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A central feature of the Periodic Anderson Model is the competition between antiferromagnetism,
mediated by the Ruderman-Kittel-Kasuya-Yosida interaction at small conduction electron-local
electron hybridization V , and singlet formation at large V . At zero temperature, and in dimension
d > 1, these two phases are separated by a quantum critical point Vc. We use Quantum Monte Carlo
(QMC) simulations to explore the effect of impurities which have a local hybridization V∗ < Vc in the
AF regime which are embedded in a bulk singlet phase with V > Vc. We measure the suppression
of singlet correlations and the antiferromagnetic correlations which form around the impurity, as
well as the size of the resulting domain. Exact diagonalization calculations for linear chains allow
us to verify that the qualitative features obtained at intermediate coupling and finite T persist to
strong coupling and T = 0, regimes which are difficult to access with QMC. Our calculations agree
qualitatively with NMR measurements in CeCoIn5−xCdx.

PACS numbers: 71.10.Fd, 71.30.+h, 02.70.Uu

I. 1. INTRODUCTION

The interplay of disorder and interactions results
in intriguing metal-insulator, superconductor-
insulator, and magnetic order-disorder transitions.1–7 A
particularly rich set of questions arises when randomness
is introduced to a system which is already close to a
critical point, for example through tuning the electron
density or interaction strength. Here the effects of
impurities might be expected to be especially large,
since the system is already poised on the brink of two
distinct phases.

One example of this situation is provided by the
replacement of Cu by nonmagnetic atoms in cuprate
superconductors where neutron scattering studies of Zn-
doped La2−xSrxCuO4 reveal the emergence of magnetic
scattering peaks and the emergence of a novel static
spin state within the spin gap.8 Insight into this
phenomenon was provided by Hartree-Fock calculations
on the single band Hubbard Hamiltonian which examined
the effect of local chemical potential shifts on the striped
phase of coexisting d-wave superconductivity and AF
order.9 Local AF order was found to nucleate about
the impurities above a critical threshold for the on-site
interaction U . This local phase transition occurs at
a different Uc for each impurity. Further theoretical
work investigating the nature of local defects in quantum
critical metallic systems indicates that large droplets are
formed with a suppression of quantum tunneling.10 A
remarkable feature of both theory and experiment is
the large extent of AF order induced by small impurity
concentration. The cuprate problem is made even more
complex by the large degree of inhomogeneity, eg in the
superconducting gap, charge and magnetic stripes, etc,
that are present even without Zn doping.11,12

Recent experiments on the replacement of In by Cd

in CeCoIn5 examine closely related phenomena in heavy
fermions materials.13 In this case, the parent compound
CeCoIn5 is already a quantum critical superconductor
without the necessity of resorting to pressure or chemical
doping, as is the case for La2−xSrxCuO4. In doped
CeCoIn5, it was found that AF islands develop about
the Cd impurities, and ultimately coalesce into a
magnetically ordered, but very heterogeneous, phase.14

The inhomogeneous response of the electronic system
clearly demonstrates that doping does not necessitate
a quantum critical response, as observed in other
heavy fermion systems.15,16 Related issues concerning
anomalous non-Fermi liquid phases which intervene the
Kondo singlet to AF transition in doped f electron alloys
have also been explored.17–19

In analogy with numerical work on the single
band Hubbard Hamiltonian appropriate to modeling
the cuprates, it is natural to consider a two band
Periodic Anderson Model (PAM)20 to understand these
heavy fermion experiments.9 One of the basic features
of the PAM (when there is one electron per site)
is the competition between an AF phase when the
hybridization V of the conduction and localized electrons
is small, and a singlet phase when V is large. Since there
is no direct coupling between the local moments, their
ordering arises through the Ruderman-Kittel-Kasuya-
Yosida (RKKY) mechanism21–23 in which polarization
of the spin of the conduction electrons mediates an
indirect interaction. In the absence of randomness,
Quantum Monte Carlo (QMC) has quantified this AF-
singlet transition, both in the itinerant electron PAM,24,
and also in quantum spin Hamiltonians which are the
strong coupling limits of the PAM, like the bilayer
Heisenberg model where the interlayer exchange J⊥ is
varied.25,26 The position of the quantum critical point
(QCP) in the uniform system is also known in the case
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when one of the layers has no intra-layer exchange, a
geometry which is similar to that of the PAM where the
f electrons are localized and have tff = 0.27

