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We present first-principle calculations on the vertical ionization potentials (IPs), electron affini-
ties (EAs), and singlet excitation energies on an aromatic-molecule test set (benzene, thiophene,
1,2,5-thiadiazole, naphthalene, benzothiazole, and tetrathiafulvalene) within the GW and Bethe-
Salpeter equation (BSE) formalisms. Our computational framework, which employs a real-space
basis for ground-state and a transition-space basis for excited-state calculations, is well-suited for
high-accuracy calculations on molecules, as we show by comparing against G0W0 calculations within
a plane-wave-basis formalism. We then generalize our framework to test variants of the GW ap-
proximation that include a local-density approximation (LDA)-derived vertex function (ΓLDA) and
quasiparticle-self-consistent (QS) iterations. We find that ΓLDA and quasiparticle self-consistency
shift IPs and EAs by roughly the same magnitude, but with opposite sign for IPs and same sign for
EAs. G0W0 and QSGWΓLDA are more accurate for IPs, while G0W0ΓLDA and QSGW are best for
EAs. For optical excitations, we find that perturbative GW -BSE underestimates the singlet exci-
tation energy, while self-consistent GW -BSE results in good agreement with previous best-estimate
values for both valence and Rydberg excitations. Finally, our work suggests that a hybrid approach,
where G0W0 energies are used for occupied orbitals and G0W0ΓLDA for unoccupied orbitals, also
yields optical excitation energies in good agreement with experiment but at a smaller computational
cost.

I. INTRODUCTION

Green’s function methods, such as the GW approx-
imation and the Bethe-Salpeter equation (BSE), are
most commonly used in the calculation of one- and two-
particle excitations in condensed matter, but have been
increasingly applied in the study of molecules. The GW
approximation allows one to solve for the interacting
one-particle Green’s function, whose poles are associ-
ated with vertical ionization potentials (IPs) and elec-
tron affinities (EAs). The BSE, on the other hand, al-
lows one to construct an interacting two-particle corre-
lation function from previously-determined one-particle
Green’s functions; the poles of the two-particle Green’s
function are associated with neutral excited states such as
those observed in optical and electron energy loss exper-
iments. The computational efficiency of these methods
enables the simulation of excited-state properties in large
molecules and clusters, and the benchmarks across a va-
riety of sp-bonded and transition-metal oxide molecules
are now available.1–24

In theory, intrinsic IPs and EAs can be determined ex-
actly from the one-particle Green’s function by fully solv-
ing Hedin’s equations.25 Similarly, it is possible to obtain
exact neutral excitations by solving the BSE, starting
from the exact one-particle Green’s functions and includ-
ing the exact electron-hole interaction kernel. Unfortu-

nately, obtaining the self-consistent solution to Hedin’s
equation is computationally infeasible. As is discussed in
Sec. II A, the GW approximation is commonly used in-
stead, where the three-point vertex function Γ is changed
to a computationally tractable Dirac delta function. A
second approximation arises when GW equations are not
solved self-consistently, but are instead computed as a
perturbation to a mean-field solution, e.g., Kohn-Sham
density-functional theory (DFT) or Hartree-Fock. As a
result, GW and GW -BSE benchmarks exhibit errors that
have been primarily attributed to some combination of
the vertex approximation and the non-self-consistency of
its solutions.

In addition, the accuracy of first-principles results are
affected by the numerical framework of the calculation.
For molecules, this is highlighted by the difficulty in rep-
resenting resonant and continuum unoccupied orbitals.
Even a small isolated molecule has excitations involving
diffuse and unbound orbitals with large spatial ranges.
Therefore, any numerical approximation associated with
the choice of basis set must be carefully weighed against
the overall computational cost, whether a simulation ap-
plies a local atomic orbital basis set, periodic boundary
conditions, or confined boundary conditions (where the
wave function amplitudes are set to zero at and beyond
the boundary).

In this work, we explore the numerical and theoret-
ical contributions to the performance of the GW ap-
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proximation and the BSE on an aromatic-molecule test
set. The molecules, comprising benzene (C6H6), thio-
phene (C4H4S), 1,2,5-thiadiazole (C2H2N2S), naphtha-
lene (C10H8), benzothiazole (C7H5NS), and tetrathia-
fulvalene (TTF, C6H4S4), have applications as build-
ing blocks in modern functional materials such as or-
ganic semiconductors and organic frameworks. The test
set includes orbitals with σ, π, lone pair, and con-
tinuum character, whose differing physical character-
istics provide a diverse set of challenges to our first-
principles methods. We check the numerical convergence
of occupied and low-lying unoccupied orbitals by com-
paring calculations on a real-space grid with confined
boundary conditions, which use a transition-space ba-
sis for excited-state calculations,26,27 to computations
on a plane-wave basis in repeated supercells with pe-
riodic boundary conditions.28,29 We then use the real-
space framework to examine how the vertex function
and self consistency affect the accuracy of GW predic-
tions, benchmarkingGW energies at four levels of theory:
G0W0, G0W0ΓLDA, QSGW , and QSGWΓLDA. Pertur-
bative “one-shot” calculations are denoted by G0W0 and
G0W0ΓLDA, and quasiparticle-self-consistent (QS)30 GW
calculations are denoted by QSGW and QSGWΓLDA;
ΓLDA indicates the inclusion of a local density approxima-
tion (LDA)-derived vertex in the calculation.31 The ener-
gies of singlet (optical) excitations are computed by solv-
ing the BSE based on results from each level of GW the-
ory. Time-dependent DFT (TDDFT) calculations with
the adiabatic LDA exchange-correlation functional, de-
noted by TDLDA, are presented as well. All calculations
in this work start from the same mean-field electronic
structure: DFT with the LDA exchange-correlation func-
tional.

We begin this article with an overview of the GW ap-
proximation of the one-particle Green’s functions, and
the BSE solutions of two-particle correlation functions.
We then describe the computational setup for our calcu-
lations and validate the numerical accuracy of our com-
bined real- and transition-space implementation of the
GW approximation by comparison to calculations with
a fully plane-wave framework. Finally, we benchmark
the accuracy of one-particle Green’s functions obtained
at various levels of GW theory, as well as the BSE pre-
dictions built upon these Green’s functions, and discuss
the effects of the vertex function and self-consistent GW
on predictions of IPs, EAs, and neutral singlet excitation
energies.

II. THEORY

A. One-particle Green’s function

The one-electron excitation spectrum, associated with
the removal or addition of an electron to a system, can
be obtained from the one-particle Green’s function G.
When the chemical potential is set at the vacuum level,

quasiparticle energies are given by εi, the positions of
the poles of G. IPs are predicted by −εi for quasiparti-
cles corresponding to the energy needed to remove elec-
trons (from occupied states), while EAs are predicted by
−εi for quasiparticles corresponding to the energy gained
by the system when adding an electron (to unoccupied
states). Note that we use somewhat unconventional ter-
minology: IP indicates the binding energy for any elec-
tron in the neutral molecule (not just the most loosely-
bound electron), and EA indicates the energy released
when adding an electron to any unoccupied orbital (not
just the lowest-lying unoccupied orbital), i.e., IPs are the
excitation energies of creating holes, and EAs are the ex-
citation energies of creating quasielectrons.

