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The magnetic orders in Na2IrO3 and α−RuCl3, honeycomb systems with strong spin-orbit cou-
pling and correlations, have been recently described by models with the dominant Kitaev interac-
tions. In this work we discuss how the orientation of the magnetic order parameter is selected in this
class of models. We show that while the order-by-disorder mechanism in the models with solely Ki-
taev anisotropies always select cubic axes as easy axes for magnetic ordering, the additional effect of
other small bond-dependent anisotropies, such as, e.g., Γ-terms, lead to a deviation of the order pa-
rameter from the cubic directions. We show that both the zigzag ground state and the face-diagonal
orientation of the magnetic moments in Na2IrO3 can be obtained within the J1−K1−J2−K2−J3
model in the presence of perturbatively small Γ-terms. We also show that the zigzag phase found
in the nearest neighbor Kitaev-Heisenberg model, relevant for α−RuCl3, has some stability against
the Γ-term.

I. INTRODUCTION

The long-standing quest for a solid state realiza-
tion of the Kitaev honeycomb model1 has triggered
much of the experimental and theoretical interest in
4d and 5d compounds with two- and three-dimensional
tri-coordinated lattices, in which the interplay of the
strong spin-orbit coupling (SOC) and electronic correla-
tions leads to the dominance of the strongly anisotropic
Kitaev-like interactions.3 A lot of experimental effort has
been focused on iridium oxides belonging to the A2IrO3

family5–15 and, more recently, to α−RuCl3.16–22

The Kitaev honeycomb model belongs to the class of
the compass models. It is intrinsically frustrated due to
the bond-depended nature of the interactions. In the
quantum case, this frustration leads to the appearance
of the non-trivial quantum spin liquid (QSL) phase with
fractionalized excitations, dubbed Kitaev QSL.1 Kitaev
QSL is not a unique example of non-trivial ground states
of the compass models,2,4 however, it is probably the only
one which allows an exact analytic solution.

In honeycomb iridates and ruthenates, the magnetic
degree of freedom described by an effective magnetic mo-
ment Jeff = 1/2, arises in the presence of strong SOC
from electrons occupying t2g-manifold of states of Ir4+

and Ru3+ ions. In A2IrO3 compounds, edge-shared IrO6

octahedra provide 90◦ paths for the dominant nearest
neighbor Kitaev coupling between iridium magnetic mo-
ments. A similar situation takes place in the isostruc-
tural layered honeycomb material α−RuCl3 and three-
dimensional harmonic honeycomb iridates, β−Li2IrO3

and γ−Li2IrO3.12–15 It is believed that the sign of the
Kitaev interaction may be either antiferro- (AF) or
ferromagnetic (FM) depending on the compound.23–29

Isotropic Heisenberg couplings are also present in these
compounds due to the octachedra edge sharing geom-
etry and direct overlap of 5d− or 4d−orbitals which,
due to their extended nature, often reach beyond near-
est neighbors. Further anisotropies, such as the isotropic
off-diagonal Γ interactions, can also be present, mainly

as a result of crystal field distortions.26,30,31 The compe-
tition between all these couplings leads to a rich variety
of experimentally observed magnetic structures.7–15

Here we discuss in detail the models and the mech-
anisms which lead to the stabilization of magnetic or-
dering in two compounds: Na2IrO3 and α−RuCl3. Sev-
eral experiments have shown that the low-temperature
phase of Na2IrO3 has collinear zigzag long-range mag-
netic order.5–11 In addition, recent diffuse magnetic x-ray
scattering data have determined the spin orientation in
this zigzag state and showed that it is along the 44.3◦

direction with respect to the a axis, which corresponds
to approximately half way in between the cubic x and y
axes.11 Both of these findings are in disagreement with
the original Kitaev-Heisenberg model,23,24 which predicts
the zigzag phase only for the antiferromagnetic nearest
neighbor Kitaev interaction with the magnetic moments
along the cubic axes, while the Kitaev interaction in
Na2IrO3 is ferromagnetic.25 This shows that one needs
to extend the nearest neighbor model by including some
additional interactions in order to explain these experi-
mental observations.

α−RuCl3 also shows collinear antiferromagnetic zigzag
ground state.18,20–22 Recent X-ray and neutron scatter-
ing diffraction data21,22 indicate that the best fit to the
collinear structure is obtained for the antiferromagnetic
nearest neighbor Kitaev interaction and when the spin
direction points 35◦ out of the ab-plane, i.e. along one of
the cubic directions. This suggests that the microscopic
origin of the zigzag ground state in α−RuCl3 might be
quite different from the one in Na2IrO3, and that it can
be described by the nearest neighbor Kitaev-Heisenberg
model.24

In both cases, the available experimental data pro-
vides an important check of the validity of any model
proposed to describe the magnetic properties of Na2IrO3

and α−RuCl3, as it should correctly predict not only
the type of the magnetic order but also its orientation in
space.

