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Abstract

We describe the finite-size spectrum in the vicinity of the quantum critical point between a Z2 spin liquid

and a coplanar antiferromagnet on the torus. We obtain the universal evolution of all low-lying states

in an antiferromagnet with global SU(2) spin rotation symmetry, as it moves from the 4-fold topological

degeneracy in a gapped Z2 spin liquid to the Anderson “tower-of-states” in the ordered antiferromagnet.

Due to the existence of nontrivial order on either side of this transition, this critical point cannot be

described in a conventional Landau-Ginzburg-Wilson framework. Instead it is described by a theory

involving fractionalized degrees of freedom known as the O(4)∗ model, whose spectrum is altered in a

significant way by its proximity to a topologically ordered phase. We compute the spectrum by relating

it to the spectrum of the O(4) Wilson-Fisher fixed point on the torus, modified with a selection rule

on the states, and with nontrivial boundary conditions corresponding to topological sectors in the spin

liquid. The spectrum of the critical O(2N) model is calculated directly at N = ∞, which then allows

a reconstruction of the full spectrum of the O(2N)∗ model at leading order in 1/N . This spectrum is

a unique characteristic of the vicinity of a fractionalized quantum critical point, as well as a universal

signature of the existence of proximate Z2 topological and antiferromagnetically-ordered phases, and can

be compared with numerical computations on quantum antiferromagnets on two dimensional lattices.
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I. INTRODUCTION

Recent numerical studies [1, 2] of the spin S = 1/2 antiferromagnet on the triangular lattice

have presented convincing evidence for a spin liquid ground state in the presence of a next-nearest

neighbor exchange interaction (J2). They also find an apparently continuous transition to an

antiferromagnetically ordered ground state at smaller J2, with the familiar 3-sublattice coplanar

order of the triangular lattice. Here we will assume that this antiferromagnetic state is the same as

the conventional state described by the semiclassical spin-wave theory, and possesses only integer

spin excitations. So the transition from the spin liquid to the antiferromagnet is a confinement

transition, associated with the confinement of half-integer spin excitations.

An attractive candidate for the observed spin liquid is the Z2 spin liquid [3–6]. The purpose

of our paper is to examine a confinement transition of the Z2 spin liquid on a torus geometry.

The torus is characterized by a length scale, a circumference L, and a modular parameter τ . At

a continuous quantum phase transition associated with a conformal field theory, the low-lying

quantum states on a torus have an energy proportional to c/L (where c is a spin-wave velocity,

which will henceforth be set to unity), with proportionality constants which are universal functions

of τ . We will show that this torus spectrum contains characteristic signatures of the topological

order of the proximate Z2 spin liquid. The spectrum exhibits a universal crossover from the 4-fold

topological degeneracy of the Z2 into the characteristic spectrum of the confining phase: in our

case the confining phase has long-range antiferromagnetic order and has a low-lying Anderson

“tower-of-states” [7–9] signaling the spontaneous breaking of the SU(2) spin-rotation symmetry.

It is our hope that these results on the spectrum of the critical point will aid numerical studies of

quantum antiferromagnets, and help identify the topological order of proximate spin liquid phases.

A theory of a confinement transition of the Z2 spin liquid was initially presented in Refs. 4 and

10, in terms of a frustrated Ising model obtained from an ‘odd’ dimer model; the same theory

appeared later in other models [11–13], and in recent work [14–16]. This confinement transition

can be interpreted in terms of the condensation of the m particle (the ‘vison’) of the toric code

[17], but with the modification that the m particle carries non-trivial quantum numbers of the

space group of the underlying lattice (in modern terminology, the ‘odd’ dimer model realizes a

‘symmetry enriched topological’ (SET) state [18]). The non-trivial quantum numbers of the vison

lead to lattice symmetry-breaking in the confining state. In other models [19], including the toric

code and ‘even’ dimer models, the m particles transforms trivially under the space group, and

then the confining state does not break any symmetries. A theory for the finite-size spectra across

such a non-symmetry-breaking confinement transition, along with exact diagonalization results in

a model system, appear in a separate paper [20].

2



In the present paper, we are interested in the case where the condensing particle carries half-

integer quantum numbers of the total spin, which is the ‘spinon’ of the spin liquid (conventionally

labeled as analogous to the e particle of the toric code). A theory for the condensation of spinons

from the SET state of a Z2 spin liquid on the triangular lattice was presented in Refs. 21 and 22,

and this theory will form the basis of our computations here. The order parameter of the coplanar

antiferromagnet is identified by points on the SO(3) manifold, and so the Landau-Ginzburg-Wilson

(LGW) framework suggests a field theory based on such an order parameter. However, the theory

of Refs. 21 and 22 is a ‘deconfined’ critical theory beyond the LGW paradigm, and is instead

expressed in terms of a spinon field which is identified by points on SU(2)≡ S3.

The connection between coplanar magnetic order and the spinon in the spin liquid phase can

be made explicit. We write the expectation value in the ordered state as

〈Sj〉 = S
[

n1 cos
(

~Q · ~xj

)

+ n2 sin
(

~Q · ~xj

)]

(1)

where the ordering wave vector is ~Q = 4π
(
1/3, 1/

√
3
)
for the semiclassical ground state of the

Heisenberg model on the triangular lattice. The vectors n1,2 are arbitrary up the constraints

n2
1 = n2

2 = 1, n1 · n2 = 0 (2)

Different orientations of these two vectors are related by a rotation matrix, identifying the order

parameter as an element of SO(3). A conventional LGW description of a transition from this

magnetically ordered state to a paramagnetic state would begin with an effective action for the

fluctuations of the vectors n1,2. However, this phase transition would drive the system into a trivial

gapped paramagnetic state with a non-degenerate ground state, which cannot occur in a system

with an odd number of half-integer spins per unit cell such as the triangular antiferromagnet [23].

Therefore, we seek a description in terms of fractionalized degrees of freedom. Following Refs. 21

and 22, we write

n1a + in2a =

2∑

α,β,γ=1

ǫαγzγσ
a
αβzβ (3)

This parametrization explicitly solves the constraints in Eq. (2), and it can be checked that

the complex bosonic field zα, with α =↑, ↓, transforms as an S = 1/2 spinor under spin rota-

tions. However, this representation is doubled-valued: one can perform a gauge transformation,

zα(x, τ) → η(x, τ)zα(x, τ), η = ±1, at any point in space-time and obtain an equivalent represen-

tation of the physically observable order parameter. This identifies the order parameter space as

SU(2)/Z2, which is equivalent to SO(3). This description is complementary to the confinement

transition described above, where zα is identified with the SU(2) spinon of the Z2 spin liquid. We
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note that as the spinon condenses, the only remnant of the gapped vison in the spin liquid is the

double-valued nature of the spinon field.

We therefore write a critical theory for the complex boson zα, taking values in SU(2), consistent

with the allowed symmetries. Keeping only terms relevant at the critical point, the universal

Lagrangian of the transition in 2+1 dimensional spacetime is

L = |∂µzα|2 + s|zα|2 + u
(
|zα|2

)2
. (4)

The ‘mass’ s has to be tuned to a critical value s = sc to access the critical point, while u

approaches a non-zero value determined by the Wilson-Fisher fixed point [24]. Note that this spin-

1/2 relativistic boson is not in contradiction with the spin-statistics theorem, because here ‘spin’

refers to a global flavor symmetry, rather than the intrinsic angular momentum of relativistic

particles. We will allow the index α to range over 1 . . .N , and obtained results in the 1/N

expansion. Note that the theory L has O(2N) symmetry, and so we will be examining properties

of the O(2N) fixed point.

A first guess towards obtaining the spectrum on the torus is that we simply have to solve the

theory L on the torus with periodic boundary conditions on the spinon field zα:

zα(x+ iy + n1ω1 + n2ω2) = zα(x+ iy) (5)

where x, y are the spatial co-ordinates, n1,2 are integers, and ω1,2 are the complex periods of the

torus with τ = ω2/ω1; we choose |ω1| = L. These boundary conditions would be appropriate if

we were solving for the spectrum of an O(2N) rotor model, for a transition from an ordered state

with 〈zα〉 6= 0 to a trivial paramagnet with 〈zα〉 = 0.

