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Long-range van der Waals (vdW) interaction is critically important for intermolecular interactions
in molecular complexes and solids. However, accurate modeling of vdW coefficients presents a great
challenge for nanostructures, in particular for fullerene clusters, which have huge vdW coefficients
but also display very strong nonadditivity. In this work, we calculate the coefficients between
fullerenes, fullerene and sodium clusters, and fullerene and alkali atoms, with the hollow-sphere
model within the modified single-frequency approximation (MSFA). In the MSFA, we assume that
the electron density is uniform in a molecule, and that only valence electrons in the outmost subshell
of atoms contribute. The input to the model is the static multipole polarizability, which provides
a sharp cutoff for the plasmon contribution outside the effective van der Waals radius. We find
that the model can generate C6 in excellent agreement with expensive wave function-based ab

initio calculations, with a mean absolute relative error of only 3%, without suffering size-dependent
error. We show that the nonadditivities of the coefficients C6 between fullerenes and C60 and
sodium clusters Nan revealed by the model agree remarkably well with those based on the accurate
reference values. The great flexibility, simplicity, and high accuracy make the model particularly
suitable for the study of the nonadditivity of vdW coefficients between nanostructures, advancing
the development of better vdW corrections.

PACS numbers: 61.46.-w, 68.35.bp, 34.20.Gj

I. INTRODUCTION

Due to the high computational efficiency and useful ac-
curacy, Kohn-Sham density functional theory (DFT) has
reached a high level of sophistication and has become a
standard electronic structure theory1,2. In this theory,
only the exchange-correlation energy component has to
be approximated as a functional of the electron density.
Most density functionals have been developed from the
constraint satisfaction approach3 or by fitting a designed
functional form to a set of experiments or a combina-
tion of both. These conventionally developed density
functionals can describe chemical bonds or short-range
interactions4 arising from the density overlap well for
quantum chemistry5–8 or condensed matter physics9,10

or both11,12, but often fail to describe phenomena due
to the long-range van der Waals interaction, such as ph-
ysisorption13,14, sublimation of molecular solids15–17 and
binding energies between layered materials18,19. In re-
cent years, some attempts20,21 have been made to de-
velop computationally efficient semilocal density func-
tionals that extend the short-range description, but in
general, a long-range vdW correction is needed. This
failure due to the absence of vdW interactions seriously
limits the applicability of conventional DFT to a broad
class of systems such as molecular solids22–28 and com-
plexes as well as biological systems29 in which the long-
range van der Waals interaction plays an important role.
A quick remedy to this inadequacy is to develop a vdW
correction for the missing long-range part and add it to
the DFT part. This combined DFT+vdW approach has
become one of the most popular methods in electronic

structure calculations.
In the large-separation (d → ∞) limit, the vdW inter-

action takes a simple asymptotic expression30

EvdW = −C6/d
6
− C8/d

8
− C10/d

10
− · · · , (1)

where d is the distance between centers of density frag-
ments, which may or may not belong to part of the same
object. C6, C8, and C10 are the vdW coefficients, describ-
ing dipole-dipole (C6), dipole-quadrupole (C8), as well as
dipole-octupole and quadrupole-quadrupole (C10) inter-
actions, respectively. In the development of the vdW cor-
rection, there are two important tasks: One is to remove
the unphysical divergence when the separation between
objects is small, and the other is to calculate vdW co-
efficients. The first issue can be addressed by properly
designing a damping function31,32 for each asymptotic
term30. Quite a few well-designed damping functions
have been proposed and widely used31,33,34 in vdW cor-
rections. The second issue involves complicated many-
body effects. These effects can be accurately captured
with standard wave function-based many-body methods,
such as TDHF (time-dependent Hartree-Fock method),
TDMP2 (time-dependent Møller-Plesset second-order
perturbation theory), coupled cluster [e.g., CCSD(T)],
and RPA (random-phase approximation) methods or
their combinations, but these methods are usually limited
to small and middle-size molecules, due to high compu-
tational cost. As such, accurate modeling of vdW co-
efficients has been highly desired. Many atom pairwise-
based models have been proposed34–38. Due to their sim-
plicity and good accuracy, some of them have been widely
used in electronic structure calculations. However, the
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errors of atom pairwise-based models are usually size-
dependent39 and can be large for nanostructures. This
size-dependent error arises from many-body interactions
and cannot be solved through a damping function. Al-
though in practical applications, it is not necessary to
use the absolutely accurate vdW coefficients, it is highly
desired to use them. The reason is that absolutely accu-
rate vdW coefficients can reflect the correct many-body
effects contained in these coefficients, and thus enable us,
to a great extent, to reveal the true physics informed by
the vdW correction.