In this work we consider two models, the nearest neigh-
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bor Kitaev-Heisenberg model3,23,24 and its more compli-
cated counterpart, dubbed J1−K1−J2−K2−J3 model,26

and study how the preferred directions of the mean field
order parameter are selected in these models. The for-
mal procedure which we will be using here is based on
the derivation of the fluctuational part of the free energy
by integrating out the leading thermal fluctuations, and
by determining which orientations of the order parameter
correspond to the free energy minimum. This approach is
based on the Hubbard-Stratonovich transformation and
was outlined in Refs.32,33 to which we refer the reader
for technical details. In both models, the thermal fluc-
tuations select the cubic axes as the preferred directions
for spins, which describes the experimental situation in
α−RuCl3 but not in Na2IrO3.

We have also checked that in both models the quantum
fluctuations (taken into account either using the quan-
tum version of Hubbard-Stratonovich approach or within
the semiclassical spin-wave approach) lift the accidental
degeneracy of the classical solution and also select the
cubic axes as the preferred directions for spins. We did
not present these calculations here as they bring no new
results compared with more simple analysis of thermal
fluctuations.

The important point which we stress in our paper is
that the selection of correct ”diagonal” direction of the
spins observed in Na2IrO3 might happen already on the
mean-field level by inclusion of small off-diagonal positive
interaction Γ as soon as it is larger than the energy gain
of order 1/S due to the quantum fluctuations.

This paper is organized as follows. In Sec. II we
study the order by disorder mechanism of the selection
of the direction of the order parameter in the nearest
neighbor Kitaev-Heisenberg model on the honeycomb lat-
tice. In Sec. III we extend our consideration to the
J1 − K1 − J2 − K2 − J3 model. In Sec. IV, we discuss
the role of the off-diagonal Γ-term and study the selec-
tion of the direction of the magnetic order in Na2IrO3

and in α−RuCl3. We summarize our conclusions in Sec.
V. Appendix A discusses in detail the degeneracy of the
classical manifold of the Kitaev-Heisenberg model. Ap-
pendices B and C contain some technical details.

II. ORDER BY DISORDER IN THE
EXTENDED NEAREST NEIGHBOR

KITAEV-HEISENBERG MODEL

The Kitaev-Heisenberg model on the honeycomb lat-
tice reads24

H =
∑
〈ij〉α

∑
γ

JαγSγ0,iS
γ
1,j , (1)

where Jαγ = J + Kδα,γ is the interaction between γ-
component of the pseudospin Sγν,j = 1/2, on sublattices
ν = 0, 1. Hereafter, we call these pseudospins simply
spins. J and K correspond to the Heisenberg and Kitaev
interactions, which in the extended model can be both

FIG. 1: Four possible magnetic configurations: (a) FM order-
ing; (b) AF Néel order; (c) AF stripy order; (d) AF zigzag
order. Red and blue circles correspond to up and down spins.
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√
3
2
x̂− 1

2
ŷ)

and dz= ŷ.

AF and FM. γ = x, y, z denote the spin components in
the global reference frame.

The classical phase diagram of the model (1) contains
four magnetic phases:24,34 the ferromagnetic phase (Fig.
1 (a)), the Néel antiferromagnet (Fig. 1(b)), the stripy
antiferromagnet (Fig. 1 (c)) and the zigzag antiferromag-
net (Fig. 1 (d)). The latter two magnetic states have a
four sublattice structure.

All these phases have macroscopic classical degener-
acy. While the classical degeneracy of the simple FM
state and of the AF Néel state comes straightforwardly
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FIG. 2: A, B, C and D designate the four sublattices of
the Klein transformation. Solid and dashed bonds shows the
change of the sign of the Γ interaction in the four-sublattice
transformation: Γ picks up a negative sign on the solid bonds
but keeps the sign from unrotated reference frame on the
dashed bonds.

from the infinite number of degenerate collinear states,
the macroscopic degeneracy of the AF stripy and zigzag
phases is more complex, and the degenerate ground state
manifold consists of six collinear states and a set of non-
collinear multi-Q states. In Appendix A we discuss this
question in detail and show that using the four-sublattice
Klein transformation for the stripy and the zigzag AF
states,23,31,46 the nature of the classical degeneracy of
all four magnetically ordered states can be understood
in a similar way. Importantly, in all cases, the classical
degeneracy is accidental and is removed by the order by
disorder mechanism which selects a set of collinear states,
each with a particular direction of the order parameter.

Following Chaloupka et al,23 we introduce four auxil-
iary sublattices A, B, C and D (see Fig.2), fix the direc-
tion of the spins on the sublattice A and rotate the spins
on the subllatices B, C, and D such that the component
of spin corresponding to the bond direction (x for B, y
for C and z for D) stays the same but two other spin
components change sign. This results in the transformed
Hamiltonian with the same form as (1) but with trans-
formed couplings.

Here we consider the Kitaev-Heisenberg model in the
full parameter space. For the parameters of the model
for which either stripy or zigzag are the ground states,
we perform four-sublattice transformation and treat the
model (1) in the rotated basis, in which the stripy order
maps to the FM and the zigzag order maps to the simple
two-sublattice AFM Néel state.

Next, using a Hubbard-Stratonovich transformation of
the partition function,32,33 we discuss how the preferred
directions of the order parameter in all these phases are
selected by thermal below the ordering temperature.