Numerical work on randomness in the AF-singlet
transition has thus far focussed mainly on the strong
coupling, Heisenberg spin limit. For example, Sandvik
has studied how the removal of pairs of sites in
a Heisenberg bilayer affects the AF-singlet quantum
critical point (QCP) in the uniform system.28 In addition
to the effect of impurities on the AF-singlet transition
in spin models, much is known concerning the simpler
problem of the effect of a single impurity in an AF, both
from numerical and field theoretical work29. A focus
of much of this past work has been on the behavior of
the uniform susceptibility at the impurity site, where a
leading order χimp ∼ 1/T Curie divergence is predicted,
as well as a subleading logarithmic divergence. A
careful QMC study of different types of impurities
yields considerable insight into the origins of the various
contributions to χimp

30.
The distortion of the AF ‘spin texture’ in the

neighborhood of a ’dangling impurity’ has also been
explored31. Such a situation arises, for example,
when a spin in one layer of a Heisenberg bilayer is
removed, leaving an uncompensated spin-1/2. In this
case, certain universal physics is predicted to occur,
including power law decays of the spin correlations.
Accurate determinations of the associated exponents are
available31,32.

In this paper, we use Exact Diagonalization (ED)
and the Determinant Quantum Monte Carlo (DQMC)
methods to examine the physics of a single impurity in
the PAM. Specifically, we compute the suppression of the
singlet correlations about an impurity whose hybrization
is in the AF regime, and which is embedded in a bulk
singlet phase. By computing the AF correlations we can
also infer the size of the AF region about the impurity.
We examine the implications of these calculations on
experiments on disordered heavy fermion materials.

II. 2. MODEL AND METHODS

The uniform PAM describes a non-interacting
conduction (d) band hybridized with localized (f)
electrons,

H =− t
∑
〈ij〉,σ

(d†iσdjσ + d†jσdiσ)− V
∑
iσ

(d†iσfiσ + f†iσdiσ)

+ Uf

∑
i

(nf
i↑ −

1

2
)(nf

i↓ −
1

2
) (1)

Here t is the hybridization between conduction orbitals

with creation(destruction) operators d†iσ(diσ) on near
neighbor sites 〈ij〉. Uf is the on-site interaction between
spin up and spin down electrons in a collection of
localized orbitals with creation(destruction) operators

f†iσ(fiσ) and number operators nf
iσ. V is the conduction-

localized orbital hybridization. We have written the
interaction term in H in ‘particle-hole’ symmetric form,
so that the lattice is half-filled for all temperatures
T and Hamiltonian parameters t, Uf , V . Half-filling
optimizes the tendency for AF correlations, and also
allows DQMC simulations at low temperature, since the
sign problem is absent.33 Our investigations here will be
on a modification of Eq. 1 in which we introduce an
“impurity” by changing the fd hybridization V to V∗ on
a single site j0 of the lattice.

The magnetic physics of the PAM can be characterized
by the spin-spin correlations, between two local (f)
orbitals and between a local and a conduction (d) orbital:

c̃ff(j + r, j) = 〈 (nf
j+r↑ − nf

j+r↓)(n
f
j↑ − nf

j↓) 〉

c̃fd(j + r, j) = 〈 (nf
j+r↑ − nf

j+r↓)(n
d
j↑ − nd

j↓) 〉 (2)

These are translationally invariant, that is, functions
only of separation r, for the uniform model and periodic
boundary conditions. c̃ff(j+ r, j) characterizes the range
of the intersite magnetic correlations between the local
moments (mediated by the conduction electrons). One
often focuses primarily on the local, r = 0 value c̃fd(j, j)
since it measures the on-site singlet correlations between
the local and conduction electrons.

