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We provide a potential solution to the longstanding problem relating Fermi surface reconstruction
to the number of holes contained within the Fermi surface volume in underdoped high Tc supercon-
ductors. On considering uniaxial and biaxial charge-density wave order, we show that there exists
a relationship between the ordering wave vector, the hole doping and the cross-sectional area of the
reconstructed Fermi surface whose precise form depends on the volume of the starting Fermi surface.
We consider a ‘large’ starting Fermi surface comprising 1 + p hole carriers, as predicted by band
structure calculations, and a ‘small’ starting Fermi surface comprising p hole carriers, as proposed
in models in which the Coulomb repulsion remains the dominant energy. Using the reconstructed
Fermi surface cross-sectional area obtained in quantum oscillation experiments in YBa2Cu3O6+x

and HgBa2CuO4+x and the established methods for estimating the chemical hole doping, we find
the ordering vectors obtained from x-ray scattering measurements to show a close correspondence
with those expected for the small starting Fermi surface. We therefore show the quantum oscilla-
tion frequency and charge-density wave vectors provide accurate estimates for the number of holes
contributing to the Fermi surface volume in the pseudogap regime.

PACS numbers: 71.45.Lr, 74.72.-h, 74.72.Gh, 74.72.Kf

I. INTRODUCTION

The pseudogap is central to our understanding of high
temperature superconductivity in the cuprates,1–3 yet
the number of hole carriers contained within the Fermi
surface volume has remained challenging to ascertain ex-
perimentally. At issue is the degree to which Coulomb in-
teractions cause the pseudogap to depart from a conven-
tional metallic state. In the case of a conventional metal,
a ‘large’ Fermi surface volume consistent with band struc-
ture calculations is expected to result when Coulomb in-
teractions between carriers are screened. In the cuprates,
this large Fermi surface comprises nh = 1 + p hole car-
riers (see Fig. 1a),4 where, by convention, p is the hole
doping defined relative to the half filled band. In the
case of a more unconventional metal, by contrast, the on-
site Coulomb repulsion is largely unscreened causing it to
dominate over low energy excitations. In this case, an-
tiferromagnetic correlations are expected to remove one
hole per CuO2 plane per unit cell, leading to a ‘small’
Fermi surface comprising nh = p hole carriers.5–8 One of
the possible outcomes is a small Fermi surface consist-
ing of four hole pockets located at the antiferromagnetic
Brillouin zone boundary (see Fig. 1b).

The large and small Fermi surface volumes have both
been reported in the experiments, but at opposite ends
of the doping phase diagram and outside of the pseudo-
gap regime (see Fig. 1c). Deep in the overdoped regime
at hole dopings p & 0.20, Hall effect,9 magnetic quan-
tum oscillation10 and angle-dependent magnetoresistance
oscillation52 measurements are all found to be consistent
with the large Fermi surface. Deep in the underdoped
regime at very low hole dopings, p . 0.08, meanwhile,
Hall effect measurements12 are found to be consistent
with the small Fermi surface. The presence of some form

of spin order at these same very low dopings with a wave
vector close to Q = (π, π)54,55 suggests that the small
Fermi surface there is the product of antiferromagnetism.

The pseudogap regime, for which the total volume of
the Fermi surface has remained undetermined,13 spans a
broad intermediate range of hole dopings 0.08 . p . 0.20
(see Fig. 1c). The low temperature Hall effect has been
found to be negative over much of this range in the high-
est quality samples,14,15 indicating it no longer to provide
a direct measure of the number of holes contributing to
the Fermi surface. X-ray scattering and nuclear magnetic
resonance experiments have further revealed the presence
of charge-density waves over most of this range rather
than antiferromagnetism,16–23 with a possible broken ro-
tational symmetry.