However, in our case we are considering a transition to a paramagnet with Z2 topological

order, and this does have important consequences for the spectrum of the critical theory. A

first consequence follows from the fact that no physical operator can be associated with a single

zα operator, and all observables involve at least bilinears of zα and z∗α. The periodic boundary

conditions on the torus apply to the physical spin operators of the antiferromagnet, and so for the

spinons we have the more general boundary conditions [20]

zα(x+ iy + n1ω1 + n2ω2) = ±zα(x+ iy). (6)

The anti-periodic boundary conditions correspond to the presence of a vison flux in the correspond-

ing cycle of the torus. In the Z2 spin liquid, such boundary conditions lead to the near four-fold

degeneracy of the ground state, with the states differing by an energy which is exponentially small

in L. At the quantum critical point, this degeneracy evolves into additional states which are spaced

by an energy of order 1/L.
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A second consequence arises from the fact that the all states share the same number of spinons

modulo 2. In other words, if the underlying lattice antiferromagnet has an even (odd) number of

S = 1/2 spins on the torus, then all states will carry integer (half-integer) spin. This implies that

the wavefunctional, Ψ, of the critical theory obeys [20]

Ψ[−zα(x+ iy)] = ηΨ[zα(x+ iy)] (7)

where η = +1 (−1) for an even (odd) number of spins. We postulate here that there is a universal

spectrum at the critical point between the Z2 spin liquid and an ordered antiferromagnet which

is described by the O(2N) critical theory in Eq. (4) subject to the boundary condition in Eq. (6)

and the constraint in Eq. (7). Following the notation of Ref. 11, we will call this the O(2N)∗

critical theory, while the theory obeying the boundary condition in Eq. (5) is the conventional

O(2N) theory. It was previously pointed out [25] that the O(2N)∗ critical theory has a distinct

entanglement entropy from the O(2N) theory; our results show that the distinction also applies

to the finite-size spectrum on a torus.

In the application to the lattice antiferromagnet, we also have to consider the fact that the

O(2N) symmetry of L is an emergent symmetry of the critical point, and is not a symmetry of the

underlying Hamiltonian. So we have to consider operators which break the O(2N) symmetry. All

operators which break the O(2N) symmetry down to SU(N) are irrelevant at the critical point,

and we will consider here only the leading irrelevant operator. This is given by [21, 22]

L′ = γ|z∗α∇zα|2 (8)

We also describe the leading perturbative effect of γ on the critical spectrum.

We will begin in Section II by a description of the torus spectrum of the O(2N) critical theory in

the 1/N expansion, followed by a discussion of the evolution of the spectrum between the ordered

and disordered phases in Section IIC. This will be followed by the corresponding results for the

O(2N)∗ critical theory in Section III as well as a discussion of new features of the spectrum in the

topological and ordered phases in Section IIIA. The effects of L′ will be considered in Section IV.

II. CRITICAL O(2N) SPECTRUM: LARGE N

A. General formalism

In this section, we develop our formalism for the large-N expansion of the critical O(2N) model.

For a review of the large-N expansion, see Ref. 26. We take the Euclidean action

S =

∫

dτd2x
(

|∂µzα|2 + us|zα|2 +
u

2N

(
|zα|2

)2
)

. (9)
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FIG. 1. The geometry of the spatial torus, where the position is given by complex coordinates w = x+ iy.

We associate all points related by a lattice vector nω1 +mω2 for n,m ∈ Z, where the complex numbers

ω1 and ω2 are the periods of the torus. We define the modular parameter τ = ω2/ω1 and the length scale

L ≡ |ω1| =
√

A/Im(τ).

We choose a slightly different notation for the couplings compared with Eq. (4), which will simplify

subsequent expressions. We will perform the large N expansion at fixed u, and tune the quadratic

coupling to its critical value s = sc. Subsequently we will take the u → ∞ limit in each term to

obtain the scaling limit. We will also consider deviations from the critical coupling s− sc.

The field theory is defined on a spatial torus, which can be parametrized by complex coordinates

w = x + iy. The torus is defined by two complex periods ω1 and ω2, an area A = Im(ω2ω
∗
1), and

we define the dimensionless modular parameter τ = ω2/ω1 with real and imaginary parts denoted

τ = τ1+ iτ2. The geometry is shown in Fig. 1. We also define the length scale L ≡ |ω1| =
√

A/τ2.

In this geometry, the basis vectors of the dual lattice are given by

k1 = −iω2/A, k2 = iω1/A, (10)

so a general momentum vector takes the form

kn,m = 2π (nk1 +mk2) , n,m ∈ Z. (11)

We can rewrite the path integral (up to an unimportant constant) as

Z =

∫

Dzα exp

(

−
∫

d2xdτ

[

|∂µzα|2 +
u

2N

(

|zα|2 +
Ns

2

)2
])

. (12)
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We decouple the quartic term by introducing an auxiliary field λ̃:

Z =

∫

DzαDλ̃ exp

(

−
∫

d2xdτ

[

|∂µzα|2 + iλ̃

(

|zα|2 +
Ns

2

)

+
Nλ̃2

2u

])

. (13)

The zα can be integrated out, obtaining an action for λ̃,

Z =

∫

Dλ̃ exp

[

−N Tr ln
(

−∂2
τ −∇2 + iλ̃

)

−N

∫

dτd2x

(

λ̃2

2u
+

s

2
iλ̃

)]

. (14)

At N = ∞, we should expand around the saddle point value, which we call iλ̃ = ∆2, and is given

by
∆2

u
=

s

2
+

1

A
∑

k

∫
dω

2π

1

ω2 + |k|2 +∆2
. (15)

At this point we tune s → sc such that the correlation length diverges when A → ∞. From

Eq. (13), it is clear that the correlation length at N = ∞ is just the inverse of ∆, so sc is

sc = −2

∫
dω

2π

d2k

4π2

1

(ω2 + |k|2) = −2

∫
d2k

4π2

1

2k
. (16)

We can add and subtract sc from Eq. (15) while taking the limit u → ∞, and we find

s− sc =

∫
d2k

4π2

1

k
− 1

A
∑

k

1
√

|k|2 +∆2
. (17)

This equation is to be solved for ∆, yielding an answer of the form ∆ = #/L, where # is a

universal function of L(s− sc) independent of the regularization scheme at large momenta. From

the general theory of finite-size scaling [27], the energy levels should take the form

En =
1

L
Xn

[
L1/ν(s− sc)

]
, (18)

for some universal set of functions Xn, so our expressions show that ν = 1 at N = ∞ in (2 + 1)-

dimensions.

In this paper, we use dimensional regularization to evaluate divergent sums, which sets sc = 0.

The computation is given in Appendix A, and in terms of the special functions defined there, the

gap equation becomes

g
(2)
1/2(∆, τ) = −2πL(s− sc), (19)

which is solved numerically. At the critical point, s = sc, the gap ∆ depends only on the geometry

of the torus. We note that ∆ is a monotonically increasing function of (s− sc).
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We also find the ground-state energy. This is computed from the path integral by temporarily

taking a finite length in the time-direction, 0 < t < T , and then taking the limit

E0 = − lim
T→∞

1

T
lnZ. (20)

Directly taking iλ̃ = ∆2 and u = ∞, this is given by

E0 = N
∑

k

∫
dω

2π
ln
(
ω2 + |k|2 +∆2

)
+

Ns

2
A∆2

= N
∑

k

∫
dω

2π
ln
(
ω2
)
+N

∑

k

√

|k|2 +∆2 +
Ns

2
A∆2. (21)

We subtract the first term, which is independent of the system size and boundary conditions. The

remaining sum is evaluated using dimensional regularization,

E0 =
2πN

τ2L
g
(2)
−1/2(∆, τ) +

N(s− sc)

2
τ2L

2∆2, (22)

where the special function g
(2)
−1/2(∆, τ) is defined in Eq. (A13). Our choice of renormalization has

set E0 = 0 at s = sc and L = ∞, where the theory has full conformal invariance.