However, when an impurity is present at site j0,
translation invariance is broken. Since we are primarily
interested in the alteration of magnetic order in the
vicinity of the impurity, we will focus on the quantities

cff(r) = c̃ff(j0 + r, j0)

cfd(r) = c̃fd(j0 + r, j0 + r) (3)

Note that the meaning of r is somewhat different for
these two quantities. In the case of cff(r), the distance
r represents how far a second f moment is from the f
moment on the impurity site j0 and thus has the ‘usual’
meaning as a separation of two spin variables. cff(r)
measures the range of AF correlations as one moves away
from the impurity. In the case of cfd(r), both spins are
at a common distance r from the impurity- they sit on
the same site- and r represents the distance of this pair
of spins from the impurity. This is a useful definition,
as we shall see, because it measures the ‘hole’ which is
created in a background of well-formed singlets which is
created by a reduction of V at site j0.

One way to quantify the effect of the impurity is
through the changes in cff and cfd due to its introduction.
We define the impurity susceptibilities,

χimp
ff (r) =

dcff(r)

dV

∣∣∣
V∗=V

(4)

to examine how the ff spin correlations between sites j0
and j0 +r change due to a shift in impurity hybridization
V∗.

The PAM can be solved exactly on small lattices
using the Lanczos algorithm. Early work was on two
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FIG. 1. (Color online) Exact diagonalization results for
the f orbital impurity susceptibility on near neighbor sites.
χimp

ff (r = 1) probes the response of AF correlations to a

local shift in V → V∗ = V − dV . χimp
ff (r = 1) is peaked at

intermediate values of fd hybridization: At large V , deep in
the singlet phase, χimp

ff (r = 1), is small. Similarly, χimp
ff (r = 1)

also declines as V → 0, deep in the AF regime. A maximum
occurs at intermediate V . Results are given for onsite f
electron repulsion Uf = 4, 8, 12.

and four site clusters in one dimension and found that
small half-filled lattices are in a singlet phase for all Uf

with, however, a near instability to AF.34 This work
was extended to larger lattices, in one dimension, by
DQMC.35 Here we will use ED to examine a single
impurity in a one dimensional PAM to gain initial insight
into the effects on the AF and singlet correlations. The
impurity will be characterized by a reduced value of the
f -d hybridization V∗. A focus will be on examining how
the bulk f -d hybridization affects the changes induced
by the impurity. We will study geometries in which the
impurity is placed at the end of the one-d chain. In both
cases open boundary conditions are used.

ED, while providing useful initial insight, can examine
only small numbers of sites; hence the focus on the
1D PAM. In fact, if one stays in 1D, the Density
Matrix Renormalization Group method is preferable,
and has been used to study physics in the PAM36,37.
Here we obtain results on larger lattices with the
Determinant Quantum Monte Carlo method,38 which we
will use to study the PAM on a square lattice (i.e. in
two dimensions). The DQMC approach introduces a
space and imaginary time dependent classical field to
decouple the interaction Uf , allowing the fermion degrees
of freedom to be integrated out analytically. The
Boltzmann weight of the resulting classical Monte Carlo
involves determinants of matrices (one for spin up and
one for spin down) of dimension the number of sites in
the lattice N . The computational cost scales as N3,
allowing for simulations on lattices at least an order
of magnitude larger than for ED, where the cost scales
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FIG. 2. (Color online) ff spin correlation function cff(r) for
an impurity with V∗ = 0.5 and different bulk V . As V
approaches the singlet-AF crossover, spin correlations at long
range develop. The f-orbital on-site repulsion Uf = 8.

exponentially with N . A limitation of DQMC is the ‘sign
problem’ which occurs when the fermion determinants
become negative.33 The sign problem does not occur in
the Hamiltonian studied here, owing to its particle-hole
symmetry (even in the presence of impurities), which
guarantees that the spin up and spin down determinants
have the same sign, so their product is always positive.

