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Optical measurements and band structure calculations are reported on 3D Dirac materials. The
electronic properties associated with the Dirac cone are identified in the reflectivity spectra of Cd3As2
and Na3Bi single crystals. In Na3Bi, the plasma edge is found to be strongly temperature dependent
due to thermally excited free carriers in the Dirac cone. The thermal behavior provides an estimate
of the Fermi level EF = 25 meV and the z-axis Fermi velocity vz = 0.3 eVÅ associated with the
heavy bismuth Dirac band. At high energies above the Γ-point Lifshitz gap energy, a frequency
and temperature independent ǫ2 indicative of Dirac cone interband transitions translates into an
ab-plane Fermi velocity of 3 eVÅ. The observed number of IR phonons rules out the P63/mmc
space group symmetry but is consistent with the P3̄c1 candidate symmetry. A plasmaron excitation
is discovered near the plasmon energy that persists over a broad range of temperature. The optical
signature of the large joint density of states arising from saddle points at Γ is strongly suppressed in
Na3Bi consistent with band structure calculations that show the dipole transition matrix elements to
be weak due to the very small s-orbital character of the Dirac bands. In Cd3As2, a distinctive peak
in reflectivity due to the logarithmic divergence in ǫ1 expected at the onset of Dirac cone interband
transitions is identified. The center frequency of the peak shifts with temperature quantitatively
consistent with a linear dispersion and a carrier density of n = 1.3 × 1017 cm−3. The peak width
gives a measure of the Fermi velocity anisotropy of 10%, indicating a nearly spherical Fermi surface.
The lineshape gives an upper bound estimate of 7 meV for the potential fluctuation energy scale.

I. INTRODUCTION

Topological concepts in condensed matter physics have
led to the realization of new states of matter.1 Ongoing
generalizations of topological concepts continue to gen-
erate profound discoveries. Many of the new predicted
emergent properties have been experimentally confirmed,
some analogous to concepts originating in particle physics
like the Dirac,2–11 Weyl,12 and Majorana fermion.13 In
the condensed matter version, Dirac fermions exist in
the valence and conduction bands of 3-dimensional (3D)
Dirac semimetals, which touch at a pair of points and dis-
perse linearly away from the nodes. These bands derive
from 4-fold degenerate band crossings that are protected
against gapping by crystal symmetry. If either crys-
tal inversion or time reversal symmetry is broken, each
Dirac node splits into a pair of opposite chirality Weyl
nodes, topological objects that act as a source or sink of
Berry’s phase curvature. This topological band struc-
ture effect is analogous to opposite-polarity magnetic
monopoles residing at the nodes in momentum space,
which fundamentally alter the semiclassical equations of
motion and Maxwell’s constitutive relations.14 Some of
the unique properties that may be exploited in poten-
tial technological applications include Fermi-arc surface

states, chiral pumping effects, and magneto-electric-like
effects in plasmonics and optics in the absence of an ap-
plied field.4–7,11,15–18

Unlike surface probes like photoemission and tunnel-
ing spectroscopy, optical measurements probe bulk band
structure and carrier dynamics over a broad range of en-
ergy scales. In many ways, optical measurements are
ideal probes of the bulk electronic properties of 3D Dirac
systems. Sensitive measurement of the free carrier re-
sponse is possible due to the low carrier densities achiev-
able in Dirac semimetals. The Dirac interband transi-
tions extend down to zero frequency as the carrier den-
sity becomes vanishingly small.18,19 This behavior of the
interband transitions gives rise to a logarithmic singu-
larity in the static dielectric constant. The logarithmic
divergence, analogous to the ultraviolet divergence en-
countered in quantum electrodynamics, leads to charge
renormalization16,17 and screening effects.20,21 Another
interesting aspect of 3D Dirac systems is the strong
electron-electron interactions characterized by the ratio
of the Coulomb to kinetic energy equal to an effective fine
structure constant e2/(~vF ǫ) that is substantially larger
than 1 for typical values of the Fermi velocity vF and
dielectric constant ǫ. This behavior is striking since the
interaction strength is independent of carrier density, and
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has been predicted to give rise to plasmaron modes at fi-
nite density that could be optically accessible.16,17,22 Op-
tical probes are also sensitive to predicted signatures of
the chiral anomaly as well as the underlying chiral nature
of the Weyl states using magneto-optical measurement
schemes in zero field.17,18,23–26

Since Na3Bi is highly reactive with air,27 no optical
measurements have previously been reported. Providing
broadband optical access to samples in a cryogenic envi-
ronment while protecting them from atmospheric water
and oxygen presents substantial obstacles. The high mo-
bility of Cd3As2,

28,29 historically known as a narrow band
semiconductor with inverted bands and non-parabolic
conduction band,30 attracted many optical studies over
the last half century.31,32 Only recently have theoretical
concepts been developed predicting a pair of Dirac cones3

and subsequent confirmation of their existence by sur-
face probe measurements.7–11 Therefore previous optical
studies do not report optical effects unique to a Dirac
cone except for two very recent optical measurements of
Cd3As2. One of these studies reports a nearly constant ǫ2
in the mid-IR spectral region interpreted as a Dirac cone
signature,33 while the other is a broadband cyclotron res-
onance study reporting a linear band structure.34

In this article, the optical spectra of Cd3As2 and Na3Bi
are presented together with parallel first-principles band
structure calculations. The expected optical signatures
and thermal occupation effects in a Dirac cone pair is
discussed in section II. The first optical characterization
of Na3Bi is reported and discussed in section III. In
section IV, a peak in reflectivity in Cd3As2 identifies the
onset of Dirac cone interband transitions. A summary of
results is presented in section V.

II. EXPECTED OPTICAL SIGNATURES IN

DIRAC CONE SYSTEMS

A. Interband transitions

In an ideal 3D Dirac cone with the Fermi level at the
node, interband transitions occur at all frequencies and
give rise to a linear conductivity σ1 ∼ ω/vF where vF
is the Fermi velocity and ω is the photon energy.18 At a
nonzero Fermi level, the interband transitions are blocked
by carrier occupation below ω = 2EF . The lost interband
spectral weight below 2EF gives rise to an equal free
carrier (Drude) spectral weight thereby satisfying the f-
sum rule.
Since the complex dielectric function is given by ǫ =

(4π/iω)σ, the Dirac cone interband transition contribu-
tion leads to ǫ2 = (1/6)Ndα

′Θ(ω− 2EF ) that is constant
above the transition onset, where Nd is the degeneracy of
the Dirac cone, α′ = e2/~vF is the effective fine structure
constant, and vF is the Fermi velocity. The frequency in-
dependence of ǫ2 results from cancellations that occur in
Fermi’s golden rule between the joint density of states
and the dipole transition matrix elements for a linear