A biaxial charge-density wave order with two con-
current orthogonal wave vectors, Qa = (δa, 0)

2π
a

and

Qb = (0, δb)
2π
b
, has been shown account for a large body

of experimental data relating to the reconstructed Fermi
surface within the pseudogap regime.24–32 This data in-
cludes the small Fermi surface cross-sectional area found
in quantum oscillation experiments,33–36 the negative
value of the Hall coefficient at high magnetic fields14,15

and the small value of the electronic heat capacity at high
magnetic fields.37,38 It has continued to remain unclear,
however, as to whether it is a large starting Fermi sur-
face (like that in Fig. 1a) or a small starting Fermi surface
(similar to that in Fig. 1b) that becomes reconstructed
by the charge-density wave.16–18,24–32,39,40

Here we show that the observed reconstructed Fermi
surface consisting mostly of a single electron pocket
per CuO2 plane30,41,42 and the measured values of the
charge-density wave vectors17–21 together point conclu-
sively to a small starting Fermi surface (see Fig. 1c). We
show using geometry that there exists a simple expression
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FIG. 1: (a), A schematic of the unreconstructed large cuprate
hole Fermi surface4 (neglecting bilayer coupling) that contains
1+p holes per unit cell. Qa and Qb illustrate notional charge-
density wave ordering vectors. (b), A schematic of a small
Fermi surface, in which four small hole pockets bounded by
the antiferromagnetic Brillouin zone boundary (dotted line)
together contain p holes per unit cell. (c, left-hand axis)
Notional doping-dependence of Tc (red curve).48 The Fermi
surface volume of the intermediate doping range (shaded
in cyan) has not previously been ascertained. (c, right-
hand axis) Experimental estimate of the number of holes,
nh = 2Ap,1+p/AUBZ, contributing to the Fermi surface vol-
ume. Green and red diamonds indicate nh estimated from the
quantum oscillation frequency and charge-density wave vec-
tors using Equation (4) in YBa2Cu3O6+x and HgBa2CuO4+x,
respectively. For p < 0.1, we assume δa = δb. Blue circles in-
dicate the results of earlier Hall effect, angle-dependent mag-
netoresistance and quantum oscillation measurements,10,12,52

while crosses indicate the recent Hall results of Badoux et

al..9 The dotted line represents nh = p (for p < 0.2) and
nh = 1+ p (for p ≥ 0.2) expected for a small and large Fermi
surface, respectively.

for the dependence of the length of ordering vector δa,b on
hole doping p and the momentum-space cross-sectional
area of the reconstructed pocket(s) Ae. Here, δa and δb
are defined relative to the lengths of the unreconstructed
Brillouin zone reciprocal lattice vectors Ka = (2π

a
, 0) and

Kb = (0, 2π
b
). The functional form of δa,b on p and Ae is

sufficiently different for a large and small starting Fermi
surface, that it can unambiguously distinguish between
these scenarios. We therefore find Ae and δa,b to provide
a reliable experimental means for estimating nh over the
majority of the pseudogap regime (see green and red di-
amonds in Fig. 1c).
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FIG. 2: (a), Schematic quasi-one-dimensional open Fermi sur-
face (blue lines), with the charge-density wave ordering vector
Qb indicated (red). (b), The same Fermi surface with the dif-
ferent area contributions shaded as described in the text. (c),
Schematic reconstructed electron pocket after translation of
part of the unreconstructed Fermi surface.

II. DERIVATION

The geometrical origin of the dependence of δa,b on
p and Ae can be visualized by considering an idealized
form for the unreconstructed Fermi surface, such as that
expected to apply in YBa2Cu3O6+x (shown in Fig. 1)
when bilayer coupling and higher order hopping terms
are neglected. Below we show that the derived expression
for δa,b as a function of p and Ae remains robust against
an increase in strength of the charge-density wave order.
We also show it to remain robust against the introduction
of bilayer hopping terms and changes in Fermi surface
shape.