In this project, we have used “QUEST,” a version of
DQMC which allows the easy implementation of general
geometries such as the impurity problem considered
here. QUEST also contains a number of modifications to
our “legacy” codes which improve speed and numerical
stability. Some of its features are described in39–43.

III. 3. EXACT DIAGONALIZATION: 1D CHAIN

We begin our analysis of the effects of impurities in the
PAM with exact diagonalization (Lanzcos). While these
are on small lattices, they have the advantage of easily
accessing the ground state and large Uf , both of which
are more challenging in DQMC. Because of the smallness
of our cluster, N = 6 sites, we use open boundary
conditions. The impurity is placed at one end of the
chain.

We begin by considering the effect of a reduced
hybridization V∗ on the spin correlation between near-
neighbor f orbitals. Figure 1 shows the impurity
susceptibility on the localized orbitals, defined in Eq. 4.
χimp

ff (r = 1) is peaked at intermediate values of the bulk
V , i.e. between the AF and singlet phases. Although
there is no AF-singlet transition in d = 1,34 the
maximum in χimp

ff (r = 1) is at crossover values roughly
corresponding to the d = 2 transition and also shifts to
larger V as Uff grows, as previously observed in DQMC
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FIG. 3. (Color online) Spin correlations in a system with
bulk V = 1.2 for different impurity V∗. While there is
some increase in the near-neighbor ff spin correlation function
cff(r = 1), values at larger separation are quite insensitive to
V∗. Here the f-orbital on-site repulsion Uf = 8.
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FIG. 4. (Color online) The effect of Uf on spin correlations for
fixed impurity and bulk hybridizations V∗ = 0.5 and V = 1.0.
The moment is nearly saturated even for Uf = 4, so that the
main effect of increasing the on-site repulsion is a significant
enhancement of the correlations at larger distances.

calculations.24

The AF correlations around an impurity site are shown
in Figs. 2 and 3. Figure 2 contains the ff spin correlation
function cff(r) at fixed impurity hybridization V∗ = 0.5
and varying bulk hybridization V . There is an almost
perfectly formed local moment cff(r = 0) ≈ 1 and strong
near-neighbor spin correlations cff(r = 1), which grow
as V is reduced towards the location of the AF-singlet
crossover. For V = 2, the AF correlations are short-
ranged, i.e. cff(r > 1) ≈ 0. But an AF “droplet” develops
around the impurity as V is decreased, so that by the
time V = 1.0 there is a clearly discernable correlation

even at r = 6, the maximal separation accessible on our
cluster. Finally, Fig. 4 explores the effect of varying Uf
for fixed impurity V∗ = 0.5 and bulk V = 1.0. Larger
on-site repulsion significantly increases cff(r) at farther
separations.

Figure 3 complements Fig. 2 by providing data for
fixed V and varying V∗. While the near neighbor
correlation cff(r = 1) shows some sensitivity to V∗, the
longer range correlations cff(r > 1) are unchanged as
V∗ varies. The conclusion is that the AF droplet is
quite sensitive to the bulk hybridization, and develops to
quite large correlation length ξ near the AF-singlet cross-
over, but that the amount of reduction of the impurity
hybridization V∗ from the bulk value has little effect on
ξ.

IV. 4. RESULTS- QUANTUM MONTE CARLO

We now turn to results obtained with DQMC on
N =8x8 lattices, much larger than the N = 6 cluster
studied in exact diagonalization (ED). We used open
boundary conditions on the small ED lattice, with the
impurity at one end of the chain, to enable the study
of effects of the impurity at distances r reasonably far
away. The 8x8 lattice accessible in DQMC is large
enough to allow data up to r = 4

√
2, even with the use of

periodic boundary conditions (pbc). This of course has
the advantage of eliminating edge effects, so that the only
breaking of translation invariance is due to the impurity.
In the remainder of this section we first focus on the effect
of the impurity on the spin-spin correlation function, and
then use this data to infer trends in the correlation length
associated with the defect.