In recent years, several methods beyond atom pairwise-
based models for the calculation of vdW coefficients have
been developed40–51. A common feature of these beyond-
atom pairwise-based methods is that they treat the elec-
trons to be distributed over the whole system, rather
than partition them in terms of atoms in a molecule.
In other words, the electron density in a whole system
is used as input, and therefore many effects, such as
nonadditive many-body interactions and electron delo-
calization, that are missing in atom pairwise-based mod-
els can be accounted for either implicitly or explicitly by
these models. As a result, the error of these models can
be nearly size independent. For example, Tkatchenko
et al.

39 proposed a model dipole polarizability based
on a system of coupled quantum harmonic oscillators,
which goes beyond the atom pairwise-based model of
Tkatchenko and Scheffler35. The former does not show
size-dependent error, but the latter does. Recently, we
have applied16 the Rutgers-Chalmers41 vdW-DF to cal-
culate the sublimation energies of several small fullerenes.
We found that the electron gas-based vdW-DF obtained
from the fluctuation-dissipation theorem yields consis-
tently accurate sublimation energies, without suffering
size-dependent error. Tao and co-workers47,49 proposed
two molecular-based models, the solid-sphere model and
hollow-sphere model. The former was proposed for the
calculation of vdW coefficients between atoms and/or
molecules, while the latter is more flexible and valid
for molecular pairs that may or may not have any cav-
ity. It has been shown that these two models are ac-
curate for nanostructures52. Since the inputs to these
two models are the accurate static multipole polarizabil-
ity and the electron density of a whole system, they are
multicenter-based. (Atom pairwise-based models are one
center-based.) As a result, the errors of the two mod-
els are nearly size-independent, as confirmed by vdW
coefficients for nanoclusters49,50,52. More recently, one
of the present authors (JT)50 applied the solid-sphere
model to calculate both the leading-order and higher-
order vdW coefficients between small molecules, within
the modified single-frequency approximation (see discus-
sion below). The results are in very good agreement with
expensive TDMP2 or TDHF calculations, with mean ab-
solute relative errors of 6% for C6, 5% for C8, and 7% for
C10. This is very encouraging.

Fullerenes are related to nanotubes and graphene.
They can be used as a clean energy storage (e.g., hy-

drogen storage53). The high sublimation energies of
fullerenes can make them attractive candidates as rapid
coolant54 for astronauts. In this work, we apply the
hollow-sphere model in the modified single-frequency
approximation to study the vdW coefficients between
fullerenes, fullerene and alkali atoms, as well as fullerene
and sodium clusters. We find that the model can gen-
erate vdW coefficients C6 in excellent agreement with
highly-accurate ab initio calculations, with a mean ab-
solute relative error of only 3%. We also show that the
nonadditivities of vdW coefficients C6 between fullerenes
and between a fullerene molecule (e.g., C60) and sodium
clusters revealed by the model agree very well with the
accurate ab initio prediction, both of which display oscil-
lating nonadditivity but in opposite trend.

II. HOLLOW-SPHERE MODEL

The starting point of the hollow-sphere model is
the classical conducting spherical shell of density uni-
form inside and zero outside the shell. It was con-
structed to model the dynamic multipole polarizability
of a shell of inhomogeneous density that allows for a cav-
ity. The model combines the advantages of the solid-
sphere model46,47 and the classical shell model48,55, and
is equally valid for molecules with and without a cavity.
It recovers the classical shell model in the uniform-gas
limit with a sharp physical boundary and the solid-sphere
model when the cavity of a molecule vanishes. So, this
unified hollow-sphere model is quite flexible and can be
used in different situations to study the vdW interaction
(e.g., vdW interaction between fullerenes and atoms or
clusters without cavity). The model satisfies the exact
zero- and high-frequency limits for each order, and takes
the simple expression49,52

αl(iu) =
2l+ 1

4πal

∫ Rl

Rl−tl

d3r

(

r2l−2a4l ω
2
l

a4l ω
2
l + u2

)