L
if

sh
it

z
 g

a
p

ε 1
ε 2

,

ω
2ΕF ∆ΕLS

∆ELS

kzk

2EF

L
if

sh
it

z
 g

a
p

8

16

0

P
a

u
li 

B
lo

ck
e

d
 E

d
g

e
P

a
u

li 
B

lo
ck

e
d

 E
d

g
e

FIG. 1. (a) The model dispersion of a Dirac cone pair
(k⊥ ≡ kx = ky), which is used to numerically calculate the di-
electric function (ǫ = ǫ1+iǫ2), is graphed as solid red and blue
lines. The Fermi level (blue plane), EF , lies in the conduction
band between the Dirac point and the saddle-point located at
the Γ-point, midway between the Dirac nodes. Intersections
of the red planes with the model dispersions depict the initial
and final state energies of optical transitions for two cases:
the onset of Dirac cone transitions at the Pauli-blocked edge
ω = 2EF , and transitions between the two saddle points at
the Lifshitz gap energy ω = ∆ELS. In the graph, the blue-
dotted horizontal line is the expected ǫ2 in the low frequency
limit with the Fermi level at the Dirac node predicted by
the k · p dispersion35 with anisotropic Fermi velocities, where
vz2 = 5 eVÅ >> vz1 (see Appendix D). At finite frequency
in the vicinity of the Pauli-blocked edge, a highly anisotropic
Fermi surface will broaden the edge as qualitatively depicted
by the black-dashed curve of ǫ2. In the vicinity of the sad-
dle points, band structure calculations show that the dipole
transition matrix elements are suppressed, which reduces ǫ2
as qualitatively shown by the black dash-dotted curve.

dispersion.18,36

The Kramers-Kronig transformation of the interband

ǫ2 gives ǫ1 ∝ log ∆2−ω2

(2EF )2−ω2 where ∆ is an energy cut-off

defined by the bandwidth. Temperature broadening of
the interband transition onset is taken into account by
replacing the Heaviside step function in ǫ2 with a Fermi-
distribution function expression, which results in ǫ1 ∝
Re[log ∆2−ω2

(2µ−ıπT )2−ω2 ] where µ is the chemical potential

and T is the temperature.

For the case of Na3Bi, two Dirac cones are separated by

δkd = ±0.1Å
−1

along the kz direction.4,5 The conduction
and valence band of the Dirac cones merge, forming two
saddle points at the Γ-point midway between the nodes as
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FIG. 2. A single Dirac cone is presumed to be electron-hole
symmetric with a Fermi level EF = 25 meV in the conduc-
tion band. The chemical potential shown in panel (a) is nu-
merically calculated from the dispersion (red curve) and an-
alytically derived in the low temperature limit (black-dashed
curve). The carrier density and Drude weight of thermally
excited carriers are shown in panels (b) and (c), respectively,
where the contributions from electrons (blue), holes (green),
and the sum of the two (red), are plotted. The analytic so-
lution of the Drude weight in the low temperature limit is
shown as the black-dashed line in panel (c).

depicted by the idealized dispersion in Fig. 1. The Fermi
velocity vF ≈ 2.5 eV·Å at each Dirac node is reasonably
consistent with photoemission and transport measure-
ments, and band structure calculations.4–6,15,27,35,37,38

For illustration purposes, the Lifshitz gap at the Γ-point
is arbitrarily set at ∼ 4EF .
Considering this dispersion with the Fermi level set

at the Dirac node in the limit ω → 0, the two Dirac
cones are well described by the ideal case, so that ǫ2 =
(1/6)Nd α

′ ≈ 4. This low frequency value is depicted by
the dashed-blue line in Fig. 1, providing an estimated
scale of the expected interband optical response. This
scale also applies to the anisotropic Dirac cone case de-
rived from band structure calculations in the low fre-
quency limit (see Appendix D). At nonzero values of the
Fermi level, the Pauli-blocked edge occurs at ω = 2EF ,
giving rise to a step in ǫ2 and a distinctive cusp-like line-
shape in ǫ1 as shown in Fig. 1.

At higher photon energies, the nonlinearity of the
bands along kz between the nodes become increasingly
important. The saddle point region gives rise to a large

and rapidly changing joint density of states as well as
dipole transition matrix elements that strongly deviate
from the linear Dirac case. Both effects should be con-
sidered for describing the optical response even though
such modeling is numerically difficult. By ignoring the
effects of the transition matrix elements, the effects aris-
ing from corrections to the joint density of states can be
calculated.36 For this simplified case, a rendering of the
features in ǫ is shown in Fig. 1 in the vicinity of the
saddle points. We will return below to consider contri-
butions from the dipole transition matrix elements near
the saddle points.
Two main features are thus expected in the optical

signal from the Dirac cone interband transitions, one re-
lated to the Pauli-blocked edge and the other to the high
density of states at the Lifshitz gap energy ∆ELS at the
Γ-point. The magnitude of the interband contributions
to ǫ is therefore expected to be in the vicinity ∼ 5 based
on reasonable Fermi velocity estimates.

B. Thermal occupation effects

In Dirac systems with relatively low Fermi level, the
temperature dependence of the chemical potential and
carrier density can be substantial. These thermal oc-
cupation effects can therefore drive observable optical
effects.39 The Pauli-blocked edge will thermally broaden,
and shift as ω = 2µ(T ). The free carrier (Drude weight)
response will also change consistent with the f-sum rule.
An analytic form of the chemical potential µ in the

low T limit is µ − EF = − 1
6∂E ln[g(EF )] (πT )

2 where g

is the density of states.40 Here the band dispersion in-
formation is encoded via the derivative of the density of
states. An isotropic 3D conduction band where the dis-
persion is given by E ∝ kβ (where β = 1 for a Dirac
band) results in ∂E ln[g(EF )] = E−1

F (3 − β)/β. The
chemical potential is therefore driven away from regions
of higher density of states as temperature is increased.
The Drude weight DW = ne2/m depends on the energy
dependence of both the number density n and mass m,
but for a linear dispersion the energy dependence is given

by DW = Nd
e2

6π2~3

E2

F

vF
, where Nd = 4 is the degeneracy

for a Dirac cone pair, and in the low temperature limit
we now obtain ∆DW (T )/DW (0) = − 1

3 (
πT
EF

)2.21

Numerical solutions for the temperature dependence of
the chemical potential, carrier density, and Drude weight
are shown in Fig. 2(a-c) for a Dirac cone (see Appendix A
and B). The dispersion is assumed linear with anisotropic
velocities, where vz can differ from v⊥ ≡ vx = vy (re-
sulting in an ellipsoidal or an egg-shaped Fermi surface
described in Appendix B), and the applied electric field
is in the x-y plane. The results shown in Fig. 2(a-c)
are independent of the velocities and only depend on the
Fermi energy that is set to 25 meV. When the chemical
potential is within the half-width of the Fermi distribu-
tion function (πT/2) of the Dirac node, copious numbers
of additional electrons and holes are thermally excited
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as shown in Fig. 2(b). The Drude weight involves the
sum of responses from holes and electrons, so that in
the high temperature limit where the chemical poten-
tial is approximately zero and constant, DW ∝ T 2. In
the low temperature limit, the decreasing DW with tem-
perature is caused by the decreasing chemical potential
DW ∼ µ2 ∼ −T 2.41 The temperature-dependent Drude
weight is therefore nonmonotonic. The minimum demar-
cates the point where a substantial number of holes and
electrons are thermally excited from the valence band,
µ(T ) ∼ πT/2.