It is worth emphasizing that getting to large enough β
(low T ) poses some challenges for the DQMC simulation:
The raw simulation time naively grows as β, but more
realistically as βp where p ≈ 2 since there is an increase
in statistical noise (requiring longer runs to get the same
error bar) and also an accumulation of round off errors
which necessitates more frequent re-orthogonalization of
the matrix products.

A. a. Spatial Variation of Singlet Correlations in
the Vicinity of the Impurity

One way to characterize the effect of a magnetic
impurity is to consider the size and range of the ‘hole’
it digs in the bulk singlet corrrelations. In Fig. 5
the effect of changing the strength of the impurity
V∗ = 0.1, 0.3, 0.5 on the local singlet correlator cfd(r) at
distance r from the defect is examined. Here we choose
V = 1.0 which is near the bulk AF-singlet boundary.24

There is a systematic reduction in the singlet cfd(r = 0)
directly on the defect as its coupling V∗ moves deeper into
the AF regime. The range of the reduction of singlets on
r 6= 0 sites in its vicinity is basically independent of V∗.
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FIG. 5. (Color online) The fd singlet correlator cfd(r) as a
function of distance r from the impurity is shown for bulk
hybridization V = 1 and different impurity hybridizations
V∗. Moving the impurity deeper into the AF phase steadily
reduces the singlet directly on the defect site (r = 0).
However, the spatial extent of this ‘hole’ does not increase
as V∗ decreases. Here the bulk hybridization V = 1.0. The
temperature T = t/30. The f-orbital on-site repulsion Uf = 4.

Indeed, cfd(r) does not differ appreciably from the bulk
V∗ = V values beyond on-site (r = 0) and near-neighbor
(r = 1) separations.

Figure 6 complements Fig. 5 by presenting the local-
conduction spin correlations, cfd(r), for fixed impurity
V∗ = 0.7 and different bulk V . There is a uniform upward
shift for all r in the curves with larger V , reflecting the
greater tendency for singlet formation throughout the
lattice. The suppression of the singlet correlations at the
position of the defect r = 0 confirm the non-monotonic
trend of Fig. 1.

This is more cleanly presented in Fig. 7. We calculate
the reduction of fd correlations in the vicinity of the
defect,

∆cfd = cfd(r →∞)− cfd(r = 0) (5)

Fig. 7 shows the bulk hybridization dependence of
∆cfd(V ). The largest reduction occurs at intermediate
V , ie in the vicinity of the AF-singlet quantum phase
transition, in accordance with the ED results shown in
Fig. 1. We also calculate ∆cfd(V ) at higher f-orbital on-
site repulsion Uf = 6. The occurrence of an ‘optimal V∗’
is even more evident, and, to the extent that the position
of this maximum acts as a proxy for the location Vc of the
AF-singlet transition in the uniform periodic Anderson
model, indicates that Vc is an increasing function of Uf .
This is consistent with the phase diagram of24

Because V∗ is fixed in Figs. 6,7, as V increases the
‘defect strength’ V − V∗ is also increasing. It is also
interesting to ask what happens as a function of bulk V
if V −V∗ is held fixed, Fig. 8. Here one sees a monotonic
behavior of ∆cfd(V ).
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FIG. 6. (Color online) Spin correlations between local and
conduction electrons, cfd(r), are shown for different bulk V
and fixed impurity V∗ = 0.7. All curves exhibit a similar
short-range reduction of singlet correlations near the impurity.
However this reduction is largest for intermediate V . (See
also Fig. 6.) The temperature T = t/30. The f-orbital on-site
repulsion Uf = 4.
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FIG. 7. (Color online) The reduction of the local-conduction
spin correlator, cfd(r = 0), from the asymptotic value
cfd(r → ∞) shown for different bulk hybridization V . The
temperature T = t/30. Results are shown for on-site f
electron repulsion Uf = 4, 6. Here, for Uf = 4, the ’hole’ gets
deeper as V is reduced from V = 2.0 and becomes deepest for
V = 1.1, after which it is again reduced. This tendency fits
well with the picture that the effect of an impurity is largest
near the AF-singlet QCP, eg as we show in Fig. 1.