A. Open Fermi surface and uniaxial order

It is instructive to begin by considering the case of
an open Fermi surface that becomes reconstructed by a
unidirectional density-wave ordering vector (see Fig. 2a).
An imperfectly nested unreconstructed Fermi surface of
equivalent topology occurs in quasi-one-dimensional or-
ganic conductors,43 and has also been proposed to occur
in the cuprates when a large nematic distortion precedes
the formation of a charge-density wave.44 We assume that
the charge-density wave ordering vector Qb = (0, δb)

2π
b

spans the flat portions of the Fermi surface sheets in
Fig. 2a and that the carriers contained in the center of the
Brillouin zone between the quasi-one-dimensional sheets
are electrons.
As shown in Fig. 2b, the effect of the density-wave is

to remove electrons from the unreconstructed Fermi sur-
face that occupy an area equal to Ka ·Qb (indicated in
yellow). After reconstruction, these electrons are accom-
modated within a series of completely filled reconstructed
bands that lie below the chemical potential in the recon-
structed electronic structure. On defining an irreducible
rational fraction of the form δb =

mb

nb

for the ordering vec-
tor length, in which mb and nb are integers, a single band
unreconstructed electronic structure is transformed into
a reconstructed electronic structure consisting of mbnb

electronic bands. The electrons removed from the Fermi
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surface are then contained within mb completely filled
bands that lie below the conduction band.
From visual inspection of Fig. 2b, we see that the area

Ka · Qb (indicated in yellow), the total area Ae of the
unnested portion of the electron Fermi surface (indicated
in pink) and the area A1+p = 1

2
(1 + p)AUBZ of the Bril-

louin zone occupied by holes (indicated in white) must
together equal the area of the unreconstructed Brillouin
zone AUBZ = Ka ·Kb. Putting these terms together, we
arrive at

Ka ·Qb +Ae +A1+p = AUBZ

from which we obtain

δ open
b =

1

2
(1− p)−

Ae

AUBZ

(1)

upon substituting Qb and rearranging terms. The two
unnested portions of the open Fermi surface in Fig. 2b
(indicated in pick) come together in Fig. 2c to form a
reconstructed Fermi surface consisting of a single elec-
tron pocket of area Ae (again, indicated in pink). The
flat nested portions of the Fermi surface on either side
of the reconstructed electron pocket in Fig. 2c will dis-
appear from the reconstructed Fermi surface upon the
introduction of coupling terms linking the open sheets in
the charge-density wave Hamiltonian. For p = 0, the de-
pendence of δ open

b on Ae is the same as that obtained in
the quantized nesting model of magnetic field-induced-
spin-density waves.43

B. Large Fermi surface and biaxial order

On considering biaxial density-wave ordering starting
from a large Fermi surface of the form shown in Fig. 1a,
two ordering vectors Qa and Qb must now act in con-
cert to remove electrons from the unreconstructed Fermi
surface in Fig. 3a (indicated in yellow and green). We
consider each of these in turn – the precise order being
unimportant. Starting with Qb, its effect is again to re-
move electrons from the unreconstructed Fermi surface
occupying a total area area Ka ·Qb (indicated in yellow).
The green and pink regions occupied by electrons survive
this first step, but are folded by Qb to produce multiple
Fermi surfaces in higher order Brillouin zones (not shown
for clarity). The effect of the second ordering vectorQa is
to remove remaining electrons from the unreconstructed
Fermi surface occupying a total area Qa(Kb − Qb) (in-
dicated in green). Defining δa = ma

na

and δb = mb

nb

, the
reconstructed electronic structure consists of a total of
mambnanb reconstructed bands. The electrons removed
from the unreconstructed Fermi surface will then be con-
tained within mamb(na +nb− 1) completely filled bands
that lie below the conduction band of the reconstructed
band structure.
Again, on equating all of these areas to AUBZ in Fig. 3a

we arrive at

Ka ·Qb +Qa(Kb −Qb) +Ae +A1+p = AUBZ
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FIG. 3: (a), The large Fermi surface with the different area
contributions shaded. (b), Schematic showing the recon-
structed electron pocket after translation of parts of the un-
reconstructed Fermi surface by Qa, Qb and Qa +Qb.

from which we obtain

δ large = 1−

√

1

2
(1 + p) +

Ae

AUBZ

+ d2 (2)

on substituting Qa and Qb and rearranging terms. Here

δ large refers to the average 1
2
(δ large

a + δ large
b ) while d

refers to half the difference 1
2
(δ large

a − δ large
b ). Since

d2 < 10−4, this term can mostly be neglected. The func-
tional form of Equation (2) is identical to that obtained
by way of a full numerical calculation in Ref.25 – where
it was the period λ = 1/δ large of the density-wave that
was being plotted. The reconstructed Fermi surface in
Fig. 3b has the same diamond-shaped electron pocket
(indicated in pink) as discussed in several earlier biaxial
reconstruction scenarios.24–32