The partition function of the system of classical spins
is given by the integral over the Boltzmann weights of

the configurations

Z =

∫ ∫
[dS0,i][dS1,j ] δ(S

2
0,i − 1)δ(S2

1,j − 1)

exp

−β ∑
〈ij〉α

∑
γ

JαγSγ0,iS
γ
1,j

 , (2)

where S0,j and S1,j are classical spins on sublattices 0
and 1, and β = 1/(kBT ) is the inverse temperature.
Similarly in the case of a quantum system the partition
function is a trace of the Boltzman weights over the spin

operators, Z = Tr
[
exp

(
−β
∑
〈ij〉α

∑
γ J

αγSγ0,iS
γ
1,j

)]
.

It is more convenient to perform the Hubbard-
Stratonovich transformation by representing the Hamil-
tonian matrix in the basis of the eigenfunctions of the
exchange matrix, which can be easily obtained in the
momentum space. To this end, we first introduce a six-
component vector Sq = (Sx0,q, S

y
0,q, S

z
0,q, S

x
1,q, S

y
1,q, S

z
1,q),

with the components given by the Fourier transforms
of the x, y, z components of the spins on 0− and
1−sublattices, correspondingly. This allows us to write
the Hamiltonian matrix in the momentum space as

H =
∑
q

S†q · Ĵq · Sq, (3)

where the 6× 6 exchange matrix Ĵq is defined as

Ĵq =



0 0 0 Jxq 0 0
0 0 0 0 Jyq 0
0 0 0 0 0 Jzq(
Jxq
)∗

0 0 0 0 0

0
(
Jyq
)∗

0 0 0 0

0 0
(
Jzq
)∗

0 0 0

 , (4)

with matrix elements given by

Jγq =
∑

α=x,y,z

[J +Kδα,γ ] eıq·(dα−dz) = Jq +Kγ
q . (5)

Here we drop the overall phase factor eıq·dz = eıq·(0,1) =
eıqy and denote Jq = J(1 + e−ıq·a1 + e−ıq·a2), Kγ

q =

Keıq·(dγ−dz), where a1 = (
√

3
2 x̂ + 3

2 ŷ) and a2 =
√

3~x are

the lattice vectors. The matrix Ĵq is then diagonalized

by a unitary transformation, κ̂q = U−1
q ĴqUq, leading to

the following form of the Hamiltonian

H =
∑
q,ν

κq,ν S̃
∗
q,ν S̃q,ν , (6)

where the normal amplitudes of spin-like variables are
defined as

S̃νq = Uq,νηS
η
q . (7)

Note that, depending on the form of the interaction ma-
trix, this transformation in general will mix the spin op-
erators on different sites of the unit cell as well as dif-
ferent components of the spin. However, in the case of
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the Kitaev-Heisenberg model, while the two sublattices
of the honeycomb lattice are mixed, the x, y, and z com-
ponents stay separate. The partition function (2) then
looks like:

Z =

∫ ∫
[dS0,j ][dS1,j+dz ] δ(S

2
0,j − 1)δ(S2

1,j+dz − 1)

exp

[
−β
∑
q,ν

κq,ν S̃
∗
q,ν S̃q,ν

]
. (8)

Following the steps outlined in Refs.32,33, we can sepa-
rate the mean-field and the fluctuational contributions
to the partition function, Z = ZMFZfluct. In the Gaus-
sian approximation, the fluctuation part of the partition
function,

Zfluct =

∫
[dϕ] exp [−βSfluct] , (9)

where Sfluct =
∑

q;ν,ν′ Aq,νν′δϕ∗q,νδϕq,ν′ can be obtained
by integration over the fluctuation amplitudes δϕq,ν .
The explicit expression for the matrix elements of the
fluctuation matrix Âq computed for an orientation of
the mean-field order parameter along arbitrary direction
(sin θ cosφ, sin θ sinφ, cos θ) are given in Appendix B.

Now, the fluctuation contribution to the free energy
can be written as

Ffluct = − 1

β
lnZfluct =

1

2β

∑
q

ln |det{Aq,νν′}| . (10)

While the mean-field part of the free energy has the full
rotational symmetry, its fluctuational part, Ffluct, is sen-
sitive to the direction of the mean-field order parameter.
Thus, by finding the minima of the fluctuational part of
the free energy, we can pin the spontaneous magnetiza-
tion along some preferred direction of the lattice.

Fig.3 (a) shows the angular dependence of fluctuational
free energy Ffluct(θ, φ) computed for representative pa-
rameters J = −2.9 meV and K = 8.1 meV, at which
the ground state order is the AF zigzag. The magnitude
of Ffluct(θ, φ) is presented as a color-coded plot on the
unit sphere, where the minima and maxima of the free
energy are shown by the deep blue and red colors, cor-
respondingly. We see that the minima of Ffluct(θ, φ) are
achieved when the magnetization is directed along one of
the cubic axes.