Now that we have the saddle point value of λ̃ at N = ∞, we can read off the Euclidean-time

propagator of zα

G0(k, iω) ≡
∫

d2xdτe−ixk−iωτ 〈zα(x, τ)z†β(0, 0)〉 =
δαβ

ω2 + k2 +∆2
. (23)

We also expand in the fluctuations of λ̃. Writing iλ̃ = ∆2 + iλ/
√
N , the effective action is

Z =

∫

Dλ exp (−S0 − S1) ,

S0 =
1

2A
∑

k

∫
dω

2π

(

Π(k, ω) +
1

u

)

λ2 (24)

with

Π(k, iω) =
1

A
∑

q

∫
dΩ

2π

1

(Ω2 + |q|2 +∆2)((ω + Ω)2 + |k + q|2 +∆2)

=
1

A
∑

q

√

|q|2 +∆2 +
√

|k + q|2 +∆2

2
√

(|q|2 +∆2)(|k + q|2 +∆2)((
√

|q|2 +∆2 +
√

|k + q|2 +∆2)2 + ω2)
(25)

and S1 contains nonlinear terms. We discuss S1 and 1/N corrections in Appendix B. We see that

the λ propagator at N = ∞ is

D0(k, iω) ≡
∫

d2xdτeixk+iωτ 〈λα(x, τ)λ
†
β(0, 0)〉 =

1

Π(k, iω) + 1/u
. (26)
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This is related to the propagator of |zα|2. This is most easily seen directly from the action (13),

where λ is not a dynamical field. Integrating out the field iλ is equivalent to replacing it by its

equation of motion,

iλ =
u√
N
|zα|2 +

√
N
(us

2
−∆2

)

. (27)

So the propagator of λ is related to the propagator of |zα|2 by

〈|zα|2(x, τ)|zα|2(0)〉c = −N

u2
〈λ(x, τ)λ(0)〉. (28)

This can also be verified by coupling a source J to |zα|2 and taking functional derivatives [28].

B. Spectrum

We describe the spectrum in terms of “n-particle states,” which are created by n fields:

b†αb
†
β · · · b†γ

︸ ︷︷ ︸
n

|0〉. (29)

The enlarged O(2N) symmetry rotates spinons into anti-spinons, so we define b†α with indices

running from α = 1, ..., 2N which can create either particle. The single-particle states are created

by a single z field, so by the form of the z propagator, their energy is given by the Hamiltonian

H0 = E0 +
∑

kα

√

|k|2 +∆2b†α(k)bα(k), (30)

where α = 1, ..., 2N . The energy of the state b†α(k)|0〉 is given by

E1(k) = E0 +
√

|k|2 +∆2. (31)

This state is in the fundamental representation of O(2N), so it is 2N -fold degenerate in addition

to any degeneracies between values of k.

Two particle states with momentum k take the form

b†α(q)b
†
β(k − q)|0〉 (32)

for all choices of momentum q. We decompose this into irreducible representations of O(2N),

which must separately have definite energy:

b†αb
†
β = δαβ

(
1

2N
b†γb

†
γ

)

+

(

b†[αb
†

β]

)

+

(

b†(αb
†

β) −
δαβ
2N

b†γb
†
γ

)

≡ δαβS + Aαβ + Tαβ . (33)

These are the singlet, antisymmetric tensor, and symmetric traceless tensor representations re-

spectively. Simple counting shows that S creates one state, Aαβ creates N(2N − 1) states, and
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Tαβ creates (2N − 1)(2N + 2)/2 states. Note that if q = k − q, the antisymmetric representation

will not be present.

At this point we can use the analysis above. At N = ∞, the z propagator takes the form of a

free boson with dispersion
√

|k|2 +∆2, so one would näıvely expect all states to have energy given

by the Hamiltonian (30). However, this is not the case for the singlet state, since

〈|zα|2(x, τ)|zβ |2(0, 0)〉 ∝ 〈λ(x, τ)λ(0, 0)〉. (34)

So the fact that that the propagator of λ takes a nontrivial form at N = ∞ has the effect of

shifting the energy of singlet states. The energies of the singlet states are given by the poles in

D(k, iω), or equivalently the zeros of Π(k, iω). From Eq. (25) we see that Π is always convergent

in d = 2, so we can sum the series numerically to find the singlet energies, which are given by

Π(k, E
(S)
2 (k)) = 0. (35)

In contrast the antisymmetric tensor and symmetric traceless tensor remain degenerate at N = ∞,

giving 4N2 − 1 degenerate states with energy

E2(k) = E1(q) + E1(k − q) (36)

for all choices of the momentum q, where E1(q) is the single particle energy, Eq. (31). The choice

of q can also induce additional degeneracies for any given total momentum k. In addition, we

saw that if q = k − q there will be no antisymmetric part, so there will only be a degeneracy of

(2N − 1)(2N + 2)/2 from O(2N) symmetry.

Going beyond the two-particle states, we expect that a general state will be given by an appli-

cation of

b†α(k1)b
†
β(k2)b

†
γ(k3)b

†
σ(k4) · · · |0〉. (37)

Past the two-particle states, the decomposition into irreducible representations becomes more

involved. Generally, the states will decompose into singlets with energies given by the zeros

of Π(k, E(k)), and states described by O(2N) traceless tensors with energies given by by Fock

spectrum of Eq. (30). Extra degeneracies can occur due to discrete point group symmetries of the

torus, and sometimes degeneracies are reduced if some of the b†s are indistinguishable.

C. Evolution of the spectrum of a function of s− sc

In this section, we discuss the general structure of the finite-size spectrum as a function of s−sc,

which can be worked out on general principles in the limits s = sc, s ≫ sc, and s ≪ sc. We show

that our model takes the correct form in these limits before giving explicit results on the evolution

of the as s− sc is varied.
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degeneracy κ = 0 κ = 1 κ =
√
2

1 0

2N 1.512

(2N + 2)(2N − 1)/2 3.024

(
2N + 2

3

)

− 2N 4.536

2

(
1 + 2N

2N − 2

)

−
(
3 + 2N

4

)

6.048

8N 6.463

2

(
2 + 2N

2N − 2

)

−
(
4 + 2N

5

)

7.560

4(4N2 − 1) 7.975

1 8.126

8N 9.013

2

(
3 + 2N

2N − 2

)

−
(
5 + 2N

6

)

9.072

TABLE I. Lowest energy splittingss L(E −E0) and their degeneracy at s = sc for large-N on the square

torus. The ground state energy is given by E0 = −.329N . Here, κ = L|k|/2π.

1. Critical point

At criticality, s = sc, the system at an infinite volume has full conformal invariance, and there

is no scale in the theory. The excitation spectrum forms a gapless continuum, E = k. As a result,

when the system is placed on a torus, the only possible dependence that the energy can have on the

size of the system is 1/L. Therefore, the quantities LE will be universal functions of τ only. This

dependence is automatic from our finite-size calculations, where the solution to the gap equation

will give a pure number for L∆, and all energies manifestly have 1/L dependence.

2. Disordered phase

In the disordered phase, s > sc, the system develops a gap m even at L = ∞, and the low-

energy excitations will take the form E =
√

|k|2 +m2. In the scaling limit, m is of order (s− sc)
ν
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and ν = 1 at N = ∞. This energy gap implies that all correlations decay exponentially over a

length scale 1/m ∼ 1/(s− sc), resulting in a very weak dependence on finite-size effects when the

system is placed on a torus of size L, provided Lm ∼ L(s − sc) ≫ 1. Therefore, we expect the

finite-size spectrum of the disordered phase to evolve to the form E =
√

|k|2 +∆2 at increasing

(s − sc), where ∆ = m + O(e−Lm) takes the same value as it does in an infinite volume up to

exponentially small corrections in L(s − sc), and the momenta k are quantized according to the

required boundary conditions. We also note that the threshold for singlet excitations in an infinite

volume is 2m, so the absence of large finite-size corrections suggests that the two-particle singlet

spectrum will merge with the other two-particle states.

The properties of the disordered phase can be verified explicitly. By taking the L → ∞ limit

of Eq. (19), we find the exact gap in an infinite volume,

m = 2π(s− sc). (38)

This can be compared with the gap in a finite volume when s ≫ sc. In this limit, L∆ is large and

we can expand g
(2)
1/2(∆, τ), obtaining

∆ = 2π(s− sc) +O
(

1

L2(s− sc)2
e−L2(s−sc)2

)

, s ≫ sc (39)

The energies of the two-particle singlet states can be verified to merge with the other two-particle

states in this limit.