C. Small Fermi surface and biaxial order

On considering biaxial density-wave ordering starting
from a small Fermi surface of the form shown in Fig. 1b,
the doped holes are generally thought to be bounded by
the antiferromagnetic Brillouin zone5–8. We must there-
fore sum the areas within the antiferromagnetic Brillouin
zone of area AABZ = 1

2
AUBZ (see Fig. 4a) and neglect the

regions outside antiferromagnetic Brillouin zone shaded
in grey. The area Ap = p

2
AUBZ of the Brillouin zone oc-

cupied by holes (indicated in white) is now significantly
smaller than before.

The effect of Qb is once again to remove electrons from
the unreconstructed Fermi surface occupying a total area
area Ka ·Qb (indicated in yellow). This time, the second
vector Qa removes electrons occupying a remaining area
of Qa(Kb − 2Qb) (indicated in green). On equating all
of these areas to 1

2
AABZ in Fig. 3b we arrive at

Ka ·Qb +Qa(Kb − 2Qb) +Ae +Ap =
1

2
AUBZ



4

A
e

−0.5
−0.5

−0.5
−0.5 0.50.5

0.5
b

k
y
[b
/2

π
]

k
x
[a/2π]

a
0.5

A
p

A
e

Q
a
•(K

b
-2Q

b
)

K
a
•Q

b

Q
b

Q
a

k
y
[b
/2

π
]

k
x
[a/2π]

FIG. 4: (a), The small Fermi surface within the antifer-
romagnetic Brillouin zone with the different area contribu-
tions shaded. Grey indicates the regions outside the antifer-
romagnetic Brillouin zone. (b), Schematic showing the re-
constructed electron pocket after translation of parts of the
unreconstructed Fermi surface by Qa, Qb and Qa +Qb.

from which we obtain

δ small =
1

2
−

√

1

2

(

p

2
+

Ae

AUBZ

)

+ d2 (3)

on substituting Qa and Qb and rearranging terms. Here,
similar to what we have for the large Fermi surface,
δ small = 1

2
(δ small

a + δ small
b ) while d = 1

2
(δ small

a −

δ small
b ). The reconstructed Fermi surface in Fig. 4b
continues to have the same diamond-shaped electron
pocket (indicated in pink) as discussed in several earlier
publications.24–32

Equation (3) can be reconciled with the doping-
dependent charge-density-wave vector obtained by
Atkinson et al.

53. In this case, there are two diamond-
shaped pockets that result from the charge-density-wave
vectors not connecting with the antiferromagnetic Bril-
louin zone boundary, in which case Ae must correspond
to the sum of both electron pocket areas.

D. Generalized Fermi surface considerations

In the case of more generalized forms for the large un-
reconstructed hole Fermi surface in the cuprates, the out-
come will depend on the strength of the charge-density
wave coupling. In the weak coupling limit, imperfect
nesting produces additional small sections of Fermi sur-
face. Examples of such pockets are described for the
case of biaxial charge-density wave ordering in Refs.24,29

The areas of these sections of Fermi surface must be re-
spectively added to or subtracted from Ae, depending
or whether they contain electrons or holes. Hole pock-
ets like those discussed in Ref.29 cannot contribute to
δ small, however, as these would lie mostly outside of the
antiferromagnetic Brillouin zone.
Small additional sections of Fermi surface are less likely

to occur as the strength of the charge-density wave cou-
pling is increased. As the coupling is progressively in-
creased, the Fermi surface will eventually consists of a