This finding shows that the contribution of the fluctu-
ations to the free energy removes the degeneracy of the
ground state found on the mean field level. The states
which are selected by the thermal fluctuations are the
collinear states with the order parameter pointing along
one of the cubic axes, thus confirming previous results of
the Monte Carlo simulations34–36 and spin wave analysis
by Chaloupka et al.23

We discuss the relevance of our findings for the nearest
neighbor Kitaev-Heisenberg model for α−RuCl3 in Sec.
IV. However in the next section, we will first consider the
selection of the direction of the order parameter in the
extensions of the Kitaev-Heisenberg model relevant for
Na2IrO3.

(a)

(b)

FIG. 3: Fluctuational corrections to the free energy in (a)
nearest neighbor Kitaev-Heisenberg model computed with
J = −2.9 meV andK = 8.1 meV and (b) J1−K1−J2−K2−J3
model computed with J1 = 5 meV, K1 = −17 meV, J2 = −4
meV, K2 = 8 meV, and J3 = 1 meV.

III. ORDER BY DISORDER IN
J1 −K1 − J2 −K2 − J3 MODEL

Despite extensive efforts, no consensus concerning the
minimal model for Na2IrO3 has been reached yet. The
most natural extension of the Kitaev-Heisenberg model
with ferromagnetic Kitaev interaction which captures the
zigzag magnetic order can be obtained by inclusion of
farther neighbor couplings. In Na2IrO3, these couplings
might not be negligible due to the extended nature of
the 5d-orbitals of the Ir ions. In the early works suggest-
ing this possible extension,9,37 second and third neigh-
bor couplings were taken into account phenomenologi-
cally and only the isotropic part of these interactions was
included. The importance of additional nearest neigh-
bor C3-symmetric anisotropic terms (Γ-terms)30,31 or of
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the spatial anisotropy of the nearest neighbor Kitaev
interactions,38 were also discussed in the literature as a
possible source for the stabilization of the zigzag phase.

Here we consider the J1−K1− J2−K2− J3 model,26

which still has the same symmetry as the original Kitaev-
Heisenberg model but contains Kitaev interactions be-
tween both nearest and second nearest neighbors. The
model reads

H = J1

∑
〈i,j〉γ

SiSj +K1

∑
〈i,j〉γ

Sγj S
γ
j + (11)

J2

∑
〈〈i,j〉〉γ̃

SiSj +K2

∑
〈〈i,j〉〉γ̃

Sγ̃i S
γ̃
j + J3

∑
〈〈〈i,j〉〉〉

SiSj ,

where J1 > 0, K1 < 0, J2 < 0, K2 > 0, and J3 > 0;
〈 〉, 〈〈 〉〉 and 〈〈〈 〉〉〉 denote nearest neighbor, second near-
est neighbor and third nearest neighbor, respectively.
γ = x, y, z and γ̃ = x̃, ỹ, z̃ denote the three types of
nearest neighbor and second nearest neighbor bonds of
the honeycomb lattice, respectively. It is important to
note that the second neighbor Kitaev interactions do
not change the space group symmetries of the original
Kitaev-Heisenberg model.

For realistic sets of the parameters describing Na2IrO3,
the second neighbor Kitaev interaction, K2, computed
from the microscopic approach based on the ab-initio
calculation by Foevtsova et al,39,40 appeared to be the
largest interaction after the nearest neighbor Kitaev in-
teraction, K1, and turn out to be antiferromagnetic. The
mechanism behind the large magnitude of K2 in Na2IrO3

is physically very clear: It originates from the large dif-
fusive Na ions that reside in the middle of the exchange
pathways, and the constructive interference of a large
number of pathways. Moreover, the K1-K2 model, that
only includes Kitaev interactions,28 already stabilizes the
zigzag phase for the proper signs of K1 and K2. However,
as we have discussed in Ref.28, the K1-K2 model is still
not sufficient to comply with all available experimental
data.

The classical degeneracy of the zigzag state obtained
within the J1−K1− J2−K2− J3 model with FM K1 is
different from the one of the zigzag state realized in the
extended Kitaev-Heisenberg model with AFM K1 inter-
action. To see what difference the sign ofK1 makes, let us
consider the zigzag pattern in Fig.1 (d). With AFM K1,
the pattern, that minimizes the classical energy in the
zigzag state with ferromagnegnetic y and z bonds, has the
spins pointing along the x−axis to take advantage of the
Kitaev interaction on the AFM x-bonds. On the other
hand the same pattern with FM K1 takes advantage
of the Kitaev interaction on the FM y− and z− bonds
by putting spins in the yz−plane. Thus the degenerate
ground state manifold for a given zigzag pattern with
FM K1 is one of xy−, yz−, or zx− planes. Furthermore,
when the Klein duality 4-sublattice transformation23 is
applied to the J1−K1−J2−K2−J3 zigzags, these states
do not turn into Néel AFM state, and instead turn into
non-collinear states, that are more difficult to work with

(a) (b)

(c) (d)

FIG. 4: The lowest eigenvalue of the J1−K1−J2−K2−J3−Γ1

model obtained with the Luttinger-Tisza method is shown on
the first Brillouin zone. We use J1 = 3 meV, K1 = −17 meV,
J2 = −3 meV, K2 = 6 meV, J3 = 1 meV, and (a) Γ1 = 1
meV, (b) Γ1 = 20 meV, (c) Γ1 = 25 meV, and (d) Γ1 = 50
meV.

than the original zigzag states. Working with the zigzag
states directly increases the magnetic unit cell to 4 sites,
labeled in Fig 1(d).