3. Ordered phase

In the ordered phase, s < sc, the finite-size spectrum differs considerably from the infinite

volume case. In an infinite volume, there is a degenerate ground-state manifold of states at zero

momentum which are related by the O(2N) symmetry, and a properly prepared system will pick a

single one of these states, spontaneously breaking the symmetry. The stable excitations above the

ground state consist of 2N − 1 Goldstone modes with a linear dispersion, E = c|k|, corresponding
to transverse fluctuations of the order parameter about its ground state value. In addition, there

will be an unstable continuum of excitations associated with transverse fluctuations of the order

parameter and fluctuations of its amplitude φ2
α, which will be mixed by interactions [28].

In contrast, in a finite volume the ground state must be a non-degenerate O(2N) singlet, and

spontaneous symmetry breaking is impossible. Instead of a ground state manifold, there will be

a “tower of states” above the ground state at k = 0 with energies scaling as E ∼ 1/A with the

system size [7–9, 29–31]. In the thermodynamic limit, this tower “collapses” into the ground state,

and a symmetry-broken state can be formed as an extensive superposition of states in the tower.
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FIG. 2. (Color online) The evolution of the spectrum LE for the O(4) model as a function of the tuning

parameter L1/ν(s − sc) on the square torus, τ = i. Note that ν = 1 at leading order in 1/N . The

energy levels are defined so that E = 0 at s = sc and L = ∞. We label the states by their behavior in

the ordered region, distinguishing between the tower, the Goldstone modes, and the singlet states. Our

choice of states is not not exhaustive, but they highlight the main features of each region.
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FIG. 3. Left: The dimensionless ground state energy density LE0/τ2 = L3E0/A for the O(4) model on

an infinite cylinder with circumference L. This energy is defined so that E/A = 0 at s = sc and L = ∞.

Right: The energy gap above the ground state for the O(2N) model at N = ∞ on the infinite cylinder

as a function of s− sc. For energies higher than the gap, the spectrum is continuous.
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One can analyze the general properties of the tower of states by forming an effective Hamiltonian

for their spectrum. This can be derived by integrating out the finite-momentum modes and finding

an effective Hamiltonian for the zero-momentum component of the field [27]. For a system with

O(2N) symmetry, the effective Hamiltonian for the tower takes the form

Htower = E0 +
L2

κAN (sc − s)
(40)

up to corrections induced by fluctuations of the finite momentum modes. Here, Li, i = 1, 2, .., N(2N−
1) are the generators of rotations in O(2N), and κ is a constant which will be non-universal away

from the scaling limit. The effective Hamiltonian for the tower is simply an O(2N) rigid rotator,

and the energy levels are given by

Etower = E0 +
ℓ(ℓ+ 2N − 2)

κN(sc − s)A , ℓ = 0, 1, 2, ... (41)

This constrains the level spacing between states in the tower. In our present calculation, we take

the N = ∞ limit, and obtain equally-spaced energy levels. We note that for the physical cases

of interest the splitting will be different; below we consider an O(4)∗ transition where one takes

N = 2 and ℓ even, resulting in a splitting of 2ℓ(2ℓ+ 2) up to the irrelevant splittings discussed in

Section IV. The eigenfunctions of Eq. (40) in the angular basis are the hyperspherical harmonics on

S2N−1, which are the higher-dimensional generalization of the familiar spherical harmonics on the

two-sphere. These eigenfunctions are in the symmetric traceless tensor representations of O(2N),

and their degeneracy is given by

Deg. = 2

(
ℓ+ 2N − 3

2N − 2

)

+

(
ℓ+ 2N − 3

ℓ

)

. (42)

We can verify the above structure in our model by taking the limit s ≪ sc in the gap equation

(19). We find that the gap takes the form

∆ =
1

A(sc − s)
+O

(
(A(sc − s))−2

)
, s ≪ sc. (43)

The states created purely by |k| = 0 will form an equally spaced spectrum above the ground state

with this 1/A dependence on the system size, and by the analysis in Section IIB they will be in

the symmetric traceless tensor representations of O(2N), in agreement with the above analysis.

The states created by finite-momentum operators will have an energy given by E = |k| +
O(∆2/|k|), and transform in either traceless tensor or singlet representations. These correspond

to the Goldstone modes in the infinite-volume system, but there will be no distinction between

the longitudinal and transverse fluctuations since symmetry is unbroken. We note that even the

zero-momentum states created by the singlet operator approach the expected spectrum for multi-

particle Goldstone states.
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D. Results

For an explicit example, we consider the square torus, τ = i, where both spatial directions have

length L. Precisely at s = sc, the energy levels are a set of universal numbers times 1/L; in Table

I we have given the lowest-lying energy levels at the critical point and their total degeneracy. We

show the evolution of the spectrum LE as a function of L(s − sc) in Figure 2, choosing states

which highlight important features of the spectrum.

We also give results for the cylinder, τ2 → ∞, in Figure 3. The presence of an infinite dimension

changes the nature of the spectrum considerably, but there are still universal quantities to compute.

Since the ground state energy is extensive, diverging with the area of the system, we plot the

universal ground state energy density LE0/τ2 = L3E0/A instead. Also, since particles can take

a continuous momentum along the direction of the cylinder, the spectrum above the gap is a

continuum given by particles with energy
√
k2 +∆2. However, the gap remains a universal quantity

which we plot in Fig. 3. We also note that in the ordered phase, the gap no longer scales with 1/A
since the area is infinite. Instead, the gap becomes exponentially suppressed in the circumference

of the cylinder,

∆ ∝ 1

L
exp (−πL(sc − s)) , s ≪ sc, τ2 = ∞. (44)

III. CRITICAL O(2N)∗ SPECTRUM

We now consider the O(2N)∗ model, where the spinons can take anti-periodic boundary condi-

tions along either direction of the torus. We treat the four topological sectors as separate decoupled

theories for now. The boundary conditions can be taken into account by simply by noticing that

momentum quantization is shifted by a half-integer in the anti-periodic direction. We parametrize

the momentum as

kn,m = 2π [(n+ a1)k1 + (m+ a2)k2] , n,m ∈ Z, (45)

where the ki were defined in Eq. (10), and the values of a1, a2 are determined by the boundary

conditions, see Table II.

This redefinition of allowed momenta is all that is needed to reproduce the calculations in IIA.

We can still use the special functions defined in the appendix (which are defined for arbitrary

boundary conditions), and we solve the same gap equation for ∆,

g
(2)
1/2(∆, τ) = −2πL(s− sc), (46)
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(ω1, ω2) (a1, a2)

(P,P) (0, 0)

(P,A)
(
0, 12
)

(A,P)
(
1
2 , 0
)

(A,A)
(
1
2 ,

1
2

)

TABLE II. The definitions of a1 and a2 appearing in (45) for different boundary conditions. The left

column denotes whether the boundary conditions are periodic (P) or anti-periodic (A) in the ω1 or ω2

directions respectively, while the right column gives the values of a1 and a2 for this boundary conditions.

and have the same formula for the ground state energy,

E0 =
2πN

τ2L
g
(2)
−1/2(∆, τ) +

N(s− sc)

2
τ2L

2∆2. (47)

However, we can now find the gap and the ground state energies in all four topological sectors of

the theory, and we will see below that the splitting between the ground-state energies is important.

The ground-state energies are proportional to N , so the energy splittings in the O(2N)∗ theory

will be N -dependent in the 1/N expansion, unlike the O(2N) case above. This N -dependence is a

physical property of a system with 2N spinons, since the ground state configuration of each field

with a twist will each contribute equally to shift the energy above the ground state of the system

without a twist.

One consequence of the anti-periodic sectors is that there is no zero mode, so the massless free

particle spectrum |k| already has a gap. As a result, the saddle-point value of iλ̃ = ∆2 determined

through Eq. (46) can take negative values, provided
√

|k|2 − |∆2| is real for all possible values of

k.

We now consider the constraint of Eq. (7), requiring that the wavefunctional must be either an

even or odd function of the zα. These two cases correspond to an even or odd number of spins

in the underlying lattice antiferromagnet of interest. In terms of the results in Section IIB, this

means we need to calculate the full spectrum for all of the relevant boundary conditions, and then

separate the spectrum into the states with even particle-number states and odd particle-number

states to describe the two possibilities.