1

1− βlρl
, (2)

where iu is the imaginary frequency, Rl is the effective
vdW outer radius of the shell, and Rl − tl is the effec-
tive vdW inner radius. βl(r) = ω2

l (r) ω̃2
l (r)/[(ω

2
l (r) +

u2)(ω̃2
l (r)+u2)] describes the coupling of the local sphere

and cavity plasmon oscillations, and ρl = (1− tl/Rl)
2l+1

describes the shape of the shell, with tl being the shell
thickness49,56. ωl(r) = ωp(r)

√

l/(2l+ 1) is the gen-
eralized local plasmon frequency of a sphere, ω̃l(r) =

ωp(r)
√

(l + 1)/(2l+ 1) is the generalized local plasmon

frequency of a cavity, and ωp(r) =
√

4πn(r) is the local
plasmon frequency of the extended electron gas. (Atomic
units are used.) The parameters Rl and al are deter-
mined by the static and high-frequency limits52, leading
to the coupled equations

Rl = [alαl(0)]
1/(2l+1), (3)

al =

{
∫

∞

0

dr 4πr2ln(r)

/
∫ Rl

Rl−tl

dr 4πr2ln(r)

}1/3

.(4)
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III. SINGLE-FREQUENCY APPROXIMATION

To simplify the calculation, the single-frequency ap-
proximation (SFA) was proposed49, which assumes that
only valence electrons are polarizable, and that the den-
sity is uniform inside the shell and zero otherwise. In the
SFA, dl = 1 and the model polarizability of a molecule is
simplified as

αSFA
l (iu) =

(

R2l+1
l

ω2
l

ω2
l + u2

)

1− ρl
1− βlρl

, (5)

where Rl = [αSFA
l (0)]1/2l+1, with αSFA

l (0) = αl(0) be-
ing the accurate static multipole polarizability. βl, the
shape function ρl, and the plasmon frequency ωl are de-
fined below Eq. (2), but with the local electron den-
sity replaced by the average valence electron density
n̄. The average valence electron density can be cal-
culated from n̄ = N/Vl, where N is the number of
valence electrons, and Vl is the shell volume given by
Vl = (4π/3)[R3

l − (Rl − tl)
3]. In SFA, the accurate static

multipole polarizability αl(0) is the only required input,
which can be calculated from ab initio methods such as
TDHF or TDMP2 or TDDFT57. Compared to a full fre-
quency calculation required in the wave function-based
many-body calculations58 of the dynamic polarizability,
the single point frequency calculation of the static po-
larizability is much cheaper and very practical for large
molecules and nanomaterials. The hollow-sphere model
within the SFA is rather similar to the classical shell
model. However, there is an important distinction. The
former has no sharp physical boundary, while the lat-
ter does. The hollow-sphere model is exact in the zero-
frequency limit and more correct in the high-frequency
limit. As a result, the hollow-sphere model within the
SFA is more accurate than the classical shell model.
However, there is an ambiguity in the SFA when we

count the number of valence electrons of an atom in a
molecule. In the previous work49, the number of valence
electrons includes all electrons in the outermost shell of
an atom. As argued recently by Tao and Rappe50, va-
lence electrons should only include those in the outer-
most subshell, because electrons in the outermost subshell
have the greatest probability to appear in valence regions
rather than core regions, and thus are diffuse and much
more easily deformed by external fields or polarized. For
example, electrons in the np orbital are much easier to
be deformed by an external electric field than electrons
in the ns orbitals. Furthermore, the difference in the
shape of ns and np orbitals in an atom leads to the larger
deformation of the outermost np valence electrons than
ns valence electrons. This counting method has been
adopted in the Slater-Kirkwood method59. We call this
new counting method the modified single-frequency ap-
proximation (MSFA). Figure 1 shows the comparison of
the model dynamic dipole polarizability in the SFA and
MSFA to the TDHF calculation. From Fig. 1 we can
see that, in the zero-frequency limit, SFA and MSFA are

FIG. 1: Comparison of the dynamic dipole polarizability as a
function of the imaginary frequency iu of C60 evaluated with
the hollow-sphere model within the original single-frequency
approximation49 (SFA) and modified SFA (MSFA) to the
TDHF value61.