The Hamiltonian matrix in the momentum space can
be again written in the form of Eq. (3), however this

time due to the larger unit cell the exchange matrix Ĵq is
12×12, instead of 6×6. Its matrix elements are given in
Appendix C. The fluctuations matrix Aq,νν′ is calculated
as before according to equation (B1), with the constraint
matrix Cq,µ,µ′ of equation (B3) now containing 4 iden-
tical blocks instead of 2. The fluctuation matrix again
contains the information on the direction of the spins and
transmits this information to the free energy corrections
that we plot in Fig. 3(b). Since the spins are confined to
a plane for a given zigzag state we have only the angle
of the direction of spins in that plane. The color of the
band at a given angle then gives the size of the fluctu-
ational correction to the free energy, with violet being
lowest and red highest energy states. We see that again
the Kitaev anisotropies prefer to align the magnetization
along the cubic axes. Note, however, that unlike the ex-
tended KH model, where there were 6 equivalent states,
here there are 4 directions for each of the three zigzag
patterns, giving a total of 12 states.
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IV. THE ROLE OF OFF-DIAGONAL
SYMMETRIC Γ-TERM.

A. Directions of the ordered moments in Na2IrO3.

The discussion above has clearly shown, that neither
the original Kitaev model nor the extended J1 − K1 −
J2−K2−J3 model can correctly explain the experimen-
tal data in Na2IrO3. Since the easy axes directions are
determined solely by the anisotropy terms, only the in-
clusion of other types of the anisotropies can improve the
situation. Here we consider the off-diagonal symmetric
Γ-terms. The role of these terms in the nearest-neighbor
Kitaev model has been studied in Refs.30,31. These stud-
ies have shown that the small Γ-terms do not immediately
destabilize the zigzag phase, but lead to a deviation of
the magnetic moments from the cubic axes.

The origin of Γ-terms can be easily seen from the most
general form of the bilinear exchange coupling matrix,
which on the bond (i, j) has the form given by

Ξi,j =

 Jxx Jxy Jxz

Jyx Jyy Jyz

Jzx Jzy Jzz

 . (12)

While the Kitaev term comes from the anisotropy of the
diagonal matrix elements of Ξi,j , e.g. K1 = Jzz1 − Jxx1 ,
the symmetric and antisymmetric combinations of off-
diagonal elements represent other types of possible bond-
anisotropies. In the absence of the trigonal distortion,
the inversion symmetry prohibits the existence of anti-
symmetric interactions but some of the symmetric com-
binations are allowed, i.e. on a given γ-bond, the interac-

tion between the other two spin components, Γγ(Sαi S
β
j +

Sβi S
α
j ), where Γγ = 1

2 (Jαβ1 + Jβα1 ), is non-zero. Our pre-

vious results26 suggest that in Na2IrO3 the magnitude of
the strength of Γ on the nearest neighbor bonds is about
2-3 meV and vanishes for the second neighbors.

Here we consider the J1−K1−J2−K2−J3−Γ model
with the previous choice of Heisenberg and Kitaev in-
teractions and treat Γ as a free parameter. A straight-
forward classical minimization in momentum space us-
ing Luttinger-Tisza approach43–45 shows that up to very
large values of Γ ∼ 20 meV the minima of the classi-
cal energy are located at the M points corresponding
to the zigzag states. This is clearly seen in Fig. 4(a)
where we plot the lowest eigenvalues obtained for Γ = 1
meV. At larger values of Γ, the minima shift along the
lines connecting M points and the center of the Brillouin
zone (see Fig. 4 (b) for Γ = 20 meV), indicating the
transition to incommensurate order. The incommensu-
rability of the Luttinger-Tisza solution increases further
with larger values of Γ, which is shown in Figs. 4 (c) and
(d). The exact value of Γ at which the transition occurs
is difficult to determine due to the transition being so
smooth, Note, however, that the transition occurs at val-
ues of Γ far beyond those predicted from our microscopic
calculations at ambient pressure.26

(a) (b)

FIG. 5: Mean field energy of the zigzag orders in J1 −K1 −
J2 −K2 − J3 model with the contribution of (a) Γ = 1 meV
and (b) Γ = −1 meV.