B. b. Spatial Variation of AF Correlations in the
Vicinity of the Impurity

After characterizing the effect of the AF impurity in
terms of its effect on the on-site singlet correlation, we
turn now to a deterimination of the size and strength of
the AF ‘droplet’ it induces.

We begin, in Fig. 9, by showing the spin-spin correlator
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FIG. 8. (Color online) On-site singlet correlator cfd(r) as
a function of distance r from the defect. Here the bulk
hybridization V is varied at fixed V −V∗ = 0.4. The maximum
in the reduction ∆cfd(V ) at intermediate V is absent. The
temperature T = t/30 and the f -orbital on-site repulsion
Uf = 4.

cff(r) between the f moment on the defect site (V∗ = 0.7)
and an f moment at separation r. (See Eq. 3.) When
the bulk V = 0.8, 0.9, 1.0, 1.1 is also in the AF regime,
these spin correlations are long ranged: Long range AF
correlations can only survive when the bulk V is in the
AF phase. Otherwise the impurity can only create a
local AF cloud. Figure 10 focuses on these effects in the
vicinity of the AF-singlet transition. The bulk V = 1.2
is fixed and different impurity V∗ are considered. The
AF correlations are largely independent of V∗. However,
in Fig. 9, as one crosses over into the bulk singlet,
V = 1.2, 1.6, 2.0 the range of the AF droplet is finite.
The suppression of cff(r) at low V is a finite temperature
effect: The strength of the RKKY coupling goes as V 2,
so as V decreases one needs to go to lower temperatures
to access the ground state. Our results here are at fixed
β = 30. If we were to lower T further (increase β) at
V = 0.5 the AF correlations would substantially increase.

C. c. AF Cloud Size and Correlation Length

As discussed in the introduction, a key experimental
quantity of interest is the size of the AF island, e.g. that
created by a Cd impurity in CeCoIn5. The preceding
figures, which show cff(r), provide a qualitative picture,
which here we will quantify somewhat more precisely.
To begin, it is useful to focus more closely on the short
range spin correlations. Figure 11 shows the dependence
on V of cff(r), for first r = (1, 0), second r = (1, 1) and
third r = (2, 0) neighbors. cff(r = 1, 0) is substantial
through the AF-singlet transition region, showing no
signature at Vc. This ‘blindness’ to transitions is of course
characteristic of short range correlations. E.g. in the
Ising model the first neighbor spin correlation is just the
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FIG. 9. (Color online) Spin correlation function cff(r)
between two local (f) orbitals. A defect with impurity
hybridization V∗ = 0.7 is present in different background
materials with varying V . There are long range correlations
for V in the AF regime, but the impurity can only induce AF
order locally if V is large. The temperature T = t/30 and the
f-orbital on-site repulsion Uf = 4.
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FIG. 10. (Color online) ff electron spin correlation function
cff(r) for bulk hybridization V = 1.2 and different impurity
hybridizations V∗. As V∗ decreases the short-range AF order
with near neighbor (1, 0) becomes deeper. The temperature
T = t/30. The f-orbital on-site repulsion Uf = 4.

energy, which is smooth through Tc. cff(r = 1, 1) and
cff(r = 0, 2) fall more rapidly through Vc. Ultimately, of
course, at large distances cff(|~r| → ∞) is proportional to
the square of the AF order parameter and would vanish
for V > Vc. At r = (1, 1), data for several values
V∗ = 0.7, 0.8, 0.9 are given. cff(r = 1, 1) is not very
sensitive to the precise value of V∗, especially for V large,
where all three curves coincide. (See Fig. 11.)