exact. However, in the high-frequency region, only the
full hollow-sphere model is exact, suggesting that the full
hollow-sphere model has a good chance to be more accu-
rate than MSFA (see Table IV). This can be understood
by regarding the model as an interpolation of imaginary
frequency between the zero- and high-frequency limits.
Nevertheless, in the important middle range of frequen-
cies, MSFA is closer to the HF value than SFA. Therefore,
MSFA should be more accurate than SFA. (For alkali
atoms, MSFA and SFA are the same.)
To have a better understanding of the cavity effect, we

apply the solid-sphere model

αl(iu) =
2l+ 1

4πal

∫ Rl

0

d3r

(

r2l−2a4l ω
2
l

a4l ω
2
l + u2

)

, (6)

to study molecules with a cavity. For such molecules, the
electron density is zero outside the shell. Thus we can
rewrite Eq. (6) as

αl(iu) =
2l+ 1

4πal

∫ Rl

Rl−tl

d3r

(

r2l−2a4l ω
2
l

a4l ω
2
l + u2

)

, (7)

From Eqs. (2) and (7), we can see that the solid-sphere
model is just the hollow-sphere model in which coupling
to the cavity plasmons are dropped. In the static or zero-
frequency limit, we obtain49,

αl(0) = R2l+1
l − (Rl − tl)

2l+1. (8)

With the parameter set l = 1, R1 = 8.703 and t1 = 3.4,
we can easily find αl(0) = 510.1 from Eq. (8), while the
TDDFT value is 659.1, as given in Table I. This suggests
that the solid-sphere model noticeably underestimates
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the static polarizability and thus the vdW coefficients.
However, if the accurate input static polarizability em-
ployed in the hollow-sphere model is also used in the solid
sphere model of Eq. (6) and imagine a fullerene or cage
molecule as a solid sphere (i.e., tl = Rl), the leading-or-
der vdW coefficient C6 will increase only by 3% (relative
to the prediction of the hollow-sphere model in Table II)
for C60-C60 pair and by 4% for C84-C84. For C10, it will
increase more (5% for C60-C60 pair and 6% for C84-C84

pair), leading to the MARE of > 6% for the solid-sphere
model. Clearly, coupling to cavity plasmons is important
and should be considered in any case for accurate mod-
eling of vdW coefficients between cage molecules.

TABLE I: Input static multipole polarizabilities (in a.u.) of
fullerenes, alkali atoms, and sodium clusters.

atom N α1(0) α2(0) α3(0)

C60 120 536.6(a) 35434(b) 2339833(b)
C70 140 659.1(a) 49917(b) 3780533(b)
C78 156 748.3(a) 61677(b) 5083663(b)
C80 160 798.8(a) 68770(b) 5920460(b)
C82 164 779.7(a) 66051(b) 5595397(b)
C84 168 806.1(a) 69820(b) 6047476(b)
Li 1 164.1(c) 1424(d) 39688(d)
Na 1 162.6(c) 1878(d) 55518(d)
K 1 290.2(c) 5000(d) 176940(d)
Na2 2 259.5(e) 10558(b) 429524(b)
Na4 4 511.5(e) 32715(b) 2092376(b)
Na6 6 743.9(e) 61074(b) 5014189(b)
Na8 8 883.9(e) 81409(b) 7497918(b)
Na10 10 1053(e) 108988(b) 11280617(b)
Na12 12 1342(e) 163275(b) 19865029(b)
Na14 14 1652(e) 230861(b) 32261912(b)
Na18 18 1725(e) 248112(b) 35686824(b)
Na20 20 1988(e) 314312(b) 49694107(b)

(a) From61.
(b) Estimated from the conventional formula

αl(0) = [α1(0)](2l+1)/3. (See text for discussion.)
(c) From62.
(d) From63.

(e) From64 and49

IV. VDW COEFFICIENTS

The vdW coefficients can be generated with the dy-
namic multipole polarizability αl(iu) using the second-
order perturbation theory expression or Casimir-Polder
formula60,

CAB
2k =

(2k − 2)!

2π

k−2
∑

l1=1

1

(2l1)!(2l2)!