For spatial coordinates r, r′, r′′, and energy ω, G sat-
isfies the equation of motion

[ω −H0(r)]G(r, r′, ω)−
∫
d3r′′∆Σ(r, r′′, ω)G(r′′, r′, ω)

= δ(r, r′),

(1)

where δ is the Dirac delta function and

H0 = −1

2
∇2 + VH(r) + V0(r) (2)

is a mean-field Hamiltonian composed of the kinetic en-
ergy operator, the Hartree (Coulomb) potential VH , and
a local external potential V0. Contributions to the ex-
ternal potential can include the ionic potential and a
mean-field exchange-correlation potential, and ∆Σ is the
difference between the self energy Σ and the exchange-
correlation contribution from H0. For the specific case of
a DFT-LDA mean-field Hamiltonian with corresponding
exchange-correlation potential Vxc,

∆Σ(r, r′, ω) = Σ(r, r′, ω)− Vxc(r)δ(r, r′). (3)

The mean-field Green’s function G0 that corresponds
to the solution of Equation 1 when ∆Σ = 0 is used in the
Dyson equation for G,

G(12) = G0(12) +

∫
d(34)G0(13)∆Σ(34)G(42), (4)

in which space-time variables are expressed in many-body
notation: 1 ≡ (r1, t1). To obtain the interacting one-
electron Green’s function, the Dyson equation above can
be solved self-consistently with the following equations:

χ(12) = −i
∫
d(34)G(13)Γ(34, 2)G(41+), (5)

W (12) = VH(12) +

∫
d(34)VH(13)χ(34)W (42), (6)

Σ(12) = i

∫
d(34)G(13)W (41+)Γ(32, 4), (7)
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and

Γ(12, 3) = δ(12)δ(13)

+

∫
d(4567)

δΣ(12)

δG(45)
G(46)G(75)Γ(67, 3),

(8)

where χ is the polarizability, W is the screened Coulomb
interaction, Γ is the vertex function, and 1+ denotes that
t→ t+ δ for some positive infinitesimal δ.

In the GW approximation,25 the one-particle Green’s
function is still solved via Equations 4-7, but the vertex
function is approximated as

Γ(12, 3) = δ(12)δ(13). (9)

This approximation removes the need to evaluate a four-
point integral and is equivalent to expanding the Green’s
function to the first order in terms of the screened
Coulomb interaction.

Apart from this conventional GW approximation,
other approximate vertex functions have been derived
to include certain higher-order terms32–40 or to reflect
the response of density functionals.31,41–47 In the den-
sity functional approach, the polarizability (Eq. 5) is ex-
pressed within TDDFT. A consistent level of approxima-
tion is maintained by replacing Eq. 8 with

Γ(12, 3) = δ(12)δ(13)

− iδ(12)fxc(1)

∫
d(45)G(14)G(51+)Γ(45, 3),

(10)

where the expression above assumes that the exchange-
correlation kernel fxc = δVxc

δρ is local. This is the form of

the LDA-derived vertex (ΓLDA) used in this work. While
past results indicate that ΓLDA is still a rough approxima-
tion for the true vertex, and the relative energy level spac-
ings are unchanged by ΓLDA,31,48 here we apply ΓLDA to
benchmark the absolute accuracy for quasiparticle ener-
gies.

In addition to the vertex approximation in GW , a
second approximation is often applied by computing a
perturbative result (G0W0) instead of a self-consistent
one; only one cycle through the equations above is
added onto the initial mean-field approximation. The
choice of the starting mean-field picture therefore im-
pacts the accuracy of the G0W0 prediction, as reflected
in several benchmarks of molecular systems.8,11,21 Com-
pared to G0W0, self-consistent GW solutions have cer-
tain advantages, including starting-point independence,
fulfillment of energy and momentum conservation laws,
and consistent values for observables when using differ-
ent partitioning functions.49 Self-consistent GW there-
fore produces good results when studying ground-state
properties.50–53 The spectral properties of extended sys-
tems, however, appear to be poorly described by self
consistent GW , with band energies worse than perturba-
tive calculations and valence bandwidth too large.50,53,54

These self-consistent results demonstrate the full impact

of approximating the vertex function in extended sys-
tems; perturbative GW results for spectral properties
apparently benefit from some counteracting effects be-
tween the vertex function and self-consistency.35,36 On
the other hand, self-consistent GW appears to be bet-
ter suited to describing spectral properties for finite
systems like atoms and molecules. In several exam-
ples with atom-centered basis sets, the accuracy of self-
consistent GW is competitive with G0W0 predictions us-
ing Hartree-Fock and hybrid functional mean-field start-
ing points.2–5,10,13,15,17,22,24,52,55 However, recent results
for fully self-consistent GW on a plane-wave basis set re-
port slightly larger errors.19 Overall, self-consistent GW
pushes the IPs upward compared to G0W0 with a DFT
starting point, and it shifts IPs slightly downward when
using a Hartree-Fock starting point.

Interpreting these varying benchmarks for self-
consistent GW is complicated due to additional approxi-
mations in the implementation of self-consistency. Many
calculations use eigenvalue self-consistency or the “di-
agonal approximation”, where quasiparticle wave func-
tions remain fixed as the mean-field wave functions. For
fully self-consistent and QSGW , however, the wave func-
tions are optimized as well. In QSGW ,30 the GW self-
energy is used to construct a better approximation for
the mean-field effective potential Vxc(r, r′) (generalizing
Equations 2 and 3), which is in turn used to build a
new set of mean-field Green’s functions. Using the new
Green’s functions, the cycle (including updates to W )
is repeated until self-consistency is reached between the
mean-field and the new G0W0 Green’s functions. The
accuracy of QSGW and fully self-consistent GW appear
to be comparable for molecules,15 and in this work, we
study self-consistency in the form of QSGW .

B. Two-particle correlation function

The two-particle correlation function L associated with
the interacting two-particle Green’s function is the solu-
tion to the BSE, and can be used to understand response
functions associated to neutral excitations. In its spectral
form, L is written in terms of normalized eigenvectors Al

and poles at energy Ωl, which can be associated to opti-
cal excitation energies. As a result, the absorption cross
section σ(E) is expressed in terms of these quantities by
summing over the eigenvectors index l and Cartesian di-
rections β = {x, y, z}:

σ(E) =
8π2e2

3c

∑
l β

[
Ωl

(∫
drρl(r)β

)2

δ(E − Ωl)

]
,

(11)
with

ρl(r) =
∑
vc

ϕc(r)ϕv(r)Alvc, (12)

where ϕc and ϕv are the wave functions associated to the
quasiparticle that make up the exciton.
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The BSE can be cast into a Dyson equation for L as

L(12, 34) = L0(12, 34)

+

∫
d(5678)L0(12, 56)K(56, 78)L(78, 34),

(13)

where

L0(12, 34) = G(13)G(24), (14)

with G being the one-particle Green’s function. The
electron-hole interaction kernel can be expressed as

K(56, 78) = VH(57)δ(56)δ(78)+
∂Σ(56)

∂G(78)
. (15)

For computational efficiency, the energy dependence
of K is typically left out of standard GW -BSE calcu-
lations, and we do the same in this work. Physically,
the screening should be evaluated at the frequency cor-
responding to that of the exciton binding energy, which
is in general a small fraction of the excitation energy of
the molecule. Therefore, the use of static screening is a
good approximation. Dynamical effects also appear to
be canceled by high-order vertex corrections left out of
standard GW .56,57

Finally, from the equations above, we see that the
quality of the two-particle correlation function obtained
from the BSE is completely dependent on the quality
of G as well as the approximations to the kernel. In
the GW -BSE formalism,41,58 G is determined via the
GW approximation. We also note that TDDFT calcu-
lations can be viewed in a BSE framework. In Casida’s
equations for linear-response TDDFT,59 G is constructed
from Kohn-Sham DFT wave functions and energies (in-
stead of GW quasiparticle wave functions and energies),

and ∂Σ(56)
∂G(78) ≡ fxc. Further similarities between GW -BSE

and TDDFT have been discussed in Ref. 60.