After we have demonstrated that adding small Γ inter-
actions to the J1 − K1 − J2 − K2 − J3 model does not
destabilize the zigzag order, let us now show that in the
presence of Γ the mean-field degeneracy is already lifted
and the preferred directions of the order parameter are
selected. This is clearly seen in Fig. 5 (a) and (b), where
the mean field energy of the zigzag order is computed for
Γ = 1 meV and Γ = −1 meV, respectively. By inspec-
tion, we can see that non-zero Γ selects the face diagonals
as easy axes for magnetic ordering, and the sign of Γ de-
termines which of the two face diagonals are preferred.
For concreteness, let us consider the zigzag with AFM
z−bonds. As we discussed above the case for Γ = 0, the
easy xy-plane is selected at the mean-field level of the
J1 − K1 − J2 − K2 − J3 model. Then, the inclusion of
positive Γ interaction on x and y bonds gives zero con-
tribution to the energy since on these bonds it involves
the spin component perpendicular to the easy plane, but
it gives maximal lowering of the energy on the z-bonds
if the spins point along [110] and [1̄1̄0], [1̄10] and [1̄10]
directions correspondingly for positive and negative val-
ues of Γ. The estimate for the smallest Γ, at which the
selection of face diagonals takes place, can be done by
comparing the mean-field energy gain due to Γ with the
energy gain due to fluctuations at Γ = 0, which at T = 0
is equal to the zero point energy and is a function of K1

and K2. At finite temperature, the contribution to the
energy from the Gaussian fluctuations at each T can be
computed by our method, and this energy will give the
lower bound for the magnitude of Γ needed to change the
orientation of magnetic order from the cubic to the face
diagonal.

B. Directions of the ordered moments in α−RuCl3.

The microscopic calculations for α−RuCl3 emphasized
the importance of the off-diagonal nearest neighbor Γ
interactions.29 The effect of adding Γ interaction to the
nearest neighbor Kitaev-Heisenberg model is easiest to
understand in the rotated reference frame of the four-
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sublattice Klein transformation.31,46 The Kitaev and
Heisenberg interactions do not change their form and
only change the value of the coupling constants under
this transformation. On the other hand, Γ-interaction
picks up a bond dependent sign as shown in Fig. 2. In
fact, Γ changes the sign on half of the bonds, i.e. there
are just as many negative bonds as there are positive
bonds for each Kitaev type of bonds. Since the Klein
transformed version of the zigzag state is the AFM Néel
state, all the bonds are AFM and involve the same pair of
spins. Thus the contribution of the Γ interaction to the
mean-field energy cancels out, and the set of states re-
mains degenerate. This means that as long as we remain
in the small window where Γ does not destabilize the
zigzag order found by Rau et al.,30 we can perform our
order-by-disorder approach to see what state is chosen.

Figs.6 (a)-(c) show the fluctuation free energy com-
puted for the J − K − Γ model for J1 = −2.9 meV
and K1 = 8.1 meV, suggested by Banerjee et al.,21 and
Γ = 0.7 meV, 0.8 meV and 0.9 meV, respectively. In
Fig. 6 (a), Γ = 0.7 meV, the minima of the fluctua-
tional free energy are still along cubic directions. For
larger Γ-interaction, the system prefers the states with
at least two nonzero spin components and, therefore, the
transition towards [111] preferred directions of the or-
der parameter takes place. This is shown in Fig. 6 (b)
and (c), in which the fluctuational energy is plotted for
Γ = 0.8 meV and 0.9 meV. While in Fig. 6 (b) only
very shallow minima are seen along [111] directions, in
Fig. 6 (c) both the pronounced minima along the cubic
body diagonals and maxima along the cubic axes are very
clearly seen. Remember that the computation is done in
the rotated reference frame. Therefore, only the states
with the orientation of the order parameter along the cu-
bic axes will give the collinear states in the unrotated
reference frame. The states with order parameter point-
ing along [111] directions in the rotated reference frame
correspond to non-collinear states in the unrotated ref-
erence frame. Since recent experiments by Cao et al.22

have established that spins point along a cubic axis, by
calculating the fluctuational corrections as a function of
Γ, we can find an upper bound on its value, such that the
Kitaev fluctuations dominate and keep the cubic axes as
the preferred directions. From our calculations it fol-
lows that for J1 = −2.9 meV and K1 = 8.1 meV the
upper bound for Γ is about 0.8 meV. Finally, for this
set of parameters the transition to the 120◦- AFM or-
der occurs around Γ = 1.6 meV. Note that this estimate
is far smaller than the Γ values resulting from ab initio
calculations.29.

V. CONCLUDING REMARKS

In this paper we explored how the direction of the mag-
netic moments in the zigzag ground state order is chosen
in Na2IrO3 and α−RuCl3. In both compounds, the Ki-
taev interaction plays an important role. For the case of

FM nearest neighbor Kitaev interaction, like in Na2IrO3,
farther neighbor interactions are essential for stabilizing
the zigzag ground state. For the AFM nearest neigh-
bor Kitaev interaction, which was widely suggested to
be the dominant interaction in α−RuCl3,18,20–22,29 the
zigzag order can be stabilized already within the nearest
neighbor model.

We proposed that the J1−K1−J2−K2−J3−Γ model
can explain all the experimental finding in Na2IrO3. In
this model the selection of the experimentally observed
face diagonal direction of the order parameter happens
already on the mean-field level due to the small bond-
dependent anisotropic term Γ.

In α−RuCl3, if the the nearest neighbor Kitaev inter-
action is AFM, the original Kitaev-Heisenberg model24

is sufficient to explain both the collinear zigzag ground
state and the cubic directions of the order parameter. We
studied the effect of the Γ-term and showed that while
on the mean-field level it doesn’t affect the ground state
degeneracy, it favors non-collinear 3-Q states, instead of
the experimentally observed zigzag state with spins along
cubic axes, once the Gaussian fluctuations are included.
Thus, it appears to be an upper bound for Γ-term, which
can be estimated for a given set of nearest neighbor pa-
rameters.