III. Na3Bi RESULTS

A. Na3Bi spectra, phonons, and crystal symmetry

Single crystals of n-doped Na3Bi were prepared as in
Ref. 27. All manipulations were performed inside a ni-
trogen filled glove box to avoid air exposure, including
the mounting and sealing of the sample inside a cryostat.
The as-grown facets are c-axis (001) oriented.
The normal-incidence reflectivity spectra of two Na3Bi

crystals at a set of temperatures are reported in Figs.
3(a) and (b). The largest two crystals are optically thick
(opaque), accommodate a 2.4 mm and a 1.5 mm diam-
eter aperture, and are labeled as Sample 1 and Sample
2, respectively. The reflection approaches unity at low
frequency indicative of a metallic response, and phonon
features are observable throughout the far-infrared (FIR)
region. The high reflection in the range 650− 1200 cm−1

is a reststrahlen band. The screened plasma frequency is
near 1300 cm−1 indicated by a sharp edge accompanied
by a reflection minimum. Features higher in frequency
are due to electronic interband transitions.
The most accurately normalized spectra are from the

largest and flattest crystal, so the 8K reflectivity spec-
trum of sample 1 is fit up to 1400 cm−1 to determine
the free carrier and phonon parameters. The model re-
flectance is generated from the dielectric function ǫ =
ǫ∞+

∑

j Ω
2
P j

/(ω2
0j−ω2− iγω) where each Lorentzian os-

cillator represents a phonon mode with a center frequency
ω0, characteristic width γ, and strength ΩP . The free
carrier (Drude) response corresponds to ω0 = 0 where
2πcγ = 1/τ is the inverse lifetime of the carriers, and
Ω2

P = 4πDW where ΩP is the bare (unscreened) plasma
frequency.
The modeled reflectance that best fits the spectrum

also incorporates a thin dielectric film on the Na3Bi crys-
tal. The best fit to the reflectivity data of sample 1 was
found with a 2 µm thick dielectric film with an index
set to n = 1.9. The optical path length is consistent
with the faint but visibly colored interference patterns
observable under magnification from the as-cleaved sam-
ples. The thin film model smoothly modifies the photo-
metrics over a very broad range, with a weak periodic
Fabry-Perot-like etalon period of 1200 cm−1. When the
thin film is removed from the model, the resulting spec-

trum better resembles the spectrum of sample 2 in Fig.
3(b). The thin dielectric is therefore attributed to a sur-
face layer on sample 1 which is inconsequential to the
results presented. The fit to the reflectivity spectrum is
shown by the dashed-black curve in Fig. 3(a), and the
bulk Na3Bi parameters and associated dielectric function
are reported in Figs. 3(j) and (i), respectively.

The observed phonon spectrum is important since the
number of IR active phonon modes relates to the crys-
tal symmetry. The ground state of Na3Bi is currently
contentious.38 The strongest observed phonons at 418
and 553 cm−1, which give rise to the broad reststrahlen
band, are a factor of two larger than the predicted high-
est phonon frequency from our ab initio band structure
calculations that agree with earlier studies.38 Three can-
didate crystal symmetries are analyzed using point group
analysis and the number of allowed acoustic, IR active,
and Raman active phonons are reported in Appendix C.

A recent x-ray study reports that Na3Bi is in the
hexagonal space group P63/mmc.27 The unit cell consists
of two formula units with a Na(1)-Bi honeycomb struc-
ture separated by interstitial Na(2) atoms. The number
of expected phonons is therefore 24, of which 2 are ex-
pected to be IR active in the ab-plane. This is inconsis-
tent with the 9 minimum observable oscillators reported
in Fig. 3(j) necessary to describe our data, which rules
out the P63/mmc symmetry.

A recent ab initio calculation shows that the P3c1
and P63cm ground states are ∼ 4 meV lower than the
P63/mmc structure. All three point group symmetries
produce nearly the same x-ray diffraction pattern and
similar Dirac cone bands.2,38 The P3c1 and P63cm struc-
tures, however, have a distorted Na-Bi honeycomb result-
ing in additional inequivalent Na Wykoff sites. The unit
cell therefore increases from two formula units to six, and
the number of phonon modes triples. Eleven infrared ac-
tive phonons in the ab-plane are expected from point
group analysis in both buckled-hexagonal-plane symme-
tries. The optical spectrum is fit well with the minimum
of 9 phonon oscillators, but some are unusually broad
which could imply multiple closely-spaced phonons. The
optical data appear consistent with either the P3c1 or
P63cm structure.

However, the P63cm symmetry has no center of in-
version and therefore cannot be a Dirac semimetal, but
would rather split into a Weyl state system with four
nodes. There is no evidence from surface probe mea-
surements that this is the case. Furthermore, numerical
calculations show that the P63cm symmetry (as well as
the P63/mmc structure) may be unstable due to the ex-
istence of imaginary phonons.38 Therefore, Na3Bi likely
belongs to the P3c1 spacegroup.

The Drude fit parameters are determined by the
low frequency response and the plasma edge feature.
Some uncertainty is introduced since the zero-frequency
Lorentzian is not sufficiently distinguishable from low fre-
quency bismuth phonons. Reasonable fits to the data
give a range of Drude parameters, where γ < 15 cm−1
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FIG. 3. (a-f) Reflectivity of Na3Bi for two samples are labeled Sample 1 (a,c,e) and Sample 2 (b,d,f). The black-dashed curve
in panel (a) is a fit to the 8K spectra below 1400 cm−1 using the Lorentzian oscillator parameters for ǫ given in panel (j), and
shown in graph of panel (i). For Sample 1, a more sensitive detector was used in panels (c) and (e) compared with the broadband
measurements reported in panel (a). A strongly temperature-dependent, screened plasma edge is observed in panels (c) and (d).
The arrows in panel (c) point to absorptive features (a plasmaron excitation) that tracks the temperature-dependent plasma
edge. Panel (h) shows a graph of a reflectivity model based on the parameters in panel (j) except that the free carrier response
is replaced by a temperature dependent Drude weight consistent with thermal occupation effects in a Dirac cone. The plasma
edge shifts are tracked along the red-dotted lines and summarized in panel (g), where the edge position shifts are normalized
to the low temperature value ω0. The green-dashed model results of the plasma edge shifts are the same as those shown in
panel (h) along the red-dotted line except with many more temperatures represented. Panels (e) and (f) show the temperature
dependence of the interband transition spectral region.

and 500 cm−1 < ΩP < 1000 cm−1. The Fermi level
is estimated from the plasma frequency using a model
dispersion. A Dirac cone model is described in Ap-
pendix B that produces an elongated egg-shaped Fermi
surface. This shape approximates the Fermi surface pro-
duced by a more realistic dispersion derived from a k · p
model with parameters that fit the Dirac cone bands
obtained from first-principles numerical band structure
calculations.35 The Fermi level is then estimated by
E =

√

3π~3vz1/NdΩP where the degeneracy Nd = 4
and vz1 is the slower of the two velocity roots along
the c-axis. For vz1 = 0.5 eVÅ as measured by pho-
toemission (ARPES),4 the Fermi energy ranges from
16 meV < EF < 34 meV, and is 25 meV for the Drude
best fit parameter ΩP = 746 cm−1.

The static dielectric constant is ǫ0 = 120+10
−30. The un-

certainty is based upon the uncertainty in ΩP and there-
fore the uncertainty in the strength of the low frequency
phonons.