A. Evolution of the spectrum of a function of s− sc

When considering the deviation from the critical point, the topologically nontrivial sectors

correspond to extra features in the two neighboring phases. In a Z2 spin liquid, the ground
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Deg. κ = 0 κ = 1

1 0

2 1.921

9 3.0239

1 3.0244

25 6.048

66 7.111 7.111

60 7.975

1 8.126

49 9.072

TABLE III. Energy splittings L(E − E0) and their degeneracies at s = sc for the O(4)∗ transition from

the large-N expansion with τ = i. Here, κ = L|k|/2π. The ground state energy relative to L = ∞
is LE0 = −1.317. Here we restrict to states which are even in the fields zα, which corresponds to an

antiferromagnet with an even number of spins.

state on a torus will exhibit a four-fold degeneracy up to exponential splitting in the system

size. In addition, excited states in each topological sector will also contain a four-fold degeneracy

corresponding to excitations in the background of different flux sectors through the holes of the

torus. This topological degeneracy is the only remnant of the vison particle, which has been

integrated out to obtain the O(2N)∗ model, so our theory only captures the spectrum at energies

well below the vison mass.

1. Topological phase

This degeneracy is easily verified in our model; as shown above, the phase with s > sc will

have an energy gap even in an infinite volume, which results in the spectrum showing a weak

dependence on boundary conditions. This will cause the different topological sectors to become

degenerate up to an exponential splitting of magnitude e−mL where m = 2π(s− sc). From solving

Eq. (46) for s ≫ sc, one find that in all four sectors the gap approaches ∆ = m up to exponential

corrections in the system size, and similarly the ground state energies in this limit will become

exponentially close.
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Deg. κ = 0 κ = 1/2 κ = 1/
√
2 κ = 1 κ =

√
5/2 κ =

√
2

4 1.512

16 4.516

16 4.536

16 6.463

16 6.694

36 7.560

32 8.719

16 9.013

TABLE IV. Energy splittings from L(E − E0) for the O(4)∗ transition from the large-N expansion with

τ = i and N = ∞. Here, κ = L|k|/2π, and we restrict to states which are odd in the fields zα, which

corresponds to an antiferromagnet with an odd number of spins. We are measuring the energies with

respect to the lowest energy in the O(4) model, LE0 = −1.317, for comparison with Table III.

2. Magnetically ordered phase

In the magnetically ordered phase, s < sc, the antiperiodic boundary conditions have an inter-

pretation as vortices of the order parameter. This can be seen from the parametrization of the

order parameter in terms of the spinon degrees of freedom in Eq. (3). As the spinon field under-

goes a smooth non-contractible twist around a cycle of the torus, zα → −zα, the physical order

parameter returns to its original configuration after traversing a topologically nontrivial path in

order parameter space. These correspond to vortices associated with the first homotopy group,

π1(SO(3)) = Z2. Note that by only allowing twists in the order parameter around the torus, we

are ignoring local vortex configurations. This simplification is analogous to ignoring the local vison

excitations in the spin liquid phase, since a local vortex will have some extra energy cost due to

its core.

The energy cost of a vortex can be estimated by dimensional analysis. On general grounds, in

the ordered phase we can write the energy functional for the phase θ(x) of the order parameter as

E =
ρs
2

∫

d2x (∇θα)
2 (48)

where ρs is a “spin stiffness” (really the stiffness of the condensed zα fields rather than the under-

lying spin order parameter), given by ρs ∼ N(sc−s) close to the large-N critical point [21, 22]. We

consider a smooth configuration of the field from zα → −zα as the order parameter winds around
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FIG. 4. (Color online) The evolution of the spectrum LE for the O(4)∗ model as a function of the tuning

parameter L1/ν(s− sc) on the square torus, τ = i. Note that ν = 1 to leading order in 1/N . The energy

levels are defined so that E = 0 at s = sc and L = ∞. We label the states by their behavior in the

ordered region, distinguishing between the tower, the Goldstone modes, and the singlet states. We also

distinguish the four “ground states” of the different sectors (a1, a2) according to Table II, though the

(A,P) and (P,A) sectors are degenerate for the square geometry. These states become degenerate in the

topological phase, while they represent Z2 vortices in the magnetic phase. Our choice of states is not

exhaustive, but highlights the main features of the proximate phases.

either cycle, which have lengths |ω1,2|. This contributes a gradient of order ∇zα ∼ 1/|ω1,2|, and
the energy cost will be

E ∼ N(sc − s)
A

|ω1,2|2
. (49)

The estimate can be checked against the current model. For s ≪ sc, the solution of of gap equation

becomes

∆2 =
1

A2(sc − s)2
− |kmin|2 (50)

where |kmin| is the minimum value of |k| allowed in a given topological sector (so kmin is always
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FIG. 5. (Color online) Left: The splitting between the energy densities of the periodic and antiperiodic

sectors for the O(4)∗ model on the infinite cylinder. The energy levels are defined so that E0/A = 0 at

s = sc and L = ∞. Right: The energy gap above the ground state for the O(4)∗ model on the cylinder

as a function of s− sc. The spectrum above this gap is continuous.

zero in the (P,P) sector). Solving Eq. (47) for the energy of a vortex in this limit gives

Evortex ≡ E0 −E0,(P,P ) =
NA(sc − s)

2
|kmin|2 s ≪ sc (51)

This agrees with the above estimate since |kmin|2 ∼ 1/|ω1,2|2 in the different sectors.

B. Results

We give the results for the low-lying O(4)∗ spectrum on a square torus at criticality in Tables

III and IV, which contain the even and odd spin results respectively. We also give the evolution

of the spectrum as a function of s− sc in Figure 4, choosing some representative states to depict

the nature of the two phases. We also give universal results for the cylindrical limit in Figure 5.

We plot the splitting between the ground state energy densities in the two sectors, as well as the

excitation gap which is simply twice the gap for the O(4) model. Above the excitation gap, the

spectrum becomes a continuum due to the momentum along the infinite direction, so there are no

universal energy levels.

We also comment on the triangular torus, τ = eiπ/3. This is an interesting case because

numerical simulations on the triangular lattice are more easily performed using this boundary

condition, so these results have relevance to future studies on the J1-J2 Heisenberg model where

the antiferromagnetic-spin liquid transition has been reported. For this special value of the modular

parameter, it turns out that all three nontrivial topological sectors are exactly degenerate. This

is due to the choice eiπ/3 being invariant under the modular transformation τ → −1/(τ − 1),

see the discussion below Eq. (A18). In addition, this torus has a discrete six-fold rotational
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FIG. 6. (Color online) The evolution of the spectrum LE for the O(4)∗ model as a function of the tuning

parameter L1/ν(s− sc) on the triangular torus, τ = eiπ/3. Note that ν = 1 to leading order in 1/N . The

energy levels are defined so that E = 0 at s = sc and L = ∞. We label the states by their behavior in

the ordered region, distinguishing between the tower, the Goldstone modes, and the singlet states. Note

that the three sectors (A,P), (P,A), and (A,A) are degenerate in this geometry. Our choice of states is

not exhaustive, but highlights the main features of the proximate phases.

symmetry, resulting in a highly degenerate spectrum for finite-momentum states. The evolution

of the spectrum for the triangular torus is shown in Figure 6.

IV. ANISOTROPIC CORRECTIONS

We now consider to the leading irrelevant operator in our theory,

L′ = γ|z∗α∇zα|2. (52)

Asymptotically close to the critical point, this term is irrelevant and will not contribute to universal

physics. However, this term is dangerously irrelevant because it breaks the O(2N) symmetry down

to SU(N) for any deviation from the scaling limit. Therefore, the actual energy levels for the

transition will organize into SU(N) multiplets for any lattice model, with a splitting determined
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by γ. The coefficient γ is non-universal and will be determined by microscopics, so in principle

one must fit its value to a given spectrum.