III. COMPUTATION

A. Real-space vs. plane-wave implementations

The first-principles results presented in this work are
computed using a real-space discrete grid and transition-
space formalism for ground-state and excited-state cal-
culations, respectively, and are validated by compari-
son to G0W0 calculations using a plane-wave basis set
formalism. For all calculations, Kohn-Sham DFT-LDA
is the mean-field starting point, and molecular geome-
tries are optimized in PARSEC.26 In addition, all calcu-
lations use the same Trouiller-Martins norm-conserving
pseudopotentials generated within APE.61 Although the
pseudopotential approximation neglects core polarization
effects and core-valence interactions, we expect the asso-
ciated errors to be small on our particular test set (< 100

TABLE I. Comparison of real-space (second column) and
plane-wave (third column) frameworks for the GW calcula-
tions performed in this work. Wave functions in the real-space
basis are represented on a sphere of radius R with grid spac-
ing hgrid, while wave functions in the plane-wave basis are
described in a cuboid boxes of sizes Li and with plane-wave
cutoff energy Eψcut. We denote by N the overall system size,
by Ntot the index of the highest-energy Kohn-Sham state in-
cluded in GW summations, by Nfreq and Eχcut the number
of frequencies and the cutoff for plane-wave coefficients that
represent the dielectric matrix, respectively, and by ∆E the
energy spacing between two evaluations of Σ(E).

Mean-field calculation: EDFT, ψDFT

Software PARSEC
Quantum

ESPRESSO

Boundary
conditions

Confined:
ψ(rb) = 0

Periodic:
in phase (k=0)

Wave-function
basis

Real-space grid Plane waves

GW calculation: Σ, G, W

Software RGWBS BerkeleyGW

Spatial basis
for χ

Orbitals Plane waves

Dynamical
descript. of χ

Lehmann/spectral
representation

Explicit calc.
at various freqs.

Σ integration
Sum over all

poles
Contour deform.

formalism

Quasiparticle
energy solver

Cubic spline
interpolation
(∆E = 1 eV)

Linear spline
interpolation

(∆E = 0.2 eV)

Comp. scaling O(N6) O(N4)

Memory scaling O(N4) O(N4)

Parameters

Size of simulation
region

R = 12–20 bohr L= 15–35 bohr

Wavefunction
convergence

hgrid = 0.25 bohr Eψcut = 800–1 000 eV

Max. number of
states incl. (Ntot)

Ntot ≤ 3 166 Ntot ≤ 160 000

Energy of last
state incl. (Elast

DFT)
Elast

DFT ≤ 90 eV Elast
DFT = Eψcut

Polarizability
basis

Transitions among
all states ≤ Ntot

Eχcut = 200–350 eV
Nfreq = 25–100

meV error), since core electrons are tightly bound.62 Ad-
ditional information about pseudopotential and molecu-
lar geometries are available in our Supplemental Mate-
rial.

Since real-space and plane-wave calculations are per-
formed at the same level of theory, the comparison of
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their G0W0 energies allows us to quantify the error as-
sociated with any remaining differences in their numer-
ical implementations. As is explained in this section
(and summarized in Table I), this includes not only
choice of basis, but also the expressions for integrating
the GW self-energy, techniques for accelerating the sum-
over-states convergence, and methods to solve for the
quasiparticle energy. We would like to emphasize that the
algorithms employed in conjunction with the real-space
and plane-wave implementations are not necessarily im-
posed by the given basis set; some are chosen because
they are the best available option in each software pack-
age.

For our combined real-space, transition-space
studies, we perform Kohn-Sham DFT calculations
with PARSEC26 and excited-state calculations with
RGWBS.27 Wave functions are defined on a uniform
grid within a sphere, and the converged grid spacing is
0.25 bohr. Due to the confined boundary conditions,
simulation cells must be sufficiently large to avoid
spurious interactions with the boundary walls. We
find that the wave functions of the lowest unoccupied
molecular orbitals (LUMOs) and all occupied orbitals
are converged within 10 meV for simulation cells that
have radii of 12 bohr for single-ring molecules, or 14
bohr for double-ringed molecules.

For calculations in the plane-wave basis, we perform
ground-state Kohn-Sham DFT calculations using Quan-
tum ESPRESSO28 and excited-state calculations with
BerkeleyGW.29 Due to the periodic nature of plane-wave
basis sets, we need to carefully consider the spurious in-
teractions between repeated supercells. Interactions aris-
ing at the GW level are removed by numerically truncat-
ing the Coulomb potential.29 For this truncation scheme
to be accurate, our simulation cell must be at least twice
as big in each Cartesian direction as the region which
contains the molecule. We first perform our ground-state
DFT calculation on a large unit cell to find the rectan-
gular cuboid which contains a large fraction (99%) of the
ground-state charge density. We then double this cuboid
in each direction and use it as our unit cell. For such unit
cells, however, we also need to account for the almost-
rigid shift in the Kohn-Sham eigenvalues due to the spu-
rious interactions between repeated supercells. To accu-
rately determine the energies with respect to the vacuum
level, we subtract the electrostatic potential averaged at
the surface of the supercell from the mean-field eigenval-
ues, which leads to a rigid shift of the quasiparticle ener-
gies by about 500 meV. We then repeat this procedure on
unit cells that are twice and three times as large, with the
largest supercells correcting the quasiparticle energies by
an amount that ranges from 0 up to 70 meV, depending
on the molecule. We obtain final Kohn-Sham eigenvalues
via extrapolation and estimate that the corrected eigen-
values for occupied states are accurate to within 10 meV.

For both the real-space and plane-wave frameworks,
Equation 1 is represented in terms of quasiparticle quan-

tities:[
−1

2
∇2 + VH(r) + V0(r) + ∆Σ(EQP

j )

]
ψQP
j = EQP

j ψQP
j ,

(16)

where EQP
j is the energy and ψQP

j is the wave function
of quasiparticle in state j. The solution to the above
equation requires the evaluation of the GW self-energy

at EQP
j , which appears on both sides of the above equa-

tion but is not known a priori. In RGWBS, we explicitly
compute Σ(E) in an energy range from 10 eV below to
10 eV above each Kohn-Sham eigenvalue (21 points total
per eigenvalue, with an energy spacing ∆E = 1 eV),
and use a cubic spline interpolation of Σ(E) to solve

for EQP
j .27 In BerkeleyGW, we first obtain an approx-

imation EQP-HL
j to the quasiparticle energy using the

Hybertsen-Louie generalized plasmon-pole model41. We
then evaluate Σ(E) on 9 distinct points per eigenvalue in

an energy range from 0.8 eV below and above EQP-HL
j ,

where sucessive evaluations are separated by an energy of

∆E = 0.2 eV. The quasiparticle energy EQP
j is found by

performing a piecewise linear interpolation of Σ(ω). The
numerical difference between the RGWBS and Berke-
leyGW quasiparticle energy solvers due to these differ-
ences is expected to be minimal, since the self-energy
has a nearly linear slope near the quasiparticle energy.

The expression for the GW self-energy Σ at a fixed
energy is given by Eq. 7. While the numerical represen-
tation of W varies depending on the choice of integration
technique (described below), the Green’s function in the
integrand is expressed as

G(r, r′;E) =
∑
n

ϕn(r)ϕn(r′)

E − εn + i0+ · sgn(εn − εF )
, (17)

where ϕn are wave functions, εn are energies of the quasi-
particle states used to construct G, and εF is the Fermi
energy. The sum over n converges very slowly with re-
spect to the total number of states, and is one of the
primary bottlenecks for GW computations.

In the GW calculations performed with the RGWBS
code, the integral for Σ is split into a bare (Fock) ex-
change term and a correlation term. The computa-
tion of these terms requires a summation over the poles
of G (sum over states) as well as the poles of the
polarizability.27 In BerkeleyGW, while calculations still
involve a sum over states, the polarizability is stored in
the form of dielectric matrix εGG′ , and its full dynam-
ical effects are computed via the contour deformation
technique.63,64 By eliminating the explicit summation of
poles in the polarizability, the formal computational scal-
ing is reduced from O(N6) to O(N4). Nevertheless, we
observe that RGWBS is faster than BerkeleyGW for the
molecules in our test set. This is due to a smaller compu-
tational prefactor, most likely arising from the efficient
spectral representation of the polarizability matrices for
small molecules, but becomes prohibitively expensive for
extended systems with a continuum of transitions.
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Also, in the calculations performed with BerkeleyGW,
we find that some quasiparticle solutions lie very close to
poles of the self-energy and are thus sensitive to the con-
vergence of the dielectric matrix. These states also tend
to move away from these poles during self-consistent GW
calculations or when starting the G0W0 calculations from
a different mean-field theory65. Therefore, we have not
reported the plane-wave G0W0 energies of these states.
However, these numerical instabilities are not observed
in RGWBS calculations, either due to the different fre-
quency representation of the polarizability matrix, or
due to differences in the resonant and continuum states,
which affect the higher-energy part of the polarizability
matrix.