B. Pauli-blocking and Lifshitz gap

Since Na and Bi are relatively heavy atoms, phonon
features are relegated to low frequency, well below the
measured plasma edge, as verified by our band struc-
ture calculations.38 Considering the estimate of the Fermi
level and consulting the band structure calculations in

Fig. 4(a-d) (our results for the three candidate sym-
metries verify those of references 35 and 38), a conserva-
tive estimate of the spectral region where a Pauli-blocked
edge may be found is between 300 and 1500 cm−1.
Nearly this entire region is within the reststrahlen band
where the reflectivity is extremely sensitive to small fea-
tures in ǫ on the scale expected by a sharp Pauli-blocked
edge ∼ 5, as demonstrated by the phonon features in
the reflectivity located at 700 and 880 cm−1 produced
by much smaller associated ǫ features shown in Fig. 3(i).
Furthermore, the steep slope of the plasma edge and the
deep minimum in the reflectivity just above the plasma
edge in the vicinity of 1300 cm−1, where ǫ1 ≈ 0 and
therefore Rmin ≈ (ǫ2/4)

2, requires ǫ2 < 1. An on-
set of Dirac cone interband transitions anywhere below
1300 cm−1 is expected to contribute a much larger ǫ2.

No discernable features in the reflectivity spectra re-
semble the expected features from a Pauli-blocked edge
or Lifshitz gap shown in Fig. 1. Band structure cal-
culations show that the assumptions that led to these
expectations must be modified. The large anisotropy of
the Dirac cone, as demonstrated along the kz direction (Γ
-A) in Fig. 4(c), gives rise to a wide range of interband
transition onset frequencies for a nonzero Fermi level.
The Pauli blocked edge therefore becomes broadened, as
diagrammatically represented by the black-dashed line in
Fig. 1. Furthermore, band structure calculations show
that dipole transition matrix elements are strongly mod-
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ified in the vicinity of the saddle points at Γ. The Dirac
cone bands in Fig. 4(c) have s and p orbital charac-
ter with a strength proportional to the size of the red
dots. Allowable dipole Dirac interband transitions there-
fore must involve s ↔ p transitions. The Dirac cone
bands along Γ − A have p orbital character, but only
one of the Dirac bands has s orbital character and it is
strongly suppressed as the Γ-point is approached. The
large joint density of states at the Γ-point that gave rise
to the sharp increase in ǫ2 in Fig. 1 is strongly modified
by the diminution of the matrix elements (see the black
dotted-dashed line in Fig. 1).

C. Thermal occupation effects and electronic

transitions in the Dirac cone

1. Plasma edge and Drude weight temperature dependence

Although the Pauli-blocked edge and the Lifshitz
gap optical features are complicated by band structure
anisotropy and transition matrix elements, the nonmono-
tonic temperature dependence of the plasma edge sum-
marized in Fig. 3(g) encodes Dirac cone information.
The strength of the zero frequency oscillator in the dielec-
tric function relates to the Drude weight, DW = Ω2

P /4π.
A decrease in Drude weight shifts the zero of ǫ1, and
therefore the plasma edge, to lower frequency. The re-
semblance between the temperature dependence of the
plasma edge in Fig. 3(g) and of the Drude weight in Fig.
2(c) suggests that the plasma edge shifts are caused by
thermal occupation effects in the Dirac cone. As men-
tioned previously, the results of Fig. 2(a-c) are inde-
pendent of Fermi velocity for a linear dispersion, even
for a Dirac cone with anisotropic velocities, and depend
only on the Fermi level. The minimum frequency of the
plasma edge in Fig. 3(g) occurs at T ≈ 100K. Assum-
ing these shifts are caused by the temperature depen-
dent Drude weight, the Fermi level is estimated to be
EF = 25 meV since this value gives rise to a minimum
in DW (T ) at 100K.
This connection between thermal occupation effects in

the Dirac cone that drive the Drude weight tempera-
ture dependence and the plasma edge shifts is verified
by the quantitative agreement of the reflectivity model
results shown in Fig. 3(h). The temperature depen-
dent Drude weight of Fig. 2(c) with ΩP0 = 950 cm−1

is substituted into the complex dielectric function that
includes the phonons reported in Fig. 3(j) (with the pa-
rameter ǫ∞ increased by 10 percent) and the reflectiv-
ity calculated. Utilizing the results of Appendix B that
show EF =

√

3π~3vz1/NdΩP and substituting this value
of ΩP0 and EF = 25 meV, the slow root of the dis-
persion which physically corresponds to the conduction
band between the nodes is found to be vz1 ≈ 0.3 eVÅ.
This is a very reasonable number since vz1 ∼ v⊥/10
as shown by band structure results in Fig. 4(e) and
ARPES measurements.4,5 Despite some subtle differ-

ences between the measured temperature dependence of
the plasma edge of the two samples in Fig. 3(c) and (d),
the model results in Fig. 3(h) agree extremely well.
The temperature dependence of µ or DW ideally con-

tains information associated with the large density of
state region at the saddle point as well as the degree
of electron-hole asymmetry of the Dirac bands, both of
which the model neglects. For example, if the Fermi en-
ergy were in the vicinity of the conduction band saddle
point where the density of states rapidly increases, the
factor ∂E ln[g(EF )] (in the expression for µ(T )) would be
larger than the linearly dispersing value of 2/EF . The in-
crease of this factor would cause the chemical potential
to decrease more quickly with temperature than a linear
dispersion. As a result, a discrepancy bewteen the model
rate of decrease of the plasma edge and data would be
expected. Along this line, the discrepancy between the
model and Sample 2 at low temperatures could be taken
as evidence that the Lifshitz point is in the vicinity of 25
meV above the Dirac point. In principle, a low tempera-
ture characterization of µ(T ) or DW (T ) could be used to
discern the temperature dependence of the T 2 coefficient
and therefore determine the Lifshitz transition energy in
the density of states in relation to the Fermi level, but
the exercise requires many more than four or five low
temperature data points (below 100K).
As mentioned already, the calculations leading to Fig.

2(a-c) assume electron-hole symmetry. In a more realis-
tic Dirac cone pair system with asymmetric saddle points
such that |ECB

LS | << |EV B
LS |, the assumption applies near

the Dirac point where linear approximations are valid.
In this case, a valence or conduction band Fermi pocket
within ±|EF | has the same size and shape. However,
the assumption breaks down when the chemical poten-
tial and thermal half-width approach the Lifshitz energy
µ(T )+πT/2 ∼ ECB

LS . The low temperature consequences
were discussed in the previous paragraph. At high tem-
perature, the chemical potential will be pushed below
the Dirac node. A numerical calculation with electron-
hole asymmetry such that ECB

LS ∼ 30 meV = (1/2)|EV B
LS |

and EF = 25 meV results in a chemical potential which
crosses zero at about 150K reaching −10 meV at 300 K.
This effect on µ(T ) lowers the temperature of the Drude
weight minimum a small amount, where µ(T ) = πT/2
gives T = 90K, but does not significantly effect the high
temperature Drude weight since the thermal width be-
comes substantially larger than the chemical potential.
The upshot is that even fairly large asymmetries between
valence and conduction bands do not appreciably mod-
ify the quantitative conclusions of the thermal analysis
presented in this section.

