying surface at the center
approaches b0 = a/

√
2 ≈ 0.707a, which is comparable to

b0 ≈ 0.765a in the low-T limit. At a < ac graphene is
unstable against its central part developing a trunk that
sinks towards the underlying surface, see Fig. 2. Choos-
ing 2L� 2 mm one obtains from Eq. (25) ac ∼ 0.17µm
> at = 0.11µm at T = 300 K. Notice the week depen-
dence of ac on the elastic strain and temperature. The
latter explains why the values of the critical separation
in the low and high temperature regimes are similar.

In Conclusion, by treating a suspended graphene sheet
as an elastic membrane we have studied its sagging pro-
file due to the Casimir attraction to the underlying con-
ductor. Critical separation at which graphene becomes
unstable against sagging all the way down has been
computed as a function of temperature, the size of the
graphene sheet, and the elastic stress applied to it. While
our model ignores certain effects such as, e.g., corrections
to the Casimir force by weak bending of the graphene
sheet, it provides a reasonable estimate of the critical
separation and can serve as the first approximation to
the stability problem.

The authors acknowledge valuable discussions with H.
Ochoa and I. Fialkovsky. RZ thanks Fundación Ramón
Areces for a postdoctoral fellowship within the XXVII
Convocatoria de Becas para Ampliación de Estudios en
el Extranjero en Ciencias de la Vida y de la Materia.

[1] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y.
Zhang, S. V. Dubonos, I. V. Grigorieva and A. A. Firsov,
Electric field effect in atomically thin carbon films, Sci-
ence 306, 666-669 (2004); K. S. Novoselov, A. K. Geim,
S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grig-
orieva, S. V. Dubonos and A. A. Firsov, Two-dimensional
gas of massless Dirac fermions in graphene, Nature 438,
197-200 (2005).

[2] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S.
Novoselov, and A. K. Geim, The electronic properties of
graphene, Review of Modern Physics 81, 109-162 (2009).

[3] K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert,
M. G. Schwab, and K. Kim, A roadmap for graphene,
Nature 490, 192-200 (2012).

[4] H. B. G. Casimir and D. Polder, The influence of retar-
dation on the London - van der Waals forces, Physical
Review 73, 360-372 (1948).

[5] E. M. Lifshitz, The theory of molecular attractive forces
between solids, Soviet Physics JETP 2, 73-83 (1956).

[6] M. Kardar and R. Golestanin, The “friction” of vacuum,
and other fluctuation-induced forces, Review of Modern
Physics 71, 1233-1245 (1999).

[7] S. K. Lamoreaux, The Casimir force: background, exper-
iments, and applications, Reports on Progress in Physics
68, 201-236 (2005).

[8] J. F. Dobson, A. White, and A. Rubio, Asymptotics of
the dispersion interaction: Analytic benchmarks for van
der Waals energy functionals, Physical Review Letters
96, 073201-(4) (2006).
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