single reconstructed electron pocket.24 At this point one
can then draw shaded regions with areas equal to those
in Figs. 2b and 3a that add up to AUBZ. The shapes are
nevertheless likely to become more irregular. There are
two reasons why Equations (1) and (2) continue to be
valid upon increasing the charge-density wave coupling.
The first is that the chemical potential always adjusts it-
self to maintain the area A1+p of the Brillouin zone occu-
pied by holes at a value compatible with the hole doping.
The area A1+p is therefore invariant under an increase
in the coupling strength. The second reason is that each
cycle of a spin- or charge-density wave state always con-
tains precisely an even number of electrons or holes and
increments the phase by 2π. The number of electrons
removed from the Fermi surface by a density-wave state,
and the area that they occupy within the Brillouin zone,
is therefore also independent of the strength of coupling.
The pocket area Ae, meanwhile, is constrained by On-
sager’s relation Ae = 2πeFe/~, where Fe is the measured
quantum oscillation frequency.
Bilayer coupling will have different effects on the dop-

ing dependence of δ, depending on its strength compared
to the strength of the spin- or charge-density wave cou-
pling, or depending on whether the density-wave con-
nects bands of the same or opposite parity. If the bilayer
coupling is much weaker than the density-wave coupling,
or if the density-wave connects bilayer-split bands of op-
posite parity,32 then there will continue to be single val-
ues of δ large and δ small. Briffa et al.32 have shown that in
the case where the density-wave connects bands of oppo-
site parity, two degenerate reconstructed Fermi surfaces
are obtained that are related to each other by way of a
90◦ rotation. If, on the other hand, bilayer coupling is
large and the density-wave connects bilayer-split bands
of like parity,45 one will then find that δ, Ae and A1+p

can each have different values for the bonding and anti-
bonding bands. Recent x-ray scattering studies indicate
a broken mirror plane orthogonal to the c axis centered
on the bilayer in YBa2Cu3O6+x,

23,46 which supports a
scenario in which density-wave connects bands of oppo-
site parity.32

III. COMPARISON WITH EXPERIMENT

Figure 5 shows the doping-dependence of δopenb , δlarge

and δsmall calculated using Equations (1), (2) and (3),
respectively, neglecting d2. In Fig. 5a we compare the
lengths of the charge-density wave ordering vectors δa
and δb obtained in x-ray scattering experiments19,20 in
YBa2Cu3O6+x with those calculated using the ratio Ae

AUBZ

obtained from magnetic quantum oscillation experiments
(assuming Onsager’s relation).47 We assume a single
pocket per CuO2 plane32 and approximate the doping-
dependent quantum oscillation frequency in Ref.47 with
a linear fit, from which we obtain Fe ≈ (399+1288 p) T.
In Fig. 5b we compare the length of the charge-density
wave ordering vector δa obtained in an x-ray scattering
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FIG. 5: (a), A comparison of δ calculated according to the
three different open (dotted line), large (solid line) and small
(dashed line) Fermi surface models [using Equations (1), (2)
and (3)] with experimental δa,b values obtained using x-ray
scattering, as indicated. Data are shown for YBa2Cu3O6+x

(Y123)19,20 in (a) and HgBa2CuO4+x (Hg121)21 in (b).
The horizontal black line separating two dots shows the
possible magnitude of the uncertainty in doping between
YBa2Cu3O6+x and HgBa2CuO4+x, which may be typical in
the cuprates.

experiment21 in HgBa2CuO4+x, assuming that δb = δb
in the tetragonal crystal structure, with those calculated
using the ratio Ae

AUBZ

obtained from magnetic quantum

oscillation experiments.36 In this case Fe ≈ 840 T is the
quantum oscillation frequency measured at a single value
of the hole doping.

IV. DISCUSSION

It is clear from Fig. 5 that the experimentally observed
values of the charge-density wave ordering vector lengths
δa (and δb in the case of YBa2Cu3O6+x), are much

shorter than those δ open expected for a nematically-
deformed Fermi surface accompanied by the formation of
a unidirectional charge-density wave producing a single
reconstructed Fermi surface pocket. The observed values
of the charge-density wave ordering vector lengths are
also found to be much longer than those δ large expected
for biaxial order producing a single reconstructed Fermi
surface pocket starting from a large unreconstructed
Fermi surface comprising 1+p hole carriers, as predicted
by band structure calculations. Only by considering a
small starting Fermi surface comprising p carriers, do we
find the predicted ordering vector lengths δ small to be
consistent with δa,b both at a quantitative level and in
the overall form of its doping dependence.
Some degree of discrepancy between δa,b and δ small