∫

∞

0

du αA
l1(iu)α

B
l2(iu).(9)

Within the SFA or MSFA, the six-fold integral in space is
reduced to a two-fold integral. This approximation sig-
nificantly reduces the computational cost, which is par-
ticularly important for nanostructures. The analytic ex-

TABLE II: The vdW coefficients C6, C8, and C10 (in
a.u.) for 21 fullerene pairs calculated using the hollow-sphere
model (HSM) within the modified SFA (MSFA). The in-
put static dipole polarizabilities of fullerenes are taken from
Ref. 61, while the static quadrupole and octupole polariz-
abilities are estimated from the conventional formula αl(0) =

[α1(0)]
(2l+1)/3. The reference values of C6 are taken from

Ref. 61. MRE = mean relative error. MARE = mean abso-
lute relative error.

Cref
6 /103 CMSFA

6 /103 CMSFA
8 /105 CMSFA

10 /107

C60-C60 100.1 98.91 356.9 1059
C60-C70 119.0 121.5 470.5 1497
C60-C78 133.5 137.9 559.4 1862
C60-C80 138.7 147.2 611.9 2086
C60-C82 140.4 143.7 591.9 2000
C60-C84 144.2 148.6 619.6 2119
C70-C70 141.6 144.7 601.8 2057
C70-C78 158.8 164.3 713.4 2545
C70-C80 165.0 175.4 779.2 2844
C70-C82 166.9 171.2 754.1 2729
C70-C84 171.5 177.0 788.8 2888
C78-C78 178.2 184.2 836.1 3119
C78-C80 185.1 196.6 912.4 3479
C78-C82 187.3 191.9 883.3 3341
C78-C84 192.4 198.4 923.6 3533
C80-C80 192.5 205.4 975.3 3805
C80-C82 194.6 200.5 944.3 3655
C80-C84 199.9 207.3 987.2 3864
C82-C82 196.8 200.7 937.0 3596
C82-C84 202.2 207.5 979.6 3801
C84-C84 207.7 213.3 1019 4002
MRE (%) 3.3
MARE (%) 3.4

pression for the integrated vdW coefficients over the fre-
quency can be found from Ref. 52.
Now, we apply the hollow-sphere model in the MSFA

to calculate the vdW coefficients for fullerene pairs, for
which accurate reference values are available for compar-
ison. In our calculations, we set the thickness t = 3.4
bohr, as suggested in Ref. 56. The input static dipole
polarizabilities of fullerenes are taken from the TDHF
calculations61, while the static higher-order multipole po-
larizabilities are estimated from the conventional formula
αl(0) = [α1(0)]

(2l+1)/3. (For convenience, all the input
static polarizabilities are listed in Table I.) For carbon
atom, the number of valence electrons in the outmost
subshell is 2. (In previous studies49, the number of va-
lence electrons is taken to be 4, which includes the elec-
trons in all the outmost subshells with the same prin-
cipal quantum number). The results are given in Ta-
ble II. From Table II, we observe that MSFA can yield
C6 consistently in excellent agreement with the expensive
TDHF calculations, with a mean absolute relative error
(MARE) of only 3%, which significantly improves the ac-
curacy of the original SFA49. This accuracy benefits from
the facts that the electrons on the surface of fullerenes
are nearly uniform, due to the full delocalization of π-
electrons. This can be understood from the low energy
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TABLE III: The vdW coefficients C6, C8, and C10 (in a.u.)
for C60-alkali atom and -sodium cluster pairs (no cavity) cal-
culated from the hollow-sphere model within the modified
SFA (MSFA). For alkali atoms and sodium clusters, we set

tl = Rl = [αl(0)]
(2l+1)/3 and ρl = 0. The input static mul-

tipole polarizabilities of alkali atoms are taken from Refs. 62
and 63, while the static dipole polarizabilities of sodium clus-
ters are from Ref. 64. For sodium clusters, the quadrupole
and octupole polarizabilities are estimated from the conven-
tional formula αl(0) = [α1(0)]

(2l+1)/3. The reference values
of C6 are taken from Ref. 64 and [65. MRE = mean relative
error. MARE = mean absolute relative error.