Both RGWBS and BerkeleyGW exploit techniques
that improve convergence and reduce the total num-
ber of states needed in their sums over states. In RG-
WBS, we add a correction based on half the static
Coulomb-hole screened exchange (COHSEX) to approx-
imate the remainder of a truncated sum over quasipar-
ticle states.66–68 To accelerate convergence of the sum-
over-transitions (poles of the polarizability), we com-
pute the self energy at various levels of convergence
(Nstates satisfying EDFT(Nstates) = {20, 30, ..., 90} eV
where EDFT(Nstates) is the Kohn-Sham DFT eigenvalue
of the highest-energy state included in the G and polariz-
ability summations), and obtain a weighted 1/Nstates ex-
trapolation for a best estimate of numerically converged
GW self energies.68–70 The extrapolation produces IPs
50-100 meV larger than the most converged calculation.
Note that while we choose the same cutoff of Nstates for
both the calculation of the polarizability and the sum
over states, different cutoffs can be applied to these sep-
arate summations.

While performing excited-state calculations with
BerkeleyGW, we noticed that it is possible to combine
several high-energy orbitals having energies about 2%
apart from each other into single, unnormalized states
for the summation over states. This introduces an error
of at most 15 meV, while dramatically speeding up the
GW calculations. We note that a similar scheme was also
recently proposed by Gao et al.71. Since we include the
full Hilbert space in the sum over states, for both the cal-
culation of the self energy and the dielectric matrix, the
main convergence parameter for our plane-wave GW cal-
culations is the energy cutoff |G|2 of εGG′ . We estimate
that the quasiparticle energies calculated using a cutoff of
20 Ry for the dielectric matrix are converged to within
90 meV. We also perform GW calculations at smaller
cutoffs of 15 and 17 Ry and extrapolate the quasiparticle
energies as a function of the energy cutoff, which gives
accurate extrapolated energies to within approximately
10 meV. For the contour deformation sampling of the
polarizability, we find that 15 imaginary frequencies, as
well as a set of real frequencies spaced by 250 meV, are
sufficient to sample the dielectric matrix and converge
most GW quasiparticle energies to within 15 meV. For
the reported quasiparticle states, we estimate their abso-

TABLE II. Comparison of EAs in eV, as predicted by real-
space DFT (PARSEC) and transition-space G0W0 (RG-
WBS), and plane-wave DFT (Quantum Espresso, denoted by
QE) and G0W0 (BerkeleyGW). The symmetry of each unoc-
cupied orbital is indicated by σ∗, π∗, or Rydberg 3s. TTF is
in ”boat” form, deviating slightly from the planar geometry
such that orbitals are not purely σ or π.

DFT-LDA G0W0@LDA
Orbital PARSEC QE RGWBS BerkeleyGW

Benzene
1e2u (π∗) 1.35 1.36 -0.84 -0.86
4a1g (3s) 0.20 0.76 -1.37 -0.25

Naphthalene
2b1g (π∗) 2.26 2.26 0.38 0.37
2b2g (π∗) 1.51 1.51 -0.31 -0.33
3b3u (π∗) 0.76 0.74 -1.11 -1.11
10ag (3s) 0.29 0.77 -1.05 -0.17

Thiophene
4b1 (π∗) 1.50 1.51 -0.69 -0.69
8b2 (σ∗) 0.14 0.31 -1.93 -1.33
2a2 (π∗) -0.19 -0.18 -2.38 -2.34
12a1 (3s) 0.11 0.65 -1.34 -0.25

Thiadiazole
4b1 (π∗) 2.86 2.87 0.62 0.54
8b2 (σ∗) 0.96 0.98 -1.40 -1.34
2a2 (π∗) 0.66 0.67 -1.67 -1.66
12a1 (3s) 0.19 0.71 -1.23 -0.23

Benzothiazole
7a′′ (π∗) 2.26 2.27 0.34 0.32
8a′′ (π∗) 1.58 1.59 -0.33 -0.34
30a′ (σ∗) 0.91 0.98 -0.99
9a′′ (π∗) 0.71 -1.20
31a′ (3s) 0.22 -1.06

TTF
17a1 1.79 1.80 -0.15 -0.09
12b2 1.60 1.60 -0.32 -0.29
12a2 1.22 1.22 -0.67 -0.59
15b1 0.98 0.99 -0.62 -0.56
13b2 0.69 0.73 -1.23
16b1 0.46 0.62 -1.26
18a1 (3s) 0.37 0.79 -0.95 -0.17

lute energies are converged to within 50 meV.

B. DFT and G0W0 comparison

For the real-space and plane-wave basis sets, we match
orbitals according to their wave function symmetry and
find that the mean-field DFT-LDA energies are in good
agreement with each other. The two frameworks predict
eigenvalues that deviate no more than 12 meV for our
benchmark test set, which includes the LUMOs (which
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FIG. 1. Error of the IPs of all molecules predicted via G0W0,
relative to experiment.72–77 Black circles are computed us-
ing RGWBS (real-space framework) and orange squares are
computed using BerkeleyGW (plane-wave framework).

are bound by DFT-LDA) and occupied orbitals with ex-
perimental IPs that are less than 15 eV. We also assess
additional low-lying unoccupied orbitals that DFT-LDA
predicts to be bound (Table II). For the localized unoc-
cupied orbitals (σ∗ and π∗), energy differences are typ-
ically less than 20 meV; however, diffuse orbitals with
Rydberg (3s) character have eigenvalues that may differ
by more than 500 meV between the two frameworks. We
also observe that certain unbound orbitals, such as the
2a2 orbital of thiophene, are also highly localized.

At the G0W0 level of theory, differences between ener-
gies remain minimal: frontier (highest occupied and low-
est unoccupied) orbitals differ by no more than 80 meV,
and IPs are in good agreement (Figure 1), with only five

IPs differing by more than 100 meV in the entire test set
despite the different basis sets and numerical techniques.
For the energies corresponding to adding an electron to
low-lying unoccupied orbitals, those that are converged
with respect to simulation cell size at the DFT-LDA level
also have comparable G0W0 energies (Table II). How-
ever, the energies of those affected by the boundary con-
ditions diverge even more at the G0W0 level. At an ex-
treme, G0W0 predictions of some EAs for Rydberg s or-
bitals differ by more than 1 eV.

These benchmarks of plane-wave GW calculation im-
plemented in BerkeleyGW, compared to real-space GW
implemented in RGWBS, confirm that numerical errors
for GW predictions are minimal in both frameworks, as
long as the orbitals studied are unaffected by bound-
ary conditions at the DFT level of theory. With this
validation, we expect that GW energies are numerically
converged to within 100 meV for localized orbitals and
proceed with a quantitative assessment of excitations be-
tween such orbitals; we qualitatively study trends for ex-
cited state properties involving continuum or Rydberg
states.

C. Additional computational details

In the remainder of this work, we examine how the
computed vertical IPs, EAs, and singlet excitation en-
ergies are affected by self-consistency and the choice of
vertex function in GW using the RGWBS code. While
we focus on trends for the predicted accuracy of each
method, tables containing computed energies and sym-
metries of quasiparticles and singlet excitations are avail-
able in our Supplemental Material.