After the completion of our paper, we became aware
of an independent study by Winter et al.41 of the mag-
netic interactions in the Kitaev materials Na2IrO3 and
α−RuCl3. In this work, the authors treated all interac-
tions up to third neighbours on equal footing by combin-
ing exact diagonalization and ab-initio techniques. One
of the main findings of this work is that the third neighbor
Heisenberg interaction is important in all Kitaev materi-
als.

Let us briefly compare the results of Ref.41 with our
findings. The conclusions of the authors of Ref.41 about
the ordering in Na2IrO3 are in agreement with our find-
ings, despite the fact that their estimates for K2 sug-
gest significantly smaller values than the ones that we
obtained by including only the dominant superexchange
processes between the second neighbors. The agreement
holds because the second neighbor Kitaev interaction K2

and the third neighbor interaction J3 favor the same type
of AFM zigzag ground state.

For α−RuCl3, the authors of Ref.41 suggest (i) that
there may be possible variations of in-plane interactions
due to lattice distortions, and (ii) that the nearest neigh-
bor Kitaev interaction may be FM and the third neighbor
coupling J3 may be large and AFM. The FM sign of the
nearest neighbor Kitaev interaction was also suggested
by Yadav et al in Ref.42. If this is indeed the case, the
physics of α−RuCl3 is similar to that of Na2IrO3. This,
however, still needs to be verified by a detailed compari-
son with the experimental data.
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FIG. 6: (Color online) Fluctuational corrections to the free energy in the nearest neighbor Kitaev Heisenberg model with Γ
interaction. We used the following parameters: J = −2.9 meV, K = 8.1 meV and (a) Γ = 0.7 meV, (b) Γ = 0.8 meV, and (c)
Γ = 0.9 meV. The minima of the free energy are shown by deep blue color and the maxima by intense red color.

edges the hospitality of KITP and partial support by
the National Science Foundation under Grant No. NSF
PHY11-25915.

Appendix A: The classical degeneracy of the
extended Kitaev-Heisenberg model

In this Appendix we provide detailed discussion of the
classical degeneracy of the extended Kitaev-Heisenberg
model at parameters for which either the stripy or the
zigzag AF phases are realized as the ground state and the
manifold of classically degenerate states is rather com-
plex.

To be specific, let us first consider the stripy phase.
It contains six inequivalent collinear stripy states with
FM bonds along either Kitaev x−, y− or z−bonds. It
also contains infinite number of non-collinear (coplanar
and non-coplanar) states. The spin order in the x−, y−
or z− stripy states can be described either with a help
of four magnetic sublattices or by a simple spiral char-
acterized by a single-Q wave vector: Qx = (π/

√
3, π),

Qy = (π/
√

3,−π) and Qz = (−2π/
√

3, 0). One of the
stripy states with FM z-bonds is shown in Fig.1 (c). In
each of these stripy states the spins are aligned along one
of the cubic directions which is locked to the spatial ori-
entation of a stripy pattern by the Kitaev interaction,
i.e. the direction of the order parameter is defined by the
wave vector Q = Qx,Qy or Qz determining the breaking
of the translation symmetry.

The structure of the manifold of the non-collinear
states, which looks rather complex in the original model,
can be easily understood with the help of the four-
sublattice transformation (see Fig.2) based on the Klein
duality.23,31,46 In the new rotated basis, the stripy phase
is mapped to the FM order with a unique ordering vec-
tor Q = 0. Classically, all states with arbitrary direction
of the FM order have the same energy. FM states with
order parameter along the cubic axes give the six stripy

phases in the unrotated spin basis discussed above. Arbi-
trary directions of the FM order parameter lead to a set
of non-coplanar states in which each component of spin,
Sx, Sy, and Sz, transforms with its own Qx, Qy and Qz

wavevector, which coincide with the Q vectors describ-
ing the spatial orientation of the stripes in the respective
collinear states.

Using these three ordering vectors, we can write the
non-coplanar phase of the unrotated spins as

Si,0 = (sθcφ e
ıQx·Ri , sθsφ e

ıQy·Ri , cθ e
ıQz·Ri), (A1)

where θ and φ are the polar and azimuthal angles of
the FM order parameter. Si,0 denote the spins on the
sublattice 0 and the spins on the sublattice 1 are obtained
from Si,0 by a constant phase shift coming from the spin
rotation on that bond as prescribed by the four sublattice
transformation. As in Fig.1 (c), the sublattices 0 and 1
are connected by the z bond, the order of the spins on
the subllatice 1 is given by

Si,1 = (Sxi,0 e
ıπ, Syi,0 e

ıπ, Szi,0) (A2)

In the zigzag phase, the structure of the classical states
manifold is very similar to the stripy phase. The four-
sublattice transformation maps the zigzag phase onto the
Néel AF phase. The generic state is again described by
the three-Q spiral state. The only difference is that the
spins on sublattice 1 have an overall phase factor of π,
Si,1 = (Sxi,0, S

y
i,0, S

z
i,0e

ıπ).