2. Interband transitions and thermal occupation of the

Dirac cone saddle point

A strong temperature dependence is observed over the
interband transition region between 1500 and 3000 cm−1.
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FIG. 4. (a) The calculated band structure of Na3Bi is shown for the P 3̄c1 space group. Results are very similar for the P63cm
structure. (b) The Brillouin zone for the crystal structure in (a) is depicted with Dirac nodes marked by the two red points
along Γ − A. (c,d) The projected orbital-characters of the bands are shown for s, py, pz, and px orbitals along the Γ − A
momentum direction as well as through the Dirac node parallel to the Γ−M direction, denoted by Γ̄− M̄ . Bands are plotted
as blue lines, overlayed by dotted red lines with thickness proportional to the weight of the orbital character. The orbital
character of the bands along the Γ̄ − K̄ direction is very similar to that along Γ̄ − M̄ . Panel (c) shows the lack of s-orbital
character of the Dirac cone heavy Bi-like band as well as the lighter Na-like band in the vicinity Γ, which causes the optical
transition matrix elements associated with the Lifshitz gap region to be suppressed. (e-f) Fermi velocities of the two Dirac
bands are plotted along Γ− A and Γ̄− M̄ for the P 3̄c1 space group; velocities for the P63cm structure are identical. Velocity
plots along Γ̄− K̄ and Γ̄− M̄ are similar.

The reflectance over this entire spectral region continu-
ally decreases with temperature, but precipitously drops
in the temperature range between 125K and 150K.

As mentioned previously, three crystal structures con-
sidered in this study have nearly the same ground state
energy to within a few meV.38 This suggests that a phase
change may occur as a function of temperature. How-
ever, the IR active phonons shows no anomalous behav-
ior. Also, band structure calculations were performed for
the three candidate crystal symmetries in which the lat-
tice spacing was varied to simulate temperature changes.
No discernable changes in the electronic structure or or-
bital characters were identified that correlated to the ob-
served behavior.

Thermal occupation effects of a band with a large den-
sity of states within π150K/2 ∼ 20 meV of the chemical
potential provides a plausible explanation of the observed
behavior. At these high temperatures, the chemical po-
tential is expected to be near the Dirac point. Based
on the band structure calculations in Figs. 4(a-d), the
only conduction band that is in the vicinity of 20 meV of

the Dirac node is the Dirac cone conduction band saddle
point, which has only p-orbital character.

A candidate valence band with s-orbital character ex-
ists at the Γ-point, but lies ∼ 750 meV below the Dirac
node as shown in Fig. 4(c). Band structure calculations
show that the energy of this band is very sensitive to
the spin-orbit coupling strength. Decreasing the spin-
orbit coupling by a factor of two does not significantly
alter the Dirac cone bands, but pushes the s-band up
in energy by about a factor of two. The optical results
together with band structure calculations may therefore
provide a sensitive method to determine the spin-orbit
coupling strength.

In this picture, transitions at low temperature between
this s-character valence band and the p-character Dirac
cone conduction band give rise to allowable transitions
in the vicinity of the Γ-point with a large joint density
of states, provided that EF < ECB

LS . As the tempera-
ture is raised and the chemical potential lowers toward
the Dirac point, these transitions remain active until the
thermal broadening is large enough that a copious num-
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FIG. 5. The reflectance R shown in Fig. 3(c) for Sample 1
in the vicinity of the plasma edge at a set of temperatures is
plotted as ∂R/∂ω. The curves are vertically offset for clarity.
The highest peak of each plot is associated with the plasma
edge. A dip feature in Figs. 3(c) and 3(d) below the plasma
edge frequency is present in both samples, although it is much
sharper in sample 1 as highlighted by the arrows in Fig. 3(c).
The feature manifests as a peak-dip structure in ∂R

∂ω
, like a

side lobe to the plasma edge peak, that tracks the plasma
edge as it moves with temperature. The two black-dashed
parallel lines are guides for the eye that show that the peak-
dip plasmaron feature tracks the plasma edge up to 100 K,
and clearly persists at 200 K.

ber of carriers occupy the conduction band saddle-point
region. The thermal occupation of the final states at
high temperatures will therefore suppress these interband
transitions.

The temperature dependence of these interband tran-
sitions is only appreciable up to ∼ 3000 cm−1 since, away
from the Γ-point in the Dirac conduction band along the
k⊥ direction, the final state energy of interband transi-
tions rapidly increases above the scale associated with
thermal occupation effects.

D. Dirac cone transitions above the Lifshitz energy

The higher energy transitions above 3000 cm−1 are
larger than the Lifshitz gap energy where the Dirac cone
pair merges into a single Dirac cone. Over the spectral
range ∼ 3000 − 6000 cm−1, ǫ2 = 1.5 ± 0.2 is frequency
and temperature independent, which is derived from fit-
ting the reflectivity using a Kramers-Kronig constrained
variational dielectric function.42 Since ǫ2 = (1/6)Ndα

′

where Nd = 2 for a single Dirac cone, a reasonable Fermi

velocity of vF ≈ 3 eV Å in the ab-plane is attained con-
sistent with other measurements of v⊥.

4,5,15,27

1. Plasmaron feature

Fig. 3(c) shows a dip feature, indicated by the arrows,
about 60 cm−1 below the plasma edge, which tracks
the temperature dependence of the plasma edge. This
tracking behavior is more clearly observed by taking the
derivative ∂R/∂ω shown in Fig. 5. The low temperature
lineshape of the dip feature in reflectivity is reproduced
by adding a very small Lorentzian absorption to the to-
tal dielectric function, which has a characteristic width
γ = 40 cm−1 and strength ΩP = 50 cm−1 resulting in a
small peak value of only ∼ 0.05 in ǫ2. Such a tiny ab-
sorptive feature is observable only because the total ǫ is
small near the plasma edge.
Sample 2 shows similar behavior in Fig. 3(d), but the

suppression of the reflectivity just below the plasma edge
is much broader (as with nearly all the features of Sample
2 in comparison with Sample 1), and appears as a broad
sideband-shoulder in ∂R/∂ω instead of a clear peak-dip
feature.
The observation of an absorption feature that tracks

the ab-plane plasma frequency strongly suggests a
plasmon-coupled excitation that is electronic in origin.
A possible excitation is a charge that couples to the
plasmon density modes,43 called a plasmaron excitation,
which has recently been predicted in 3D Dirac systems:
at a finite value of the Fermi level, the Coulomb interac-
tion induces satellite quasiparticle peaks in the spectral
function, which form sidelobes off the main quasiparticle
branch.16,17

Plasmaron modes must be excited by a longitudinal
field component. A scattering processes is required that
induces the longitudinal mode that can then couple to the
c-axis plasmon. Such a process has been observed in sim-
ilar optical measurements on bulk bismuth crystals,22,44

although the mechanism is far from clear: impurity
scattering45 and an electron-hole decay scenario has been
proposed without reaching a definitive conclusion.22,44