We begin by discussing the nature of the splitting in terms of representation theory. The real and

imaginary parts of zα transform together as an O(2N) vector, but this representation will transform

reducibly under the SU(N) symmetry of Eq. (52). Labelling the irreducible representations by their

dimension, the splitting of the O(2N) vector into SU(N) representations is

2N −→ N ⊕N, (53)

where N and N are the fundamental and anti-fundamental representations of SU(N), which we

will shortly associate with spinons and anti-spinons. We can analyze the breaking of higher rep-

resentations of O(2N) by taking tensor products of the fundamental representation. For example,

the splitting of the two-particle states can be obtained by taking the antisymmetric or symmetric

tensor product of the O(2N) vector, and use the known properties for adding SU(N) representa-

tions

[(
N ⊕N

)
⊗
(
N ⊕N

)]

A
=

N(N − 1)

2
⊕ N(N − 1)

2
⊕
(
N2 − 1

)
⊕ 1

[(
N ⊕N

)
⊗
(
N ⊕N

)]

S
=

N(N + 1)

2
⊕ N(N + 1)

2
⊕
(
N2 − 1

)
⊕ 1 (54)

where the subscripts indicate antisymmetrizing or symmetrizing the direct product with respect

to the ordering of the O(2N) indices. Since the symmetric representation of O(2N) contains an

irreducible singlet, it must coincide with the singlet state in the last line of Eq. (54).

We can make contact with our expressions in Section IIB by defining spinon and anti-spinon

operators and relating them to the O(2N) vector operators b†α. We expand the zα field as

zα =
1

A1/2

∑

k 6=0

eik·x
√

2E1(k)

(
aα(k) + c†α(−k)

)
. (55)

Here, the dot product is given by k · x ≡ Re(kx∗), and E1(k) =
√

|k|2 +∆2 is the single-particle

energy at N = ∞. Here, we are assuming that the perturbation γ does not shift the saddle-point

value of the path integral, so we can perturb around the N = ∞ spectrum. Since zα transforms

as an SU(N) vector, the particles created by c†α are spinons and the particles created by a†α are

anti-spinons. We can identify these with the O(2N) bosons defined earlier

c†α =
1√
2

(

b†α + ib†α+N

)

a†α =
1√
2

(

b†α − ib†α+N

)

. (56)
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From these relations it is straight-forward to check that the embedding in Eq. (53) holds. The

decomposition of the two-particle states can be written

b†[αb
†

β] −→ c†[αc
†

β] + a†[αa
†

β] +

(

c†αa
†
β − a†βc

†
α − δαβ

N

(
c†γa

†
γ − a†γc

†
γ

)
)

+
δαβ
N

(
c†γa

†
γ − a†γc

†
γ

)

b†(αb
†

β) −→ c†(αc
†

β) + a†(αa
†

β) +

(

c†αa
†
β + a†βc

†
α − δαβ

N

(
c†γa

†
γ + a†γc

†
γ

)
)

b†γb
†
γ −→ c†γa

†
γ + a†γc

†
γ (57)

where the indices on the left run to 2N while the indices on the right run to N . Once again, if the

two states carry the same momentum there is no antisymmetric contribution.

We now apply perturbation theory on the degenerate states, using Eq. (57) to diagonalize the

perturbation. We define the dimensionless coupling γ̃ ≡ γ/L as well as the shorthand χα(k) ≡
aα(k) + c†α(−k), and obtain the interaction Hamiltonian

Vγ =
γ̃

τ2L

∑

k1,k2,k3 6=0

k2 · k3
4
√

E1(k1)E1(k2)E1(k3)E1(k1 − k2 + k3)
χ†
α(k1)χα(k2)χ

†
β(k3)χβ(k1 − k2 + k3). (58)

The single particle energies of spinons and anti-spinons are shifted by the same amount, so there

is no splitting to one-particle states to leading order.

We will explicitly compute the shift in energies for the two-particle states in Eq. (57), which

are all degenerate at N = ∞ except for the singlet state in the last line. The perturbation will

split these states, and can also split any possible degeneracy between states with the same total

momentum. We first ignore the latter possibility, which does not occur for any of the states

listed in the above tables. Recall that the two-particle state energies can be written as E2(k) =

E1(q) + E1(k − q) for some value of q. Then the splitting of the antisymmetric representation is

N(N − 1)

2
,
N(N − 1)

2
: ∆Easym(k) = − γ̃

τ2L

|k − 2q|2
4E1(q)E1(k − q)

N2 − 1 : ∆Eadj(k) = − γ̃

τ2L

2q · (k − q)

4E1(q)E1(k − q)

1 : ∆Es(k) =
γ̃

τ2L

N (|q|2 + |k − q|2)− 2q · (k − q)

4E1(q)E1(k − q)
, (59)

while for the symmetric representation,

N(N + 1)

2
,
N(N + 1)

2
: ∆Esym(k) =

γ̃

τ2L

|k|2
4E1(q)E1(k − q)

N2 − 1 : ∆Eadj(k) = − γ̃

τ2L

2q · (k − q)

4E1(q)E1(k − q)
. (60)

The subscripts refer to the states being in the symmetric, antisymmetric, singlet, or adjoint rep-

resentations of SU(N).
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Summarizing the results to first order in γ, the degeneracy of the antisymmetric representation

breaks down from N(2N − 1) to N(N − 1), N2 − 1, and 1, while the degeneracy of the symmetric

traceless tensor representation breaks down from (2N − 1)(2N + 2)/2 to N(N + 1) and N2 − 1.

Note that the first-order correction is zero if the unperturbed particles all have zero momentum.

Therefore, to first order there is no splitting of the “tower of states” in the antiferromagnetic phase.

Although we do not compute the magnitude for the splitting of the states in the tower, we comment

on the expected representations which should appear. In Section IIC we saw that the tower of

states for the O(2N) model all belong to the symmetric traceless tensor representations. For the

case of interest, N = 2, the allowed degeneracies in the tower becomes (2ℓ + 1)2 for ℓ = 0, 1, 2, ...

where we use the constraint that only an even number of particles are allowed. Repeating the

above analysis by forming symmetric products and subtracting out the traces, one finds that each

of these states decomposes into (2ℓ+ 1) different SU(2) representations each with spin-ℓ. We also

note that the spacing of the even-particle spectrum for the O(4)∗ model should be proportional to

2ℓ(2ℓ+2) ∝ ℓ(ℓ+1), which agrees with the spacing for the tower in an SU(2) antiferromagnet [30].

This qualitative structure of the spectrum, with (2ℓ+1) inequivalent spin-ℓ multiplets in the tower

becoming approximately degenerate close to the critical point, is an interesting feature of this

theory which could give good evidence for the existence of an O(4)∗ transition and a neighboring

spin liquid phase.

For a definite example, we revisit the results for the even sector of the O(4)∗ model on the

square torus. In Table V, we explicitly show all the two-particle states from Table III which are

split by the perturbation, and give the magnitude of the splitting. Note that the numerical value

of all energies will be shifted from their unperturbed values, but here we only give the energy

splitting between states. The states listed in Table V turn out to be the only states in Table III

which are split at first-order in γ.

In principle, one can continue this process to higher-particle states, and to higher order in γ.

For a more complex O(2N) multiplet, one finds how the SU(N) representations fit inside the larger

group, and use this to diagonalize the perturbation within the degenerate multiplet.

V. CONCLUSIONS

There have been extensive discussions in the literature on the nature of the finite size and

low energy spectrum of quantum antiferromagnets in antiferromagnetically ordered and gapped

topological phases. For magnetically-ordered antiferromagnets, we have the well-known “tower of

states” [7–9, 29–31] obtained from the excitations of a quantum rotor representing the spatially

uniform collective quantum fluctuations of all the spins; such a spectrum is characteristic signature
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deg. at γ = 0
√
AE2 κ q̃ deg. at O(γ)

√
A∆E

9 3.0239 0 0 9 0

30 7.111 0 1/2

4 −1.47γ̃

12 0

12 0.73γ̃

2 1.47γ̃

36 7.111 1 1/2
12 −0.73γ̃

24 0

60 7.975 1 0

8 −1.01γ̃

24 0

24 1.01γ̃

4 2.02γ̃

TABLE V. The two-particle states in the even sector of the critical O(4)∗ spectrum, taken from Table

III, and their splitting due to the perturbation. The energies of these states are written as E2(k) =

Egs + E1(q) + E1(k − q), and we list the scaled momenta, κ = L|k|/2π and q̃ = L|q|/2π. For further

details, see the text.

of the spontaneously broken spin rotation symmetry. On the other hand, antiferromagnets with an

energy gap and topological order have low energy states whose energy differences are exponentially

small in the system size; again, this nearly degenerate spectrum is a characteristic signature of the

topological order in this phase of the antiferromagnet.