Appendix B: The matrix elements Aq,νν′ computed
for the KH model.

The matrix elements Aq,νν′ can be written as

Aq,νν′ =
δν,ν′

κq,ν
+ s(κq,ν)s(κq,ν′)U−1

q,ν,µCq,µ,µ′Uq,ν,µ,(B1)
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where a repeated index implies a summation over. The
first term in (B1) is the contribution from the interac-
tion term and the second term is from the constraint
term.32,33 For convenience, the constraint matrix Ĉq can
be first written in the original basis, in which the inter-
action term is not diagonal, and then transformed to the
eigenbasis of the Hamiltonian with a help of the unitary
transformation Uq. In the original basis the constraint

matrix Ĉq consists of two blocks, one for each sublat-
tice. The A-sublattice block has elements Cq,µ,µ′ with
µ, µ′ = 1, 2, 3 and the B-sublattice block has the elements
with µ, µ′ = 4, 5, 6. The two blocks are identical, so Ĉq

takes the following form:

Ĉq =


Cq,11 Cq,12 Cq,13 0 0 0
Cq,21 Cq,22 Cq,23 0 0 0
Cq,31 Cq,32 Cq,33 0 0 0

0 0 0 Cq,11 Cq,12 Cq,13

0 0 0 Cq,21 Cq,22 Cq,23

0 0 0 Cq,31 Cq,32 Cq,33

 (B2)

with matrix elements given by

Cq,11 = − 2
3

[
βc(1− s2

θc
2
φ) + 3βrs2

θc
2
φ

]
,

Cq,22 = − 2
3

[
βc(1− s2

θs
2
φ) + 3βrs2

θs
2
φ

]
,

Cq,33 = − 2
3

[
βcs

2
θ + 3βrc2θ

]
,

Cq,12 = Cq,21 = − 2
3 (3βr − βc)s2

θcφsφ,
Cq,13 = Cq,31 = − 2

3 (3βr − βc)sθsθcφ,
Cq,23 = Cq,32 = − 2

3 (3βr − βc)sθsφcφ,

(B3)

where, to shorten notations, we denote sin θ(φ) ≡ sθ(φ)

and cos θ(φ) ≡ cθ(φ).

Appendix C: Coupling Jµ,ν(q) of the
J1 −K1 − J2 −K2 − J3 model.

For shortness we define q1 = q · a1, q2 = q · a2, and
qz = q · dz. The diagonal matrix elements for µ = 1, 4, 7
and 10 are equal to Jµ,µ(q) = (J2 +K2) cos q1, all other
diagonal elements are equal to Jµ,µ(q) = J2 cos q1. The
non-zero off-diagonal elements Jµ,ν(q) for ν > µ are

J1,4(q) =
1

2
J1(eıqz + eı(−q1+qz))

J2,5(q) =
1

2

(
J1(eıqz + (J1 +K1)eı(−q1+qz))

)
J3,6(q) =

1

2

(
(J1 +K1)(eıqz + J1e

ı(−q1+qz))
)

J1,7(q) = J2(cos(q1 − q2) + cos q2)

J2,8(q) = (J2 +K2) cos(q1 − q2) + J2 cos q2

J3,9(q) = J2 cos(q1 − q2) + (J2 +K2) cos q2

J1,10(q) =
1

2

(
(J1 +K1)eı(q2−q1+qz) +

J3(eı(q2+qz) + eı(q2−2q1+qz) + eı(−q2+qz))
)

J2,11(q) =
1

2

(
J1e

ı(q2−q1+qz) +

J3(eı(q2+qz) + eı(q2−2q1+qz) + eı(−q2+qz))
)

J3,12(q) =
1

2

(
J1e

ı(q2−q1+qz) +

J3(eı(q2+qz) + eı(q2−2q1+qz) + eı(−q2+qz))
)

J4,7(q) =
1

2

(
(J1 +K1)eı(q1−q2−qz)+

J3(eı(2q1−q2−qz) + eı(−q2−qz) + eı(q2−qz))
)

J5,8(q) =
1

2

(
J1e

ı(q1−q2−qz)+

J3(eı(2q1−q2−qz) + eı(−q2−qz) + eı(q2−qz))
)

J6,9(q) =
1

2

(
J1e

ı(q1−q2−qz)+

J3(eı(2q1−q2−qz) + eı(−q2−qz) + eı(q2−qz))
)

J4,10(q) = J2

(
cos q2 + cos(q2 − q1)

)
J5,11(q) = J2 cos q2 + (J2 +K2) cos(q2 − q1)

J6,12(q) = (J2 +K2) cos q2 + J2 cos(q2 − q1)

J7,10(q) =
1

2
J1(eıqz + eı(−q1+qz))

J8,11(q) =
1

2

(
J1e

ıqz + (J1 +K1)eı(−q1+qz)
)

J9,12(q) =
1

2

(
(J1 +K1)eıqz + J1e

ı(−q1+qz)
)
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