could potentially originate from assumptions that are
made to evaluate the chemical hole doping, or to the pres-
ence of additional, as yet unobserved, small Fermi surface
pockets. In YBa2Cu3O6+x, for example, the hole dop-
ing is estimated by comparing the doping dependence of
the rescaled superconducting transition temperature Tc

with that of LaxSr2−xCuO4.
48 In HgBa2CuO4+x, mean-

while, the maximum quantum oscillation amplitude and
plateaux in Tc versus p are found to occur near p ≈ 0.0941

rather than p ≈ 0.12 in YBa2Cu3O6+x. Closer agreement
with δ small would be obtained in Fig. 5b were p estimated
using the same method as used for YBa2Cu3O6+x.

48

The form of the electronic dispersion at the antifer-
romagnetic Brillouin zone boundary is unique for each
model of the small starting Fermi surface.5–8 However,
since it is the states close to the antiferromagnetic Bril-
louin zone boundary that become gapped by the charge-
density wave (see Fig. 6), the unique differences in their
dispersions are essentially lost once Fermi surface recon-
struction takes place. The primary role of the Coulomb
repulsion in all of these models is therefore only to pro-
vide a mechanism for the opening of a large gap in the
in the antinodal region of the Brillouin zone.
The close correspondence of δa,b with δsmall expected

for a small Fermi surface implies that the experimental
values of δa,b and Ae can be used to to obtain the number
of holes contained within the Fermi surface. On rearrang-
ing the terms in Equation (3) and using nh = 2Ap/AUBZ,
we obtain

nh = 4

[(

1

2
− δ

)2

− d2 −
Ae

2AUBZ

]

. (4)

In Fig. 1c, we compare the experimental estimates of nh

against those nh = p and nh = 1 + p expected for the
small and large Fermi surface, respectively. A continu-
ation of the linear trend nh = p previously obtained for
very low hole dopings p < 0.0812 is suggested, followed by
a sharp jump by one hole per CuO2 plane near optimal
doping to arrive at nh = 1 + p.
Measurements of the Hall coefficient RH have sug-

gested an increase in nh near optimal dopings,9 although
they have also suggested the crossover between nh = p
and nh = 1 + p to occur over an extended range of dop-
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ings 0.15 < p < 0.20. Several factors, including changes
curvature around the Fermi surface and anisotropic scat-
tering rates,30,50–52 cause RH no longer to be directly
related to the number of carriers or the sign of the car-
riers contained within the Fermi surface once ωcτ . 1,
where ωc is the cyclotron frequency and τ is the scat-
tering time. This situation is more likely to apply near
optimal doping owing to the increase in τ−1.

V. CONCLUSION

Having considered a large starting Fermi surface com-
prising nh = 1 + p hole carriers, as predicted by band
structure calculations, and a small starting Fermi surface
comprising nh = p carriers, as expected in the presence
of antiferromagnetic correlations, we find the small start-
ing Fermi surface to show a close correspondence with
the lengths of the wave vectors δa,b obtained from x-ray
diffraction experiments within the underdoped regime
over a broad range of hole dopings. The reconstructed
Fermi surface seen in magnetic quantum oscillation and
the ‘Fermi arcs’ seen in angle-resolved photoemission
spectroscopy49 measurements must therefore originate
from the same small starting Fermi surface. Our findings
imply that quantum oscillation frequency and charge-
density wave vectors can be used to provide an accu-
rate means for estimating the number of holes contained
within the Fermi surface over the majority of the pseu-
dogap regime in the low temperature limit.

A small starting Fermi surface consisting of four hole
pockets (e.g. Fig. 1b) is expected to be one of the con-
sequences of the on-site Coulomb repulsion continuing
to remain dominant over low energy excitations when
holes are doped into the Mott insulator.5–8 It raises
the possibility of an interesting scenario in which the
Coulomb repulsion remains the dominant energy scale
throughout the entire pseudogap regime and plays an
important role in the quantum critical behavior close to
optimal doping.47
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