In the present paper, we have presented results on the evolution of the spectrum between

the above two limits. We examined a two-dimensional antiferromagnet, with global SU(2) spin

rotation symmetry, which undergoes a transition between a gapped Z2 spin liquid and coplanar

antiferromagnetic order. Such a transition is described by a O(4)∗ conformal field theory in 2+1

dimensions, which is closely related to the O(4) Wilson-Fisher conformal field theory. We showed

that the quantum critical point has a universal spectrum, in which the energy levels are universal

numbers times 1/L, where L is the spatial system size. This spectrum contains features which

descend from the phases found on either side of the critical point. The topological degeneracy on

the gapped side evolves into non-trivial boundary conditions and selection rules on the operators

of the conformal field theory. And the spontaneously broken spin-rotation symmetry on the other

side yields low-lying states with non-zero spin at the critical point.

We hope that our results will aid in analyzing numerical data on lattice quantum antiferromag-

nets which undergo transitions from antiferromagnetically ordered to spin liquid states. With the
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available data on the manner in which the “tower of states” evolve into the spin liquid across a

quantum critical point, strong constraints become available on identifying the topological order in

the spin liquid.
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Appendix A: Loop sums

Here we review the calculation of loop diagrams in a finite volume using dimensional regular-

ization.

To remind the reader of our notation, we parametrize the coordinates on the spatial torus in

complex coordinates w = x + iy, and denote the two periods in these coordinates as ω1 and ω2

(see Fig. 1). We define the modular parameter τ ≡ ω2/ω1 and the length scale L ≡ |ω1|. In this

geometry, the basis vectors of the dual lattice are given by

k1 = −iω2/A, k2 = iω1/A. (A1)

The eigenvalues of the Laplacian are dependent on the boundary conditions of the torus. We

consider the fields to be either periodic or anti-periodic in either direction. With this in mind, we

write the eigenvalues of the Laplacian as

|kn,m|2 = (2π)2 |(n + a1)k1 + (m+ a2)k2|2 , n,m ∈ Z. (A2)

Here, the numbers a1 and a2 parametrize whether the boundary conditions on the fields are periodic

or anti-periodic in the directions ω1 and ω2, see Table II.

A general one-loop diagram will be of the form

∑

n,m∈Z

1

(|kn,m|2 +∆2)s
=

(
τ2L

2π

)2s ∑

n,m∈Z

1

(|m+ a2 + (n + a1)τ |2 + γ2)s
(A3)

where τ = τ1 + iτ2 and γ = τ2L∆/2π (we have used τ2 = A/L2).
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We now generalize this sum to arbitrary dimension. This is done by promoting the two-

dimensional vector (n+a1, m+a2) to a d-dimensional vector of (half) integers for the (anti-)periodic

case. Then in (A3) we simply take the sums to be over n,m ∈ Z
d/2. We will write the sums as

g(d)s (∆, τ) =
∑

n,m∈Zd/2

1

(|m+ a2 + (n+ a1)τ |2 + γ2)s
. (A4)

The summand is rewritten using the identity

1

As
=

πs

Γ(s)

∫ ∞

0

dλλs−1e−πλA (A5)

giving

g(d)s =
πs

Γ(s)

∫ ∞

0

dλλs−1e−πλγ2
∑

n,m∈Zd/2

exp
(
−πλ|m+ a2 + (n+ a1)τ |2

)
. (A6)

We can now write the sum in terms of the two-dimensional Riemann theta function, defined as

Θ (λ,Ω,u) ≡
∑

n∈Z2

exp
(
− πλn⊺ ·Ω · n− 2πnT · u

)
(A7)

where Ω is a 2× 2 matrix and u is a two-dimensional vector. Then

g(d)s =
πs

Γ(s)

∫ ∞

0

dλλs−1e−πλγ2

exp

(

−πλγ2 − dπλ

2

(
(a1τ2)

2 + (a2 + a1τ1)
2
)
)

Θ (λ,Ω(τ),v1)
d/2

(A8)

where

Ω(τ) =

(

|τ |2 τ1

τ1 1

)

, v1 = λ

(

τ1 (a2 + a1τ1) + a1τ
2
2

a2 + a1τ1

)

. (A9)

As with the original sum, the function (A8) converges whenever s > d/2, while for s < d/2,

the integral diverges for small values of λ. We proceed by splitting the integral into two parts,
∫∞

0
=
∫ 1

0
+
∫∞

1
, and working on the divergent piece. Using the mathematical identity

Θ (λ,Ω,u) =
1

λ
√
detΩ

exp
(π

λ
uT ·Ω−1 · u

)

Θ

(
1

λ
,Ω−1,− i

λ
Ω−1 · u

)

, (A10)

the integral at small λ becomes

τ
−d/2
2

πs

Γ(s)

∫ 1

0

dλλs−1−d/2e−πλγ2

Θ

(
1

λ
,Ω(τ)−1,v2

)d/2

= τ
−d/2
2

πs

Γ(s)

∫ ∞

1

dλλd/2−s−1e−πγ2/λΘ
(
λ,Ω(τ)−1,v2

)d/2
(A11)

with v2 = −i(a1, a2). Since Θ → 1 for large λ, we see that the integral has the expected UV

divergence. In this paper, we evaluate sums with s = 1/2 and s = −1/2 in d = 2, so we add and
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subtract the divergent terms for these cases, evaluating integrals where possible in the convergent

region s > d/2:

τ
−d/2
2

πs

Γ(s)

∫ ∞

1

dλλd/2−s−1

(

e−πγ2/λΘ
(
λ,Ω(τ)−1,v2

)d/2 − 1− πγ2

λ

)

+τ
−d/2
2

πs

Γ(s)

(
1

s− d/2
+

πγ2

1 + s− d/2

)

. (A12)

Now that the integrals which were only convergent for s > d/2 have been evaluated, we analytically

continue the result to the dimensionality of interest, and g
(d)
s will only have simple poles on the

complex plane.

To summarize, we have

∑

k

1

(|k|2 +∆2)s
=

(
τ2L

2π

)2s

g(d)s (∆, τ),

g(d)s (∆, τ) =
πs

Γ(s)

{∫ ∞

1

dλλs−1 exp

(

−λτ 22L
2∆2

4π
− dπλ

2

(
(a1τ2)

2 + (a2 + a1τ1)
2
)
)

Θ (λ,Ω(τ),v1)
d/2

+ τ
−d/2
2

∫ ∞

1

dλλd/2−s−1

(

exp

(

−τ 22L
2∆2

4πλ

)

Θ
(
λ,Ω(τ)−1,v2

)d/2 − 1 +
τ 22L

2∆2

4πλ

)

+
τ
−d/2
2

s− d/2
− L2∆2

4π

τ
2−d/2
2

1 + s− d/2

}

, (A13)

where the Riemann theta function Θ was defined in (A7), and we’ve also defined

Ω(τ) =

(

|τ |2 τ1

τ1 1

)

, Ω(τ)−1 =
1

τ 22

(

1 −τ1

−τ1 |τ |2

)

(A14)

v1 = λ

(

τ1 (a2 + a1τ1) + a1τ
2
2

a2 + a1τ1

)

, v2 = −i

(

a1

a2

)

. (A15)

At this point, we note the properties of these sums under modular transformations. Modular

transformations are discrete diffeomorphisms on the torus, so we need the spectrum to be invariant

under the modular group. This group is generated by the two transformations [32]

T : τ → τ + 1

S : τ → −1

τ
. (A16)

Under these transformations, the area τ2L
2 is left unchanged. To see how our loop sums transform

under these operations, we look at how |kn,m|2 in Eq. (A2) transforms, since all sums involve some
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power of this object summed over all integers. A quick calculation finds

1

(2π)2
|kn,m|2 =

1

τ2A
[
(n+ a1)

2(τ 21 + τ 22 ) + (m+ a2)
2 + 2(n+ a1)(m+ a2)τ1

]

T−→ 1

τ2A
[
(n+ a1 +m+ a2)

2(τ 21 + τ 22 ) + (m+ a2)
2 + 2(n+ a1 +m+ a2)(m+ a2)τ1

]

S−→ 1

τ2A
[
(m+ a2)

2(τ 21 + τ 22 ) + (n+ a1)
2 − 2(n+ a1)(m+ a2)τ1

]
(A17)

After summing over all integers, it is clear that modular transformations transform between the

different topological sectors as follows:

T : (a1, a2) → (a1 + a2, a2)

S : (a1, a2) → (a2, a1) (A18)

where a1 and a2 are defined modulo an integer. Note that if we include any of the antiperiodic

sectors, modular invariance forces us to include the other two.