For any calculation including ΓLDA, we maintain a
consistent level of approximation. Specifically, LDA
exchange-correlation contributes to both the screened
Coulomb interaction and the self energy for G0W0ΓLDA

and QSGWΓLDA calculations, and the BSE kernel asso-
ciated with one-particle Green’s functions that use ΓLDA

also has a LDA-derived term.27

QSGW and QSGWΓLDA calculations include a basis
of quasiparticles up to DFT energies of at least 10 eV
(∼ 90 states for the molecules considered). Calcula-
tions are performed summing over states up to DFT en-
ergies of 40 eV, and the difference in energy compared
to the perturbative calculation (G0W0 or G0W0ΓLDA at
the 40 eV sum-over-states cutoff) is added to the best-
estimate perturbative extrapolation to produce best-
estimate QS quasiparticle energies. QS quasiparticles
of most molecules are optimized until energy differences
are less than 10 meV, except for benzothiazole and TTF,
which are only optimized to 80 and 50 meV, respectively.

The TDLDA and BSE calculations are converged
within 100 meV when summing over all orbitals up to
Kohn-Sham DFT energies of 20 eV. For both TDLDA
and BSE calculations, we do not use the Tamm-Dancoff
approximation.
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FIG. 2. (Color online) GW self-energy corrections to Kohn-
Sham DFT eigenvalues for benzene (BNZ), naphthalene
(NPH), thiophene (THP), 1,2,5-thiadiazole (THD), benzoth-
iazole (BZT), and TTF. The shifts for orbitals with π charac-
ter are in black, and shifts for all other orbitals (σ or lone pair
character) are shown in cyan. The “boat” form of TTF is not
aromatic and its self-energy corrections (dark blue) cannot be
partitioned into two groups as in the other molecules.

IV. GW AND BSE BENCHMARKS

A. Vertical IPs and EAs

The G0W0 IPs shown earlier in Figure 1 indicate
good agreement with experimental measurements. We
now examine whether GW calculations are affected by
the physical character of the orbitals. In our aro-
matic molecule test set, benzene, naphthalene, thio-
phene, 1,2,5-thiadiazole, and benzothiazole all have or-
bitals with purely σ or π character. However, for TTF,
we study the “boat” form, whose small deformation from
the aromatic planar geometry prevents the existence of
delocalized π orbitals.

On this test set, we see no correlation between the er-
rors of G0W0-predicted IPs and the type of the orbitals.
In contrast, we do observe differences in the magnitude of
the GW correction, as has also been noted in some previ-
ous studies of molecules.6,10 (Similar observations of or-
bital character dependence of the self-energy corrections
were also found in condensed matter systems.41) The
self-energy corrections obtained from G0W0 and start-
ing from DFT-LDA are shown in Fig. 2. For aromatic
molecules, corrections for σ (including lone-pair) orbitals
are all larger than corrections for π orbitals, while TTF
does not exhibit any partitioning. The difference between
GW corrections for occupied π and σ orbitals persists
across the variants of GW in our study, although we note
that similar trends do not apply to unoccupied σ∗ and π∗

orbitals. This reflects a systematic error of the DFT-LDA
mean-field starting point: while DFT-LDA underbinds
all occupied orbitals, it is more accurate when model-
ing the delocalized π orbitals compared to the localized
σ orbitals in aromatic molecules. In addition, the rel-
atively large range of GW self-energy corrections result
in rearrangements of the orbital energy orderings when

       εG0W0 -εQP (eV)
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FIG. 3. (Color online) Shift of quasiparticles energies
from predictions at G0W0, for GW variants including self-
consistency and vertex corrections.

going from DFT-LDA to GW . The resulting orderings
are consistent with literature. Perturbative GW does im-
properly predict that the 3e2u orbital in benzene is more
bound than the 1a2u orbital, but this is corrected upon
application of self-consistency. Apart from this example
and some near-degenerate IPs, there are no changes in
GW -predicted energy orderings due to ΓLDA and quasi-
particle self-consistency.

The overall effects of ΓLDA and quasiparticle self-
consistency, in relation to conventional G0W0, are shown
in Fig. 3. Compared to G0W0 IPs, G0W0ΓLDA pre-
dictions are consistently shifted downward by 0.69 eV
(standard deviation 0.05 eV). The IPs predicted by
QSGWΓLDA also remain nearly a constant shift below
those predicted by standard QSGW , with a nominal in-



9

-0.9

-0.6

-0.3

 0.0

 0.3

∆I
P

1
 (

e
V

)
G0W0

G0W0ΓLDA

QSGW
QSGWΓLDA

 0.0

 0.2

 0.4

 0.6

 0.8

BNZ NPH THP THD BZT TTF

M
A

E
 (

e
V

)

FIG. 4. (Color online) Error for the first IP (top) and the
mean absolute error of orbitals with IPs up to 15 eV (bottom),
relative to experiment for each molecule.72–77

crease of the energy difference to 0.79 eV (standard de-
viation 0.04 eV). However, quasiparticle self-consistency,
both with and without ΓLDA, makes the occupied or-
bitals more bound compared to the perturbative calcula-
tions. While the first IP is only slightly shifted upward,
deeper orbitals exhibit a greater shift. The separate ef-
fects of the nearly-constant shift of eigenvalues after ap-
plying ΓLDA and the opening of the GW gap upon self-
consistency agree with previous benchmarks mentioned
in Sec. II A. Our results also demonstrate that ΓLDA and
self-consistency still behave with the same trends when
combined in QSGWΓLDA as they do separately.

For the EAs, analogous trends exist for the shifts from
G0W0 with ΓLDA and self consistency. G0W0ΓLDA cal-
culations give EAs lower than G0W0 by 0.68 eV (stan-
dard deviation 0.04 eV). Because these shifts are nearly
identical to those of the IPs, the fundamental gap is
practically unchanged going from G0W0 to G0W0ΓLDA.
The LUMOs computed via QSGWΓLDA are on aver-
age 0.77 eV lower than QSGW (standard deviation 0.07
eV), again a comparable shift to the occupied states
that results in an essentially unchanged fundamental
gap whether or not the vertex correction is applied at
the self-consistent level. In constrast, quasiparticle self-
consistency increases the fundamental gap by 0.8-0.9 eV,
since in both QSGW and QSGWΓLDA, the EAs move in
the opposite direction from IPs and become more nega-
tive (less bound) compared to perturbative results.

Experimental measurements exist for IPs up to 15 eV
in most of the molecules, and we find that of the vari-
ous types of GW benchmarked here, G0W0 predictions
of IPs (corresponding to hole-creation quasiparticle en-
ergies) still give the best agreement with experimental
measurements, all lying within 0.6 eV of measured val-

ues with a mean absolute error less than 0.3 eV (Fig. 1
and Fig. 4). Predictions from G0W0ΓLDA are too low,
consistent with a benchmark of single atoms.48 How-
ever, upon applying quasiparticle self-consistency, the in-
creased binding of the quasiparticle energies results in a
switching of the trends: while the QSGW IPs’ increase
from perburbative values result in a decrease in accu-
racy, the increase in QSGWΓLDA IPs improves agree-
ment with experiment. Our results concerning self consis-
tency stand in contrast to past calculations using atom-
centered basis sets, which suggest that eigenvalue, QS,
and fully self-consistent GW can improve spectral prop-
erties for molecules.2–5,10,13,15,17,22,24,52,55 At the same
time, the systematic deterioration in accuracy in our
QSGW also differs from a plane-wave implementation
of self-consistent GW , which does not show a clear trend
for increasing or decreasing accuracy with the same DFT-
LDA starting point.19 We observe that for self-consistent
GW , numerical considerations such as the choice of a
quasiparticle basis for self-consistency, as well as the ba-
sis set chosen to represent wave functions, must be better
understood before a consensus can be reached on the the-
oretical accuracy of self-consistent GW for molecules.