Optically excited plasmaron excitations in 3D materi-
als have rarely been observed, which makes the observa-
tion in a 3D Dirac cone system particularly interesting.
In the case of elemental bismuth, a plasmaron excitation
is observed at a higher energy than the plasmon mode.22.
For Na3Bi, the c-axis plasmaron excitation is observed
below the ab-plane plasmon energy. Therefore, the c-
axis plasmon must be lower in energy than the ab-plane
plasmon.
The plasmon energy is determined by the pole in 1/ǫz

and therefore it involves a sum of many contributing
terms: free carrier (Drude) response, strength and num-
ber of IR active phonon modes, and the high energy inter-
band transitions that cumulatively determine the value
of ǫ∞. The strength of the c-axis phonons and ǫ∞ is not
currently known, but can be easily determined optically
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FIG. 6. (a) The measured mid-IR data (solid colors) is shown
with the modeled reflectivity (black) that includes the fitted
phonon parameters from Ref. 32. (b) An expanded view of
the peak in reflectivity due to the onset of Dirac cone in-
terband transitions and the modeled reflectivities (offset for
clarity). Model 1 includes only thermal effects. Contribu-
tions to the width in addition to the thermal effects include
potential fluctuations, shown in Model 2, or continuum of in-
terband transition onset energies, shown in Model 3. (c) The
same data is shown over a broader spectral range, offset for
clarity, with a temperature independent feature demarcated
by the gray dotted line. (d) The temperature dependent peak
positions are fit and plotted relative to the 7 K value ω0, ex-
pressed as ∆ω/ω0, for the data (blue dots), Model 3 in panel
(b) (black dots), and the corrected data taking into account
the changing slope of the background (red dots). Error bars
represent ±σ, a standard deviation, generated from fits to the
derivative of the peak. Also shown are quadratic fits (solid
lines) and ±σ confidence intervals (dotted lines) to the data
and corrected data for T ≤ 150 K.

with an appropriately oriented crystal. What is known
is that the Drude weight is smaller for an electric field
along the c-axis since the Fermi velocity is smaller than
v⊥, and the number of IR active phonons along the c-axis
is substantially less than in the ab-plane (see Appendix
C). Both effects would tend to decrease the c-axis plas-
mon frequency below the ab-plane plasma edge.

Clear evidence of a collective plasmon-electronic ex-
citation in bismuth and now in the 3D Dirac system
Na3Bi has been found. Na3Bi and elemental bismuth
share many characteristics, such as a Dirac-like (L point)
conduction band that has a high Fermi velocity and a
small associated Fermi surface, carrier density, and Fermi
wavevector. These observations suggest that collective
plasmon-coupled excitations are perhaps more ubiqui-
tous, and open up the possibility of further investigating
such collective modes in the various types of Weyl and
Dirac systems.

IV. Cd3As2 SPECTRA AND PAULI-BLOCKED

EDGE

Cd3As2 n-type single crystals were prepared as in Ref.
46, and the facet was oriented normal to [112]. The
largest crystal accommodates a 0.4 mm aperture and is
opaque. A continuous scan FTIR spectrometer measured
normally incident reflection.
The small size of the crystal limited throughput power,

which precluded measurements in the FIR spectral re-
gion. The mid-IR data is reported in Fig. 6(a-c) at a set
of temperatures. A strong temperature-dependent peak
in the vicinity of 1650 cm−1 is identified as the Dirac cone
Pauli-blocked edge. Band structure calculations and sur-
face probe measurements indicate that other bands do
not contribute at such relatively low energies.3,7–9,11The
peak in the low temperature data implies a Fermi level
in the vicinity of ω/2 ∼ 100 meV.
Surface tunneling microscopy (STM) measurements

and ab initio calculations indicate that the Lifshitz gap
energy is only ∼ 40 meV.3,9 In the scenario where
the Fermi energy is much larger than the Lifshitz gap,
the Dirac cone pair merges into a single Fermi pocket.
ARPES, STM, and transport measurements indicate
that the bands appear very linear in this regime7–9,11,29

with nearly isotropic velocity9,29 with a single large-
Dirac-cone-like dispersion .
We consider a model of reflectivity derived from

a dielectric function that includes contributions from
phonons, ideal Dirac cone interband transitions (where
Nd = 2, EF = 100 meV, and29 vF = c/322), and a Drude
weight consistent with the interband transition parame-

ters given by Ω2
P /(4π) =

2
3π2~3

E2

F

vF
. FIR reflectivity data

from Ref. 32 is fit to derive the phonon parameters. The
model is shown in Fig 6(a) with the mid-IR reflectance
data superimposed. The plasma edge is below our mea-
sured frequency range due to limitations in throughput
power as a result of the small size of the sample.
By modeling several lineshape broadening effects and

comparing to the data, the origin of the distinctive line-
shape can be determined. The results of three different
models are compared with the data in Fig. 6(b). Model
1: Thermal effects broaden the Pauli-blocked edge step
in ǫ2 via a Fermi distribution function, which modifies
ǫ1 via the Kramers-Kronig relations. The resulting cusp-
like peak in the reflectivity that is dominated by the log-
arithmic divergence in ǫ1 is much too narrow to account
for the data. Model 2: Gaussian potential fluctuations
are added into the step of ǫ2 in conjunction with ther-
mal broadening. The best match to the width of the
7K reflectivity peak is given by an amplitude potential
fluctuation (RMS) Γrms ∼ 26 meV. The resulting charac-
teristic lineshape is very different from the data. Notably,
an estimate of the potential fluctuations in Cd3As2 given
in Ref. 20 is substantially smaller, Γrms ∼ 4 meV (us-
ing EF = 100 meV, ǫ0 = 70, vF=c/322, Nd=2, and an
assumed charged impurity density equal to the carrier
density). Model 3: Anisotropies between the conduction
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and valence bands can result in a continuum of interband
transition onset frequencies. To model this, the expected
step height in ǫ2 for an ideal Dirac cone is divided into a
series of equal step heights separated by equal frequency
spacings. Each step is thermally broadened. Model 3
used in Fig. 6(b) was generated with 20 steps over a
frequency range of 125 cm−1.

The strong resemblance of Model 3 to the distinctive
lineshape and thermal dependence of the data indicates
a continuum of onsets in the Dirac cone over an energy
range ∆ωonset ≈ 15 meV. Incrementally adding in poten-
tial fluctuation broadening effects into Model 3 gradually
evolves the lineshape towards Model 2, but also tem-
pers the rate of decrease of the low temperature peak
heights to better resemble the data. The low tempera-
ture lineshapes markedly begin deviating from the data
at Γrms = 7 meV, and become untenable by Γrms = 10
meV, which sets a hard upper bound. These values are
in reasonable agreement with the theoretical estimate,
Γrms ∼ 4 meV.20

The spread in Dirac cone interband transitions ∆ωonset

is caused by velocity anisotropy of the Dirac bands. Us-
ing the ellipsoidal Fermi surface described in Appendix
B, this energy spread translates into a 10% variation of
velocity, a very small degree of anisotropy, and therefore
a nearly spherical Fermi surface. This agrees with STM,
SdH, and recent cyclotron resonance results that show a
nearly isotropic Fermi surface at high Fermi levels well
above the Lifshitz gap.9,29,34

A shift of the peak towards lower frequency with tem-
perature is driven by the chemical potential. This rela-
tionship is derived in Appendix A in the low tempera-
ture limit. The relative shift of the peak position nor-
malized to the low temperature value depends only on
the Fermi level, where δω/ω0 = − 1

3 (
πT
EF

)2 for a linear
dispersion, which is measured by ARPES and tunneling
microscopy.7–9,11. The peaks are fit to determine the cen-
ter frequency. The results are plotted in Fig. 6 (d) as
blue dots with error bars. The temperature dependence
is fit for T ≤ 150 K to the expected quadratic form (blue
solid plot) with confidence intervals as dashed lines. Us-
ing the T 2 fit coefficient yields EF = 111± 4 meV.