The plots of cff(r) already give a qualitative indication
of the value of the correlation length ξ. We can make this
somewhat more quantitative by fitting the magnitude of
cff(r) either to a mean field or Ornstein-Zernike form
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FIG. 11. (Color online) Spin correlations between local
electrons, cff(r), for near neighbors (1, 0), (1, 1) and (2, 0).
cff(r) grows as V approaches the AF-singlet crossover. The
temperature T = t/30. The f-orbital on-site repulsion Uf = 4.

to obtain the AF correlation length ξ. This is not
expected to be too precise since these functional forms
describe the asymptotic behavior at large distances which
are not sampled on our finite lattices. Nevertheless,
Fig. 12 shows the results of our DQMC simulations for
the dependence of ξ on bulk hybrdization V for fixed
impurity V∗ = 0.5, 0.7 and two values of Uf . The
conclusion is that the size of the AF cloud is fairly
small, ξ . 2, unless the bulk V is close to, or below,
the AF-singlet QCP. It takes a value ξ ∼ 3 right at
V = Vc ∼ 1.124. Well into the AF phase, ξ is of the order
of the linear size of the lattice, indicating that there is
long range order throughout the 8x8 cluster studied here.
In this case, ξ is expected to scale with the linear size,
whereas if ξ is only a few lattice spacings it has likely
converged on 8x8 clusters. Finite size scaling can be used
to establish order in the thermodynamic limit24,44. The
change in slope from the flat region ξ ≈ 2 to a rising ξ
occurs as one approaches the bulk critical point Vc ≈ 1.1.
Indeed, although it is not so easy to tell from the scatter
in the data, there is some indication of an inflection point
(maximal slope of growth of ξ) at the QCP. It has been
noted in quantum spin models30,32, that the effect of
impurities is localized in the spin gap (singlet) phase, but
that at the QCP critical spin correlations instead exhibit
power law decays in space and imaginary time.

D. d. Pairing Correlations

The previous sections have focussed on the effects
of spatial inhomogeneities on magnetic correlations,
a problem which has also been explored at surfaces
where the reduced coordination number can decrease
the bandwidth and hence, somewhat counter-intuitively,
enhance magnetism despite the lower number of

1 1.2 1.4 1.6 1.8 2
V

0

2

4

6

8

 ξ
(V

)

V
*
 = 0.7 (OZ) U

f
 = 4

V
*
 = 0.7 (MFT) U

f
 = 4

V
*
 = 0.5 (OZ) U

f
 = 4

V
*
 = 0.5 (MFT) U

f
 = 4

V
*
 = 0.7 (OZ) U

f
 = 6

V
*
 = 0.7 (MFT) U

f
 = 6

T=t/30

FIG. 12. (Color online) Correlation length versus V given
for fixed impurity V∗ = 0.5, 0.7. Results are shown for two
values of the on-site f electron repulsion Uf = 4, 6. OZ (MFT)
refer to fits to an Ornstein-Zernike (mean field theory) form.
Although the values of ξ are sensitive to this choice, the main
qualitative feature of the curves is not. It shows an evolution
from a flat ξ ≈ 2 at large V to a rising ξ ≈ 4− 6 (at Uf = 4),
indicating larger AF regions. The temperature T = t/30.

neighbors45,46.
Recent work on superconductivity in the PAM has

explored the effect of frustration in the doped system47,
as well as the evolution of the symmetry of the order
parameter with interaction strength in its strong coupling
limit, the Kondo Lattice Model48. Here we describe
the effect of the impurity on d-wave pairing correlations
about the impurity site j0,

Pr = 〈∆j0+r∆
†
j0
〉

∆†j0 = ( c†j0+x,↓ − c
†
j0+y,↓ + c†j0−x,↓ − c

†
j0−y,↓ ) c†j0,↑ (6)

Figure 13 shows the evolution of P(1,0) with V∗ for
different bulk hybridizations. P(1,0) steadily increases as
the impurity site hybridization is reduced, that is, as
the degree of inhomogeneity grows. The enhancement
of pairing correlations around impurities appears to be
a not uncommon feature of tight-binding models in
which magnetic correlations are a primary instability.
The effect appears prominently, for example in striped49

and plaquette50 Hubbard Hamiltonians, with a key
issue being an intermegiate degree of anisotropy which
optimizes superconducting correlations51.