We note that the above relations will also cause extra degeneracies to arise for special values

of τ . For example, we consider the square torus τ = i in the main text, which satisfies τ = −1/τ .

Since the full spectrum must be invariant under S, the (1/2, 0) and (0, 1/2) sectors are degenerate.

We also consider the triangular torus τ = eiπ/3, which satisfies τ = −1/(τ−1). Then the invariance

of the full spectrum under T −1S means all three nontrivial sectors have exactly degenerate spectra.

In the main text, we gave universal results for the cylindrical limit, which is τ1 = 0, τ2 → ∞.

This can be done either by considering formulating the problem on the cylinder to begin with,

or by taking the limit of the special function in Eq. (A13). The limit requires needs to be taken

carefully because of the competing dependences g
(d)
s on τ2, but by similar manipulations to the

above derivation the limits can be extracted. For the two cases we use in the text, the limits are

given by

g
(2)
1/2(∆, τ = i∞) =

∫ ∞

1

dλλ−1/2

(

exp

(

−L2∆2

4πλ

)

ϑ3(πa1, λ)− 1

)

+

∫ ∞

1

dλλ−1 exp

(

−λL2∆2

4π
− πλa21

)

ϑ3(−iπλa1, λ)− 2 (A19)

and

g
(2)
−1/2(∆, τ = i∞) = − τ 22

2π

{
∫ ∞

1

dλλ1/2

(

exp

(

−L2∆2

4πλ

)

ϑ3(πa1, λ)− 1 +
L2∆2

4πλ

)

+

∫ ∞

1

dλλ−5/2 exp

(

−λL2∆2

4π
− πλa21

)

ϑ3(−iπλa1, λ)−
2

3
+

L2∆2

2π

}

. (A20)
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Here we have used the Jacobi theta function, defined as

ϑ3(iπa, b) ≡
∑

n∈Z

exp
(
−πbn2 − 2πan

)
. (A21)

The gap on the cylinder can be obtained by using Eq. (A19) in the gap equation (19). From

Eq. (A20), we see that g
(2)
−1/2 diverges in the cylindrical limit. This is related to the area dependence

of the ground state energy, which is given by

E0 =
2πN

τ2L
g
(2)
−1/2(∆, τ) +

N(s− sc)

2
τ2L

2∆2. (A22)

The ground state energy is proportional to τ2 in this limit, diverging as the area becomes infinite.

However, the dimensionless ground state energy density, LE0/τ2 = L3E0/A, remains a universal

function of s− sc which we compute the in main text.

Appendix B: 1/N corrections

Here we mention the form of the leading 1/N corrections, following a similar notation to Ref. 28.

First we need to calculate the critical coupling sc to order 1/N . This is done by solving the infinite-

volume gap equation (15), where we write the infinite volume saddle point as iλ̃ = r + iλ/
√
N :

r

u
=

sc
2
+

∫
dd+1p

(2π)d+1

1

p2 + r
. (B1)

The coupling sc should be tuned so that the the energy gap in an infinite volume vanishes. We do

this by working backwards: we first calculate the energy gap as a function of r, then tune r such

that the energy gap vanishes, and finally define sc through Eq. (B1). From the action (13), the

relevant self-energy diagram corrections to the zα propagator are

G−1
∞ (p) = p2 + r +

1

N

∫
dd+1q

(2π)d+1

1

Π∞(q, r)

1

((p+ q)2 + r)

− 1

N

1

Π∞(0, r)

∫
dd+1q1

(2π)d+1

dd+1q2

(2π)d+1

1

Π∞(q1, r)

1

(q22 + r)2((q1 + q2)2 + r)
, (B2)

where we have the inverse λ propagators in an infinite volume:

Π∞(q, r) =

∫
dd+1q

(2π)d+1

1

(q2 + r)((p+ q)2 + r)
. (B3)

The critical point is given by G−1
∞ (0) = 0, so to order 1/N ,

r = − 1

N

∫
dd+1q

(2π)d+1

1

Π∞(q, 0)

1

(p+ q)2
+

1

N

1

Π∞(0, 0)

∫
dd+1q1

(2π)d+1

dd+1q2

(2π)d+1

1

Π∞(q1, 0)

1

q42(q1 + q2)2

=
1

N

1

Π∞(0, 0)

∫
dd+1q1

(2π)d+1

1

Π∞(q1, 0)

∫
dd+1q2

(2π)d+1

1

q42

(
1

(q1 + q2)2
− 1

q21

)

. (B4)
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Note that Π∞(0, 0) is really infrared divergent, but it can be regulated, and it cancels out of

physical values [28]. In this case, using dimensional regularization, we notice that
∫

dd+1q2

(2π)d+1

1

q42

(
1

(q1 + q2)2
− 1

q21

)

=
(q21)

(d+1)/2−3

(4π)(d+1)/2

Γ(d−3
2
)Γ(d−1

2
)

Γ(d− 2)

d=2
==⇒ 0. (B5)

So r is of order 1/N2 at the critical point in two spatial dimensions, and from Eq. (B1), the critical

coupling is of order 1/N2 in dimensional regularization. Therefore, there is no 1/N correction to

the finite volume gap equation (15).

We can now calculate the self-energy corrections to the zα in a finite volume. These are given

by a similar calculation to the one above, but now with loop sums,

G−1(k, iω) = ω2 + k2 +∆2 +
1

NA
∑

q

∫
dΩ

2π

D(q, iΩ)

((ω + Ω)2 + (k + q)2 +∆2)

−D(0, 0)

NA2

∫
dΩ1dΩ2

4π2

∑

q1,q2

D(q1, iΩ1)

(Ω2
2 + q22 +∆2)2((Ω1 + Ω2)2 + (q1 + q2)2 +∆2)

. (B6)

The spectrum is then obtained by solving G−1(k, E(k)) = 0.

There are also 1/N corrections to the singlet states. To compute these, we need the nonlinear

terms in the effective action for λ, (24). To order 1/N these are

S1 = − i

6
√
N

1

A3

∑

k1,k2,k3

∫ 3∏

i=1

(
dωi

2π

)

K3(p1, p2, p3)λ(p1)λ(p2), λ(p3)δ(p1 + p2 + p3)

− 1

24N

1

A4

∑

k1,k2,k3,k4

∫ 4∏

i=1

(
dωi

2π

)

K4(p1, p2, p3, p4)λ(p1)λ(p2)λ(p3)λ(p4)δ(p1 + p2 + p3 + p4)(B7)

using condensed notation where pi represents ki and ωi. The functions in the action are given by

K3 = 2
∑

q

∫

dΩ
1

(Ω2 + |q|2 +∆2)((Ω + ω1)2 + |q + k1|2 +∆2)((Ω− ω2)2 + |q − k2|2 +∆2)
,

K4 = 6
∑

q

∫

dΩ
1

(Ω2 + |q|2 +∆2)((Ω + ω1)2 + |q + k1|2 +∆2)

× 1

((Ω + ω1 + ω2)2 + |q + k1 + k2|2 +∆2)((Ω− ω4)2 + |q − k4|2 +∆2)
(B8)

The propagator for λ can then be computed from these interactions terms. One finds that the

order 1/N correction to the inverse propagator is given by

D−1(k, iω) = Π(k, iω) +
1

2NA
∑

q

∫
dΩ

2π
[K3(k, q, |k + q|)]2D0(|k + q|, iω + iΩ)D0(q, iΩ)

+
1

2NA
K3(k,−k, 0)

Π(0, 0)

∑

q

∫
dΩ

2π
K3(q,−q, 0)D0(q, iΩ)

+
1

6NA
∑

q

∫
dΩ

2π
[K4(k, q,−k,−q) + 2K4(k,−k, q,−q)]D0(q, iΩ), (B9)
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and the spectrum of the singlet states is found by solving D−1(k, E(k)) = 0.
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