Since the experimental peaks reside on a smooth non-
constant background, the peak positions are slightly
skewed as a function of temperature. To estimate these
corrections, the peaks of Model 3, where the center of
the Pauli-blocked edge was set to a constant ω0 for all
temperatures, are fit using the same procedure as the
experimental data. The centers of peak positions deter-
mined in this way are plotted in Figure 6 (d) (black dots),
appearing temperature dependent as the peak thermally
broadens. These relatively small corrections to the peak
positions are subtracted from the experimentally deter-
mined positions and reported as red dots and error bars.
This corrected dataset is fit as before yielding EF = 96±3
meV, and a carrier density of n = 1.3× 1017 cm−3. This
is somewhat lower than for similarly grown crystals where
the carrier density corresponded to a Fermi level in the

vicinity of 200 meV.9,29

The Fermi level is about half of the interband tran-
sition onset energy, indicating that the Dirac point is
about midway between the final state (conduction band)
and initial state (valence band), and the valence and con-
duction bands are more or less symmetrical. Band struc-
ture calculations and surface probe measurements show
that the valence band is notably heavier than the con-
duction band, but that the two bands are not strongly
asymmetrical.3,7,9,11

A very weak feature present at ∼ 2900 cm−1 = 360
meV does not discernably shift with temperature (see in
Fig. 6(c)) and is too high in energy to be associated with
the Lifshitz gap energy. No optical signature of the Lif-
shitz gap is observed over the measured spectral region.
However, even if it were within the measured range, it
may not be optically measurable. The transition matrix
elements in the vicinity of the Γ point are expected to be
suppressed like in the Na3Bi case since the Dirac band
orbital-characters are very similar.3

V. CONCLUSION

In both Cd3As2 and Na3Bi, thermal occupation effects
in the Dirac cone pair play a crucial role in the optical re-
sponse. Thermal excitation of carriers change the chemi-
cal potential and therefore the Dirac interband transition
energy as well as the free carrier response.
In Cd3As2, the sharp Pauli-blocked edge at the on-

set of Dirac cone interband transitions induces a peak
in the reflectivity with a very distinctive lineshape, pro-
viding a fingerprint of the underlying Dirac cone disper-
sion and the associated logarithmic divergence in ǫ1. The
frequency of the Pauli-blocked edge is controlled by the
chemical potential that depends only on the power law
exponent of the dispersion and the Fermi level in the low
temperature limit. Our characterization of the peak lo-
cation with temperature indicates a linear Dirac cone dis-
persion, a number density of n = 1.3× 1017 cm−3, and a
Fermi energy much larger than the Lifshitz gap energy as
measured by STM.9 The low temperature spectral width
of the peak is caused by Fermi velocity anisotropy that
gives rise to a narrow spectral range of Dirac cone in-
terband transition onsets. The spectral width of the re-
flection peak translates into a Fermi velocity anisotropy
of 10%, indicating a nearly spherical Fermi surface. The
lineshape is incompatible with large Gaussian broadening
effects, giving an upper bound energy scale for potential
fluctuations of Γ = 7 meV.
In Na3Bi, evidence of the Dirac cone manifests in a

temperature dependent plasma edge caused by changes
in the free carrier response. The Drude weight tempera-
ture dependence is nonmonotonic, attaining a minimum
when the chemical potential is within ∼ kT of the Dirac
node. The minimum in the temperature dependence of
the plasma edge frequency at T = 100K is characterized
only by the Fermi level for a Dirac cone, giving EF = 25



11

meV. Unlike Cd3As2, evidence of the Dirac cone in Na3Bi
is not observable from the onset of Dirac cone interband
transitions. The unobservable edge presumably reflects
the large Dirac cone anisotropy, which is consistent with
band structure calculations. At transition energies well
above the Lifshitz gap where the low energy Dirac cone
pair has merged into one large Dirac cone, a frequency
and temperature independent ǫ2 is observed. The con-
stant value of ǫ2 is a fingerprint of the Dirac dispersion
that only depends on Fermi velocity, and translates into
an ab-plane Fermi velocity of v⊥ ≈ 3 eVÅ. The ground
state of Na3Bi has been reported as belonging to the
P63/mmc space group symmetry, but the number of ob-
servable IR active phonons that we observe rules this out
in favor of the P3̄c1 candidate symmetry. Finally, we
have observed a plasmaron excitation near the plasma
edge in Na3Bi, which tracks the shifting ab-plane plas-
mon energy over a broad range of temperatures.
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Appendix A: Chemical potential, Drude weight, and

Pauli-blocked edge temperature dependence

The carrier density is given by n =
∫∞

−∞
g(E)f(E)dE,

where g(E) is the density of states and f(E) is the Fermi
distribution function. By fixing the number of carri-
ers to the zero temperature value, the chemical poten-
tial µ for a given temperature T is found by solving
∫∞

−∞
f(E)g(E)EdE =

∫ EF

−∞
g(E)EdE.

An approximate expression for µ(T ) is derived by the
application of the Sommerfeld expansion assuming the
temperature is much smaller than the Fermi energy EF

and the integrand varies slowly over the energy range

EF ± T , giving µ = EF − 1
6 (πT )

2 g′(EF )
g(EF ) + O(T 4), which

is equation (2.77) in Ref. 40. Expressing the density of
states as g = ∂n

∂k
/(∂E

∂k
), the carrier density as n ∝ k3, and

a dispersion of the form E ∝ kβ , leads to the expression
g′(E)/g(E) = E′(k)−1g′(k)/g(k) = E−1(3 − β)/β.

The DC conductivity σ is derived in Chapter 13 of Ref.
40 and relates to the Drude weight which becomes, after
integration by parts, DW = σ/τ ∝ (1/vF )

∫

Ef(E)dE
for a linear isotropic Dirac cone. Using the Sommerfeld
expansion and substituting the expression for µ(T ) gives
DW (T )/DW (0) = 1− 1

3 (
πT
EF

)2+O(T 4), which agrees with
results of Ref. 21.

We now turn to derive the relationship between
the chemical potential and the measured temperature-
dependent frequency of the Pauli-blocked edge feature
observed in Cd3As2. The optical Pauli-blocked edge fre-
quency is given by ω(T ) = µCB(T )+EV B(T ) for a verti-
cal (momentum conserving) transition between the final
state in the conduction band at the chemical potential
µCB(T ) above the Dirac point, and an initial state at
EV B(T ) in the valence band. For Cd3As2, the conduction
band chemical potential is much larger than the width of
the Fermi distribution function for the temperature re-
gion of interest T 6 150K, so a negligible number of
carriers will be thermally excited from the valence band.
We approximate the conduction band energy near k = kF
by E ∝ kβ, which touches the valence band at a point.
The valence band energy near k = kF is similarly approx-
imated by E ∝ kβ that may have a different velocity from
the conduction band. it is then straightforward to obtain
the expression: ω(T )/ω(0) = 1 − 1

6
3−β
β

( πT
EF

)2. The co-

efficient Cexp is a fitting parameter found from the data
δω/ω(0) = −CexpT

2. The Fermi energy is then calcu-

lated using EF =
√

3−β
6β

π2

Cexp
, where β = 1. Expanding

EF about β = 1 to first order gives δEF

EF |β=1

≈ − 3
4δβ,

so that if the dispersion tends toward superlinear near
k = kF , an estimation of EF using β = 1 tends to over-
estimate EF .