Cref
6 /103 CMSFA

6 /103 CMSFA
8 /105 CMSFA

10 /107

C60-Li 8.07 8.80 17.70 28.85
C60-Na 8.52 8.75 18.28 31.27
C60-K 12.95 12.14 27.66 52.98
C60-Na2 15.72 15.37 42.97 99.22
C60-Na4 30.24 30.49 104.4 296.0
C60-Na6 43.92 44.91 175.8 567.7
C60-Na8 54.72 55.99 234.2 806.4
C60-Na10 66.60 68.03 305.5 1125
C60-Na12 82.08 84.58 421.1 1709
C60-Na14 98.28 101.8 556.6 2464
C60-Na18 113.4 115.8 645.9 2914
C60-Na20 127.2 131.5 783.9 3762
MRE (%) 1.9
MARE (%) 3.3
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FIG. 2: Variation of the vdW coefficient C6 per carbon atom
pair for fullerene pairs v.s. the number of carbon atom pairs
formed between fullerene molecules.

gap of fullerenes. (The largest energy gap of fullerenes
is about 2 eV, which occurs for C60.) The good per-
formance of the model on vdW coefficients for fullerene
pairs is expected. The more slowly varying the electron
density is, the more accurate the model polarizability will
be. In the uniform-gas limit, the model becomes exact.
In addition, fullerenes also have quasispherical symmetry.
All these make fullerenes very suitable for the model.

Next, we apply the model to calculate the vdW coeffi-
cients between fullerene C60-alkali atoms and C60-sodium
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atom pair between C60 and sodium clusters v.s. the number
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cluster pairs. For atoms and sodium clusters with no
cavity, we set the shell thickness to be the conventional
vdW radius (i.e., the vdW cutoff radius of a solid sphere),
tl = [αl(0)]

1/(2l+1). For alkali atoms, we take the highly-
accurate static dipole polarizabilities from Ref. 62 and
higher-order multipole polarizabilities from Ref. 63. For
sodium clusters, only the static dipole polarizabilities
from the ab initio calculation are available in the liter-
ature. Since the electron density in sodium clusters are
much slower than in atoms, to a good approximation, we
estimate the static higher-order multipole polarizabilities
from the conventional formula αl(0) = [α1(0)]

3/(2l+1), as
given in Table I. Here the number of valence electrons
of each atom is only one in the ns orbital. The results
are given in Table III. We observe from Table III that the
vdW coefficients generated from the hollow-sphere model
consistently agree very well with the reference values,
achieving the same MARE of 3% as found for fullerene
pairs.
Finally, we apply the hollow-sphere model to study the

vdW coefficients between C60 and alkali atoms, with and
without MSFA. Since the dynamic polarizability of C60

within SFA agrees well with the TDHF value within the
whole frequency, as shown by Fig. 1, in this study, we
use the αMSFA

l (iu) of Eq. (5) for C60, while the dynamic
multipole polarizability of atoms (tl = Rl) with and with-
out MSFA is used, respectively. The results are given
in Table IV. From Table IV, we observe that the vdW
coefficients generated with the full hollow-sphere model
(i.e., without MSFA) are more accurate than those with
MSFA.

V. NONADDITIVITY OF C6

Despite considerable progress in the development of
vdW corrections, calculation of vdW coefficients between
nanostructures remains a difficult task, due to the nonad-
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TABLE IV: The vdW coefficients C6, C8, and C10 (in a.u.) between C60 and alkali atoms calculated from the hollow-sphere
or solid-sphere model with and without the modified SFA (MSFA) for alkali atoms, while the dynamic polarizability of C60 of
Eq. (5) is used. For atoms, tl = Rl (no cavity). FHSM = full hollow-sphere model of Eq. (7), MRE = mean relative error.
MARE = mean absolute relative error.

Cref
6 /103 CFHSM

6 /103 CMSFA
6 /103 CFHSM

8 /105 CMSFA
8 /105 CFHSM

10 /107 CMSFA
10 /107

C60-Li 8.07 8.19 8.80 17.14 17.70 29.72 28.85
C60-Na 8.52 8.86 8.75 18.96 18.28 33.83 31.27
C60-K 12.95 13.93 12.14 31.84 27.66 62.71 52.98
MRE (%) 4.4 1.8
MARE (%) 4.4 6.0

ditivity. Nonadditivity of the vdW interaction has been
an important issue that hinders the development of uni-
versally accurate vdW corrections. Many efforts have
been made to understand this problem39,48,49,61,66–68.
This is particularly important for molecules with full
valence electron delocalization, such as metallic systems
(e.g. alkali clusters) and conjugated molecules, in which
vdW coefficients display very strong nonadditivity. In
this work, we study the nonadditivity of the vdW coef-
ficients between small fullerene molecules and fullerene
C60 and sodium clusters Nan.
Figure 2 shows that C6 per carbon atom is oscillat-