V. 5. CONCLUSIONS

Much of our understanding, through QMC, of the
effects of randomness in quantum antiferromagnets,
and their implications for materials like disordered
heavy fermion compounds has been developed with spin
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FIG. 13. (Color online) Near-neighbor d-wave pair
correlations as a function of impurity hybridization V∗ for
different bulk hybridizations for β t = 30 and Uf = 4.

models like the transverse field Ising or Heisenberg
bilayer Hamiltonians.18,19,25,26,28,52,53 In this paper, we
have examined the physics of a single impurity on
the competition between antiferromagnetic and singlet
correlations in the Periodic Anderson Model, i.e. in the
more computationally challenging case of an itinerant
electron model. An impurity with a d-f hybridization
in the AF regime suppresses singlet correlations in its
vicinity, and at the same time induces an AF domain.
As the f -d hybridization of the bulk approaches the AF
transition from the singlet side, the impurity becomes
increasingly effective at inducing AF correlations.

Our work parallels earlier Hartree-Fock studies of
disorder in cuprate superconductors, modeled with the
single band Hubbard Hamiltonian.9 There, the level of
doping x and the on-site Hubbard interaction U are
used to tune the system in the neighborhood of magnetic
and superconducting phase transitions, and the effect of
impurities is then explored. Analogously, we have here

examined an impurity in a multi-band periodic Anderson
model which has a singlet-AF quantum phase transition.

These results provide an important confirmation for
the experimental observation of AF droplets in quantum
critical CeCoIn5. In this material, the AF droplets
were observed to disappear under pressure. Increasing
pressure corresponds to increasing V as the d and f
orbital overlap increases. As our simulations indicate,
the size and extent of the AF droplets decrease with
increasing V as the system is tuned away from the
QCP. These studies also suggest that heavy fermion
systems that can be tuned to a QCP under pressure,
such as CeRhIn5, may also exhibit similar behavior.54,55

An important question is whether ‘chemical pressure’ in
which dopants are added to either expand or contract the
lattice actually affects the electronic degrees of freedom
by modifying the local hybridization. In the case of Cd-
doped CeCoIn5, the Cd has no 5p electrons to hybridize
with the neighboring Ce, thus our introduction of V∗ < V
is a reasonable approach. Sn-doping, on the other hand,
with one extra 5p electron, does not exhibit AF order.56

The ED method for the PAM is limited to systems of
around ten sites. DQMC calculations can be performed
on several hundred sites. Even so, in 2D, the lattices
accessible to DQMC are only 10-20 sites in linear extent.
Thus it is difficult to perform definitive studies of
multiple inpurities and their surrounding domains. This
is a crucial question, because the overlapping of AF
domains about individual impurities, and the lack of
frustration in such overlap, is believed to lead to AF long
range order.57 Quantum spin models like the Heisenberg
bilayer can, however, be explored on much larger lattices.
Future work will focus on examining randomness and the
AF-singlet transition for such quantum spin models.

VI. ACKNOWLEDGEMENTS

We thank S. Roses, T. Park and J.D. Thompson for
enlightening discussions. Work supported by NNSA DE-
NA0002908, and by the Fulbright Foundation.

∗ ali.benali@fst.rnu.tn
† bai@cs.ucdavis.edu
‡ curro@physics.ucdavis.edu
§ scalettar@physics.ucdavis.edu
1 P. A. Lee and T. V. Ramakrishnan. Disordered electronic

systems. Rev. Mod. Phys., 57:287, 1985.
2 D. Belitz and T. R. Kirkpatrick. The anderson-mott

transition. Rev. Mod. Phys., 66:261, 1994.
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30 K. H. Höglund and A. W. Sandvik. Impurity effects at

finite temperature in the two-dimensional s=12 heisenberg
antiferromagnet. Phys. Rev. B, 70:024406, 2004.
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