There are few measurements available for EAs; those
for benzene and naphthalene are reported in Table III
together with our GW predictions. For these EAs,
G0W0ΓLDA and QSGW are closest in value. EAs from
G0W0ΓLDA are in particularly good agreement with
CCSD(T), but both are too negative relative to exper-
iment. It is unclear whether these differences are due
to the difficulties in experimental measurement, or an
inaccurate representation of the unoccupied orbitals in
the calculations. In particular, the CCSD(T) performs
the higher-order corrections on a limited basis set, which
may numerically bind the wave functions, and simi-
larly, our perturbative calculations use a DFT-LDA elec-
tronic structure, a theory which over-binds the unoccu-
pied orbitals. Nevertheless, comparison of G0W0ΓLDA

and QSGW allows us to predict that the first EA for
nearly all the aromatic molecules in our test set are neg-
ative; only 1,2,5-thiadiazole might have a positive EA.

Altogether, we see that no single variant of GW stud-
ied here is most accurate for both IPs and EAs. For
perturbative calculations, G0W0 is more accurate for
IPs, and G0W0ΓLDA is more accurate for EAs, while
among self-consistent calculations (which reduce or elim-
inate starting point dependence), QSGWΓLDA is more
accurate for IPs, and QSGW is more accurate for EAs.
This illustrates, with real molecules, an earlier prediction
derived from model systems: while a two-point DFT-
derived vertex can alleviate self-screening errors felt by
occupied orbitals, only a three-point vertex can be ex-
pected to treat both occupied and unoccupied orbitals
accurately.46 Nevertheless, we also note that the fun-
damental gaps of benzene and naphthalene computed
using QSGW (11.01 and 8.61 eV, respectively) and
QSGWΓLDA (10.98 and 8.57 eV) are nearly identical to
fundamental gaps determined from experimental IPs and
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TABLE III. First EA in eV with comparison to electron transmission spectroscopy (ETS) measurements78 and CCSD(T)79

calculations when available.

Molecule Orbital ETS CCSD(T) G0W0 G0W0ΓLDA QSGW QSGWΓLDA

Benzene 1e2u (π∗) -1.12 -1.526 -0.84 -1.55 -1.33 -2.12
Naphthalene 2b1g (π∗) -0.19 -0.477 0.38 -0.30 -0.15 -0.93
Thiophene 4b1 (π∗) -0.69 -1.38 -1.17 -1.94
1,2,5-Thiadiazole 4b1 (π∗) 0.62 -0.10 0.07 -0.76
Benzothiazole 7a′′ (π∗) 0.34 -0.35 -0.24 -1.04
TTF 17a1 -0.15 -0.76 -0.74 -1.36

CCSD(T) EAs (10.98 and 8.62 eV).
Our benchmarks show a cancellation between the ef-

fects of vertex corrections and GW self-consistency as
reported in earlier work,35,36,38 except here the cancella-
tion only exists for the IPs. For EAs, on the other hand,
we see that the vertex and self-consistency effects are still
roughly the same magnitude, but they shift in the same
direction from G0W0 predictions, such that QSGWΓLDA

compounds their effects instead of canceling them out.
Benchmarks on a larger and more diverse test sets may
be able to assess whether the comparable magnitudes
of self-consistency and vertex corrections are coinciden-
tal, or if they can be attributed to physical properties of
aromatic or sp-bonded molecules. For now, we simply
observe that for the molecules studied, G0W0 gives IPs
closest to experiment, and G0W0ΓLDA gives EAs closest
to best available theoretical values at a relatively cheap
computational cost.

B. Vertical singlet excitation energies

Singlet excitation energies may be obtained either by
TDLDA or by applying the BSE to GW electronic struc-
tures described in the previous section. In addition to ap-
plying the BSE to perturbative GW and self-consistent
GW , with and without ΓLDA, we also apply the BSE to
a mixed set of GW quasiparticles, where occupied or-
bitals are associated with G0W0 quasiparticle energies,
unoccupied orbitals have G0W0ΓLDA quasiparticle ener-
gies, and the screened interaction is computed using LDA
quantities without vertex contributions. The quasiparti-
cle wave functions in this case are given by the DFT
wave functions. This calculation, which we denote as
mixed GW -BSE, is motivated by the observation in the
previous section that G0W0 energies have the best agree-
ment with experimental values for IPs, while G0W0ΓLDA

energies are better for EAs.
In Fig. 5, we show the first-principles absorption spec-

tra up to excitations of 8 eV for each of the molecules in
our test set. The TDLDA spectra in the top row are com-
puted using two simulation cell sizes to illustrate the con-
vergence of the spectra with the spatial range of the cell.
While the lowest-energy excitations are in agreement, de-
viations are observed as excitation energy increases. The
remaining rows illustrate the spectra for each variant of

GW -BSE. Overall, the peaks of TDLDA, self-consistent
GW -BSE and mixed GW -BSE are mostly aligned, while
results from solving the BSE using quasiparticle quanti-
ties from perturbative G0W0 and G0W0ΓLDA exhibit a
red-shift of all peaks compared to the other spectra.

The singlet excitations obtained in GW -BSE and
TDLDA calculations involve excitations to two types of
unoccupied orbitals: unoccupied valence orbitals (molec-
ular orbitals constructed from atomic orbitals with the
same principal quantum number as the atoms’ valence
orbitals) and Rydberg orbitals (molecular orbitals which
have contributions from atomic orbitals with principal
quantum number higher than the atoms’ valence or-
bitals). Singlet excitations with transitions primarily into
the localized valence orbitals are termed valence excita-
tions, and those with transitions primarily into the dif-
fuse Rydberg orbitals are termed Rydberg excitations.
We discuss the accuracy of GW -BSE and TDLDA calcu-
lations for each type of excitation separately.

Our detailed comparison of GW -BSE predictions of
valence excitations, including singlet states that are
symmetry-forbidden in linear optical processes, is shown
in the top panel of Fig. 6. All calculations are presented
as the difference from mixed GW -BSE predictions. The
choice of vertex is found to barely change excitation ener-
gies, with the inclusion of ΓLDA increasing energies by an
average of 0.09 eV for perturbative GW -BSE, and by an
even smaller average increase of 0.02 eV for QSGW -BSE.
As mentioned in the previous section, the energy differ-
ences between quasiparticles (both holes and quasielec-
trons) from G0W0 and G0W0ΓLDA essentially amounts
to a rigid shift, and energy differences between quasipar-
ticle levels remains unchanged. These small differences
in transition energies instead mostly arise from the inclu-
sion of ΓLDA in the BSE equation itself.

On the other hand, self-consistency in GW widens
both the fundamental and optical gap to significantly
increase excitation energies from the perturbative GW -
BSE results. QSGW -BSE has an average 0.91 eV in-
crease of singlet excitation energies over G0W0-BSE, and
QSGWΓLDA-BSE has an average 0.84 eV increase com-
pared to G0W0ΓLDA-BSE. Mixed GW -BSE also has an
optical gap larger than perturbative GW -BSE calcula-
tions by ∼0.6-0.7 eV, since by associating G0W0 energies
with occupied orbitals and G0W0ΓLDA energies with un-
occupied orbitals, the fundamental gap is increased by
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FIG. 5. (Color online) The absorption cross section for each of the molecules convoluted with a Gaussian broadening of 0.1 eV,
as predicted by various levels of theory. The TDLDAbig calculations are performed in simulation cells with radii of 20 bohr,
while TDLDAsmall simulation cells have radii that are either 12 bohr (for benzene, thiophene, and 1,2,5-thiadiazole) or 14 bohr
(for naphthalene, benzothiazole, and TTF). GW -BSE calculations are performed in the smaller simulation cells.

∼0.7 eV.