ingly increasing for fullerene pairs. This suggests that
the error of simple atom pairwise-based models grows
with system size for molecular pairs involving fullerenes.
The nonadditivity of C6 between fullerene pairs includ-
ing identical as well as nonidentical pairs is quite different
from that of C6 between identical pairs only, the latter of
which was found to be monotonically increasing48,49,61.
Interestingly, we find that C6 per sodium atom decreases
with the increase of the number of sodium atoms be-
tween a fullerene and sodium clusters, as shown in Fig. 3.
A similar trend was observed for identical sodium clus-
ter pairs49,52, but the decreasing rate between fullerene
and sodium clusters is slower than that between identical
sodium clusters. In both cases, the trends revealed our
model agrees well with that displayed by TDHF61,64.

VI. CONCLUSION

In summary, we have applied the hollow-sphere model
within the MSFA to the calculation of the vdW coeffi-
cients between fullerenes, fullerene and alkali atoms, and
fullerene and sodium clusters. The results are in excellent
agreement with the expensive TDHF calculations, with
an overall MARE of only 3%. Compared to the original
SFA, the MSFA yields the dynamic dipole polarizability
in better agreement with the TDHF values for fullerene
C60, in particular in the important low-frequency re-
gion. This accuracy is consistent with a recent appli-
cation to diatomics and small molecules50, where it was
found that the MSFA yields accurate vdW coefficients,
with a MARE of 6% for C6, 5% for C8, and 7% for C10.
This small relative error difference is largely due to the
fact that the electron density on the surface of fullerenes

and in sodium clusters is not rapidly varying, but it is
for small molecules, in particular diatomics. Another dif-
ference between fullerenes and sodium clusters and small
molecules is that the former have higher symmetry. But
this geometrical effect is relatively small, compared to
the spatial variation of the electron density. This can
be seen from the vdW coefficients involving atoms cal-
culated within the MSFA in Ref. 50,52 and this work
(Table III). Atomic densities are of spherical symmetry,
but they are rapidly varying. However, the error of the
vdW coefficients involving atoms is larger than those with
lower symmetry but slower spatial variation of the elec-
tron density, such as molecules, suggesting that the spa-
tial variation of the density is more important than the
symmetry of the system, making the model particularly
attractive for intermolecular applications. As such, the
hollow-sphere model seems to provide a promising way
to the accurate treatment of the vdW coefficients.
Since the surface electrons of fullerenes are fully non-

local and thus display strong nonadditivity48,49,61, as
further demonstrated in this work, this model will
play important role in the simulation of vdW correc-
tions/interactions involving fullerenes, such as adsorp-
tion of fullerenes on metal surfaces as well as atoms and
molecules on the surface of fullerenes. Because the model
is valid for all thicknesses t, including ending points, it is
also valid for molecules without a cavity50. Therefore, it
can be also used to simulate vdW interactions between
molecules, regardless whether there is any cavity or not.
This flexibility allows us to treat different situations on
the same footing. Taking the simplification one step fur-
ther, without the knowledge of the true electron density,
should be of much use for large nanostructures.
In addition, our model may serve as a starting point for

a better fundamental understanding of nanostructures
such as nanotubes, graphene, and other vdW layered
materials and complexes. In particular, it can be used
to investigate the nonadditivity of vdW coefficients, due
to its very good accuracy, size-independent error, and
flexibility.
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53 T.T. Vehviläinen, M.G. Ganchenkova, L.E. Oikkonen, and
R.M. Nieminen, Phys. Rev. B 84, 085447 (2011).

54 M.S. Dresselhaus, G. Dresselhaus, and P.C. Eklund, Sci-
ence of Fullerenes and Carbon Nanotubes (Academic Press,
London, UK, 1995).

55 J.P. Perdew, J. Tao, P. Hao, A. Ruzsinszky, G.I. Csonka,
and J.M. Pitarke, J. Phys.: Condens. Matter 24, 424207
(2012).

http://www.sas.upenn.edu/~jianmint/


8

56 G.K. Gueorguiev, J.M. Pacheco, and D. Tománek, Phys.
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