Appendix B: Egg-shaped Fermi surface

Consider an egg-shaped Fermi surface constructed
with two half ellipsoids, each with a different major axis
along kz. The k-space volume is then given by Vk =
(4π/6)k2⊥(kz1 + kz2). Assume a Dirac dispersion where
E = ~k⊥v⊥ = ~kz1vz1 = ~kz2vz2 and vz1 << vz2, v⊥.
The carrier density is n = NdVk/(2π)

3, where Nd = 4
is the degeneracy for a pair of Dirac cones. The ap-
plied electric field is assumed to be in the x-y plane, so
the plasma frequency is given by Ω2

P = 4πne2v2⊥/EF .

Combining these results gives EF =
√

3π~3vz1/NdΩP .
The temperature dependent chemical potential µ(T )/EF

and Drude weight DW (T )/DW (0) under these assumed
anisotropic velocity conditions is exactly the same as the
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TABLE I. Phonon analysis for space group P 3̄c1 (#165) with
six Na3Bi formula units per primitive cell.

Species|Wyckoff posn.|Site symm.|Vibrational modes

Bi 6f C2 A1g +A1u + 2A2g + 2A2u + 3Eg + 3Eu

Na1 2a D3 A2g + A2u +Eg + Eu

Na2 4d C3 A1g + A1u + A2g + A2u + 2Eg + 2Eu

Na3 12g C1 3A1g + 3A1u + 3A2g + 3A2u + 6Eg + 6Eu

Total: 5A1g + 5A1u + 7A2g + 7A2u + 12Eg + 12Eu

Acoustic: A2u + Eu

Infrared: 6A2u(e ‖ c) + 11Eu(e ⊥ c)

Raman: 5A1g + 12Eg

Silent: 7A2g + 5A1u + 12Eu

isotropic Fermi velocity case (with β = 1) derived above
in Appendix A.

The Pauli-blocked edge peak-feature shown in Fig. 1
will be broadened by ∆ωonset via the velocity anisotropy
α = vz1/v⊥, where vz2 is taken to equal v⊥ for conve-
nience. Here we derive the relationship between ∆ωonset

and α. For a Fermi energy lying in the conduction
band, EF = ~k⊥v⊥ = ~kz1vz1 is the final state en-
ergy for Dirac cone interband transitions, and the ex-
tremum of initial state energies in the valence band is
given by EV B0 = ~k⊥vz1 and EV B1 = ~kz1v⊥. Not-
ing that ∆ω = EV B1 − EV B0 and the average interband
transition energy is ω̄ = EF +(1/2)(EVB1+EV B0) gives
∆ω = EF (1 − α2)/α and ω̄ = EF (1 + α)2/(2α). Based
on experimental data for Cd3As2, we obtain ∆ω/ω̄ =
15/204, and α = 0.9 .

Appendix C: Phonon point group analysis

For Na3Bi, the symmetries P 3̄c1, P63/mmc, and
P63cm have ground state energies that only differ by
a few meV based on numerical calculations.38 Phonon
analysis of these three possible symmetries are summa-
rized in Tables I, II, and III.

Appendix D: Estimate of ǫ2 from band structure

calculations of the Dirac cone bands in the low

frequency limit

Here we obtain an estimate of ǫ2 in the low frequency
limit based on k · p theory with fitting parameters that
approximate the first-principles Dirac dispersion. The
starting point is the formalism developed by Wang et

al.
35 in which the Dirac bands are described by a 4 × 4

leading order Hamiltonian around the Γ point. Per-
forming an expansion about the Dirac node such that
kz ≡ k′z − kd where 2kd is the distance between Dirac
nodes, and keeping up to linear terms in k gives the fol-

TABLE II. Phonon analysis for space group P63cm (#185)
with six Na3Bi formula units per primitive cell.

Species|Wyckoff posn.|Site symm.|Vibrational modes

Bi 6c Cs 2A1 + A2 +B1 + 2B2 + 3E1 + 3E2

Na1 2a C3v A1 +B2 + E1 + E2

Na2 4b C3 A1 + A2 +B1 +B2 + 2E1 + 2E2

Na3 6c Cs 2A1 + A2 +B1 + 2B2 + 3E1 + 3E2

Na4 6c Cs 2A1 + A2 +B1 + 2B2 + 3E1 + 3E2

Total: 8A1 + 4A2 + 4B1 + 8B2 + 12E1 + 12E2

Acoustic: A1 + E1

Infrared: 7A1(e ‖ c) + 11E1(e ⊥ c)

Raman: 7A1 + 11E1 + 12E2

Silent: 4A2 + 4B1 + 8B2

TABLE III. Phonon analysis for space group P63/mmc
(#194) with two Na3Bi formula units per primitive cell.

Species|Wyckoff posn.|Site symm.|Vibrational modes

Bi 2c D3h A2u +B1g + E1u +E2g

Na1 2b D3h A2u +B1g + E1u +E2g

Na2 4f C3 A1g + A2u +B1g +B2u +E1g

+E1u + E2g + E2u

Total: A1g + 3A2u + 3B1g +B2u +E1g +E2g

+3E1u + 3E2u

Acoustic: A2u + E1u

Infrared: 2A2u(e ‖ c) + 2E1u(e ⊥ c)

Raman: A1g + E1g + E2g

Silent: 3B1g +B2u + 3E2u

lowing Hamiltonian:

H = 2C1

√

M0

M1
kz+











−2
√
M0M1kz Ak+ 0 0

Ak− 2
√
M0M1kz 0 0

0 0 −2
√
M0M1kz −Ak−

0 0 −Ak+ 2
√
M0M1kz











where M0,M1, C1 and A are parameters defined in Ref.
3 based on first-principles, and k± = kx ± iky. The two
2 × 2 diagonal blocks in the Hamiltonian give the same
eigenvalue solutions to leading order in k: E = v0kz ±
√

(vDkz)2 + (v⊥k⊥)2, where v
2
D = 4M0M1, v⊥ = A, v0 =

2C1

√

M0

M1

, and k2⊥ = k2x + k2y. At k⊥ = 0, the dispersion

along kz gives slow and fast velocity solutions, v0 ± vD,
near the Dirac node. ARPES measurements and band
structure calculations show that the velocity associated
with the heavy Bi-like Dirac band (vz1) is much smaller
than the high velocity associated with the lighter Na-like
band (vz2), so that v0 ∼ vD, and therefore, vD ≈ vz2/2.
In the presence of an oscillating electric field in the x-

y plane, the 4 × 4 interaction Hamiltonian contains two
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2× 2 diagonal blocks:

Hint = ±
(

0 AA±

AA∓ 0

)

where A± = eǫ±/(iω) is the vector potential and ǫ is the
electric field, and the upper (lower) sign applies to the
upper (lower) block. The square of the expectation value
of the dipole matrix elements is given by (ev⊥ǫ⊥/ω)

2 and

the joint density of states is given by Nd

6π2

(~ω)3

(2~)3v2

⊥
vD

. Using

the Fermi’s golden rule, the optical response is then sim-
ply obtained as:36 ǫ2 = 1

6Ndα
′, where α′ = e2/~vD. ǫ2 is

seen to be independent of the transverse Fermi velocity
v⊥, being determined solely by the fast-velocity root of
the z-component dispersion for the case of Na3Bi where
vD ≈ vz2/2.
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