Comparison of our results for valence singlet excita-
tion energies to best previous theoretical results for ben-
zene, naphthalene, thiophene and 1,2,5-thiadiazole are
shown in the bottom panel of Fig. 6 and in the left panel
of Fig. 7. For benzene, naphthalene, and thiophene,
our self-consistent and mixed GW -BSE calculations have
fairly good agreement best previous theoretical values,
which are computed including contributions from singles,
doubles, and triples excitations.80–82 The mean absolute
difference across these three molecules is 0.78 eV for
G0W0-BSE, 0.68 eV for G0W0ΓLDA, 0.14 for mixed GW -
BSE, 0.25 for QSGW -BSE, 0.24 for QSGWΓLDA-BSE,
and 0.25 for TDLDA. For 1,2,5-thiadiazole, the cited cal-
culation only include singles and doubles excitations,83

and the mean absolute difference is 1.26 eV for G0W0-
BSE, 1.14 eV for G0W0ΓLDA, 0.58 eV for mixed GW -
BSE, 0.33 eV for QSGW -BSE, 0.29 for GWΓLDA-BSE,
and 0.61 for TDLDA. BSE calculations that follow per-
turbative GW calculations are all smaller than the ex-
citation energies from the best previous theoretical cal-
culations. For benzene, naphthalene, and thiophene, the
mean signed difference is -0.7 to -0.8 eV for G0W0-BSE
and G0W0ΓLDA-BSE. This is reduced to a mean signed
difference of approximately -0.1 eV for mixed GW -BSE.
For QSGW -BSE and QSGWΓLDA-BSE, the mean signed
difference is negative for benzene, but positive for naph-
thalene and thiophene.

Finally, we present the comparison between previous

theoretical best estimates and our results for Rydberg
excitations in Fig. 7. However, we caution that simu-
lation cells used for our GW -BSE calculations confine
the diffuse Rydberg wave functions and we thus only dis-
cuss qualitative trends for these excitations. To account
for the presence of confining walls, we make the assump-
tion that energy increase due to confinement remains con-
stant across all levels of theory, and plot GW -BSE ener-
gies from calculations in a small cell, shifted downward
by the difference between TDLDA calculations using a
large simulation cell (radius 20 bohr) and TDLDA calcu-
lations in a small cell used byGW -BSE. Our perturbative
GW -BSE and TDLDA calculations predict comparable
Rydberg excitation energies (difference of -0.01 to 0.32
eV), in contrast to the red-shift observed for perturba-
tive GW -BSE predictions of valence excitations. Both
perturbative GW -BSE and TDLDA underestimate the
best previous theoretical values. Application of quasi-
particle self-consistency or the mixed GW -BSE technique
increases excitation energies by approximately 0.4 or 0.6
eV, respectively, which improves agreement with past re-
sults.

Our calculations confirm that TDLDA predictions for
localized valence excitations within sp-bonded molecules
are in good agreement with higher-level quantum chem-
istry calculations, but the LDA functional’s incorrect
asymptotic behavior results in a deterioration of its accu-
racy when long-range interactions become important, as
in Rydberg excitations.84,85 Within TDDFT, functionals
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berg (right) excitation energies.80–83

that better account for exchange and correlation interac-
tions must be used to produce good optical spectra for
molecules.86–88 The GW -BSE framework, on the other
hand, treats Rydberg and valence excitations on equal
footing. We see that the relatively inaccurate DFT-LDA
mean-field starting point is already sufficient to initialize
(self-consistent or mixed) GW -BSE calculations that de-
scribe of neutral excitations in aromatic molecules with
improved accuracy, whether the excitations have valence
or Rydberg character.

V. CONCLUSIONS

In this work, we perform GW computations to inves-
tigate the many-body perturbation-theory predictions of
excited-state properties in aromatic molecules. Our com-
bined real-space and transition-space implementation is
validated by comparison to computations on a plane-
wave basis set, with all calculations explicitly including
the dynamic effects of the polarizability matrix. Given
the myriad differences between numerical algorithms and
convergence techniques, we find that G0W0 energies ob-
tained from RGWBS (real- and transition-space) and
BerkeleyGW (plane-wave) are in remarkable agreement,
with nearly all energies agreeing to within 0.1 eV for oc-
cupied and low-lying unoccupied orbitals (that is, for the
single-particle excitation energies).

The uniform grid used in our real-space computations
allows the simulation of orbitals with localized, diffuse,
or even continuum character. We examine the accuracy
of the IPs, EAs, and the GW -BSE excitation energies for
valence singlet excitations, and study the trends of Ry-
dberg excitations within GW -BSE. Our ability to simu-
late Rydberg excitations is limited by the computational
cost, but to our knowledge, this is the first attempt to
even qualitatively assess the accuracy of Rydberg exci-
tation energies within GW -BSE. Our simulations show
that self-consistent GW -BSE predicts larger Rydberg ex-
citation energies than TDLDA, which results in better
agreement with previous best-estimate values.

The spectral representation of the polarizability in our
transition-space calculations results in an efficient yet ac-
curate calculation of GW self energies. We therefore
use this framework to analyze the performance of vari-
ants of GW , including the effects of ΓLDA and quasi-
particle self-consistency, both alone and combined. We
see that alone, ΓLDA leaves energy level spacings nearly
the same, but that all IPs and EAs are shifted up by
∼0.7 eV to become less bound for the molecules consid-
ered. Quasiparticle self-consistency applied to conven-
tional GW opens the fundamental gap for all molecules,
increasing both the hole and quasielectron energies rel-
ative to the results of perturbative GW . In the com-
bined QSGWΓLDA, the overall change in self-energies is
essentially the two independent corrections combined; we
do not observe higher-order interactions of quasiparticle
self-consistency and ΓLDA. Nevertheless, we note that
the ΓLDA corrections and self-consistency effects are of
similar magnitude on our test set. This results in a can-
cellation of effects for IPs, and a compounding of effects
for EAs, such that G0W0 and QSGWΓLDA are closer
to previous best-estimate values for occupied orbitals,
and G0W0ΓLDA and QSGW are better for unoccupied
orbitals. Our results show again that a three-point ver-
tex is needed to improve accuracy beyond conventional
GW for modeling both occupied (electron removal) and
unoccupied (electron injection) states in molecules.

Our results on valence singlet excitations, with and
without ΓLDA and self-consistency, reflect the influence



13

of the quasiparticle input on the resulting BSE values.
Since ΓLDA leaves relative quasiparticle energies differ-
ences unchanged, the addition of this vertex to GW -BSE
calculations typically changes the predicted energies by
less than 0.1 eV. The underestimated fundamental gap
in perturbativeGW results in underestimated excitations
energies from perturbative GW -BSE, while the increased
fundamental gap of self-consistent GW is reflected in the
corresponding increase in the excitation energies for self-
consistent GW -BSE. For self-consistent GW -BSE, mean
absolute differences from best available previous theoret-
ical values are no larger than 0.33 eV for all molecules.
We also construct mixed GW quasiparticles whose IPs
and EAs are closest to the best available previous theo-
retical values, by using DFT-LDA wave functions, G0W0

energies for occupied orbitals, and G0W0ΓLDA energies
for unoccupied orbitals; the singlet excitation energies
of mixed GW -BSE are comparable to those from self-
consistent GW -BSE.

By focusing on the simple DFT-LDA starting point,
this work complements other recent publications that
seek to improve agreement between G0W0 calcula-
tions and experimental measurements by using alternate
mean-field starting points.8,11,21 Moving beyond the pop-
ular G0W0 method, we obtain a better theoretical under-
standing of the strengths and weaknesses of the perturba-
tive and self-consistent GW approximations, the vertex
function, and the BSE. Our work demonstrates the ca-
pabilities of a combined real-space and transition-space

GW -BSE implementation, as these methods become ever
more relevant in the study of molecules, clusters, and
other finite systems.
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L.H. and S.Ö. would like to thank the U.S. Department
of Energy Grant No. DE-FG02-09ER16072 for support.
Part of this research (F.H.J. and S.G.L) was supported
by the Scientific Discovery through Advanced Comput-
ing (SciDAC) Program on Excited State Phenomena
in Energy Materials funded by the U. S. Department
of Energy, Office of Basic Energy Sciences and of Ad-
vanced Scientific Computing Research, under Contract
No. DE-AC02-05CH11231 at the Lawrence Berkeley Na-
tional Laboratory which provided for algorithm and code
developments and simulations, and by the National Sci-
ence Foundation under grant DMR-1508412 which pro-
vided for basic theoretical analyses. J.S.C. and J.R.C.
also acknowledge support provided by the SciDAC pro-
gram funded by U.S. Department of Energy, Office of Sci-
ence, Advanced Scientific Computing Research and Ba-
sic Energy Sciences under award number DE-SC0008877.
All authors used resources at the National Energy Re-
search Scientific Computing Center, a DOE Office of Sci-
ence User Facility supported by the Office of Science of
the U.S. Department of Energy under Contract No. DE-
AC02-05CH11231.

∗ linda.hung@nist.gov
† ogut@uic.edu
1 Y. Ma, M. Rohlfing, and C. Molteni, J. Chem. Theory

Comput. 6, 257 (2010).
2 C. Rostgaard, K. W. Jacobsen, and K. S. Thygesen, Phys.

Rev. B 81, 085103 (2010).
3 X. Blase, C. Attaccalite, and V. Olevano, Phys. Rev. B

83, 115103 (2011).
4 S.-H. Ke, Phys. Rev. B 84, 205415 (2011).
5 C. Faber, C. Attaccalite, V. Olevano, E. Runge, and

X. Blase, Phys. Rev. B 83, 115123 (2011).
6 X. Qian, P. Umari, and N. Marzari, Phys. Rev. B 84,

075103 (2011).
7 X. Blase and C. Attaccalite, Appl. Phys. Lett. 99, 171909

(2011).
8 X. Ren, P. Rinke, V. Blum, J. Wieferink, A. Tkatchenko,

A. Sanfilippo, K. Reuter, and M. Scheffler, New J. Phys.
14, 053020 (2012).

9 B. Baumeier, D. Andrienko, Y. Ma, and M. Rohlfing, J.
Chem. Theory Comput. 8, 997 (2012).

10 N. Marom, F. Caruso, X. Ren, O. T. Hofmann,
T. Körzdörfer, J. R. Chelikowsky, A. Rubio, M. Scheffler,
and P. Rinke, Phys. Rev. B 86, 245127 (2012).

11 F. Bruneval and M. A. L. Marques, J. Chem. Theory Com-
put. 9, 324 (2013).

12 T. A. Pham, H.-V. Nguyen, D. Rocca, and G. Galli, Phys.
Rev. B 87, 155148 (2013).

13 F. Caruso, P. Rinke, X. Ren, A. Rubio, and M. Scheffler,
Phys. Rev. B 88, 075105 (2013).

14 V. Atalla, M. Yoon, F. Caruso, P. Rinke, and M. Scheffler,
Phys. Rev. B 88, 165122 (2013).

15 P. Koval, D. Foerster, and D. Sánchez-Portal, Phys. Rev.
B 89, 155417 (2014).

16 P. Boulanger, D. Jacquemin, I. Duchemin, and X. Blase,
J. Chem. Theory Comput. 10, 1212 (2014).

17 S. Körbel, P. Boulanger, I. Duchemin, X. Blase, M. A. L.
Marques, and S. Botti, J. Chem. Theory Comput. 10,
3934 (2014).

18 D. Hirose, Y. Noguchi, and O. Sugino, Phys. Rev. B 91,
205111 (2015).

19 L.-W. Wang, Phys. Rev. B 91, 125135 (2015).
20 K. Krause, M. E. Harding, and W. Klopper, Mol. Phys.

113, 1952 (2015).
21 F. Bruneval, S. M. Hamed, and J. B. Neaton, J. Chem.

Phys. 142, 244101 (2015).
22 D. Jacquemin, I. Duchemin, and X. Blase, J. Chem. The-

ory Comput. 11, 3290 (2015).
23 M. J. van Setten, F. Caruso, S. Sharifzadeh, X. Ren,

M. Scheffler, F. Liu, J. Lischner, L. Lin, J. R. Deslippe,
S. G. Louie, C. Yang, F. Weigend, J. B. Neaton, F. Evers,
and P. Rinke, J. Chem. Theory Comput. 11, 5665 (2015).

24 J. W. Knight, X. Wang, L. Gallandi, O. Dolgounitcheva,
X. Ren, J. V. Ortiz, P. Rinke, T. Körzdörfer, and
N. Marom, J. Chem. Theory Comput. 12, 615 (2016).



14

25 L. Hedin, Phys. Rev. 139, A796 (1965).
26 L. Kronik, A. Makmal, M. L. Tiago, M. M. G. Alemany,

M. Jain, X. Huang, Y. Saad, and J. R. Chelikowsky, Phys.
Status Solidi B 243, 1063 (2006).

27 M. L. Tiago and J. R. Chelikowsky, Phys. Rev. B 73,
205334 (2006).

28 P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car,
C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococ-
cioni, I. Dabo, A. Dal Corso, S. de Gironcoli, S. Fab-
ris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougous-
sis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari,
F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello,
L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P.
Seitsonen, A. Smogunov, P. Umari, and R. M. Wentzcov-
itch, J. Phys.: Condens. Matter 21, 395502 (2009).

29 J. Deslippe, G. Samsonidze, D. A. Strubbe, M. Jain, M. L.
Cohen, and S. G. Louie, Comput. Phys. Commun. 183,
1269 (2012).

30 S. V. Faleev, M. van Schilfgaarde, and T. Kotani, Phys.
Rev. Lett. 93, 126406 (2004); M. van Schilfgaarde,
T. Kotani, and S. Faleev, ibid. 96, 226402 (2006).

31 R. Del Sole, L. Reining, and R. W. Godby, Phys. Rev. B
49, 8024 (1994).

32 P. Minnhagen, J. Phys. C 7, 3013 (1974).
33 G. D. Mahan and B. E. Sernelius, Phys. Rev. Lett. 62,

2718 (1989).
34 P. A. Bobbert and W. van Haeringen, Phys. Rev. B 49,

10326 (1994).
35 H. J. de Groot, R. T. M. Ummels, P. A. Bobbert, and

W. van Haeringen, Phys. Rev. B 54, 2374 (1996).
36 E. L. Shirley, Phys. Rev. B 54, 7758 (1996).
37 A. Schindlmayr and R. W. Godby, Phys. Rev. Lett. 80,

1702 (1998).
38 R. T. M. Ummels, P. A. Bobbert, and W. van Haeringen,

Phys. Rev. B 57, 11962 (1998).
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R. Gómez-Abal, H. Jiang, C. Ambrosch-Draxl, and
M. Scheffler, New J. Phys. 14, 023006 (2012).

63 F. Bruneval, N. Vast, and L. Reining, Phys. Rev. B 74,
045102 (2006).
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Holland, M. A. MacDonald, M. A. Hayes, and W. von
Niessen, Chem. Phys. 224, 95 (1997).

73 P. M. Mayer, V. Blanchet, and C. Joblin, J. Chem. Phys.
134, 244312 (2011).

74 N. Kishimoto, H. Yamakado, and K. Ohno, J. Phys. Chem.
100, 8204 (1996).

75 T. Pasinszki, M. Krebsz, and G. Vass, J. Mol. Struct. 966,
85 (2010).

76 P. Rademacher, K. Kowski, A. Müller, and G. Bohlmann,
J. Mol. Struct. 296, 115 (1993).

77 A. J. Berlinsky, J. F. Carolan, and L. Weiler, Can. J.
Chem. 52, 3373 (1974).

78 P. D. Burrow, J. A. Michejda, and K. D. Jordan, J. Chem.
Phys. 86, 9 (1987).
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