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We obtain a complete and numerically exact in the weak-coupling limit (U → 0) ground state
phase diagram of the repulsive fermionic Hubbard model on the square lattice for filling factors
0 < n < 2 and next-nearest-neighbour hopping amplitudes 0 ≤ t′ ≤ 0.5. Phases are distinguished by
the symmetry and the number of nodes of the superfluid order parameter. The phase diagram is
richer than may be expected and typically features states with a high — higher than that of the
fundamental mode of the corresponding irreducible representation — number of nodes. The effective
coupling strength in the Cooper channel λ, which determines the critical temperature Tc of the
superfluid transition, is calculated in the whole parameter space and regions with high values of λ
are identified. It is shown that besides the expected increase of λ near the Van Hove singularity line,
joining the ferromagnetic and antiferromagnetic points, another region with high values of λ can be
found at quarter filling and t′ = 0.5 due to the presence of a line of nesting at t′ ≥ 0.5. The results
can serve as benchmarks for controlled non-perturbative methods and guide the ongoing search for
high-Tc superconductivity in the Hubbard model.

I. INTRODUCTION

The repulsive Hubbard model1,2

H = −t
∑
〈i,j〉,σ

ĉ†iσ ĉjσ + t′
∑
〈〈i,j〉〉,σ

ĉ†iσ ĉjσ + U
∑
i

n̂i↑n̂i↓ − µ
∑
i,σ

n̂iσ,

(1)

where ĉ†iσ creates a fermion with spin σ = {↑, ↓} on the
lattice site i, n̂iσ = ĉ†iσ ĉiσ, 〈. . .〉 and 〈〈. . .〉〉 denote summa-
tion over nearest and next nearest neighbours respectively,
t and t′ are the hopping amplitudes, U the on-site repul-
sion, and µ the chemical potential, is widely regarded as
paradigmatic for strongly correlated electrons3–7. It is ex-
pected to capture a variety of intriguing macroscopic quan-
tum phenomena, including, e.g., Mott-insulator physics,
antiferromagnetism, striped phases, itinerant ferromag-
netism, and high-temperature superconductivity. Due to
recent remarkable progress in experimental technique, the
Hubbard model can be now reliably emulated by ultracold
atoms in optical lattices8–14 and probed with unprece-
dented control, which in principle allows to determine its
phase diagram experimentally.

On the theoretical side, the model can be solved exactly
in one dimension15,16. Already in 2D, more relevant in
the context of condensed matter systems, obtaining the
phase diagram for generic filling factors n and values of
the interaction U remains a prohibitively complex prob-
lem. Since the seminal work by Kohn and Luttinger17,
who showed that the Cooper instability can develop even
with repulsive interactions between fermions, a number
of important results, exact in the weak-coupling limit
(U → 0), have been obtained by perturbative approaches.
Baranov and Kagan18–20 studied the Hubbard model in
the dilute limit (n→ 0) by 2nd-order perturbation the-
ory. This work has been extended to the 3rd order by

Chubukov and Lu21,22 and later by Fukazawa et al.23,
which allowed, in particular, to obtain the boundary be-
tween different superfluid phases in the limit n → 0,
U → 0. The first week-coupling phase diagram in the
n − t′ plane for the range of parameters 0 ≤ t′ ≤ 0.5
and 0.25 ≤ n ≤ 0.75 was obtained by Hlubina24 and the
the effective coupling strengths for lines of t′ = 0 and
t′ = 0.3 and 0 < n < 2 were analysed by Raghu et al.25
(although, as we discuss below, with algebraic mistakes
that are critical for final conclusions). Of special inter-
est is the interplay of various ordered phases when the
Fermi surface is tuned to the Van Hove singularity, or in
the vicinity thereof. This competition of instabilities has
been inspected mainly by different renormalisation group
techniques26–33 at weak-coupling6,34–44 as well as in the
strong coupling regime45–53.

Very recently, the phase diagram of the Hubbard model
in a wide range of parameters was studied within the
random phase approximation54, which in principle is con-
trolled in the U → 0 limit. The approach however as-
sumed the effective coupling in the Cooper channel λ to
be fixed whilst the value of U was adjusted accordingly,
so that the resulting phase diagram cannot be directly
related to results in the U → 0 limit. A number of pre-
vious works applied the weak-coupling approach to the
Hubbard model but evaluated the observables at strong
interactions55–59. Although meant to provide insight into
the physics of strong correlations, such results are a pri-
ori uncontrolled and typically deviate significantly, even
qualitatively, from the (numerically) exact solution in
the correlated regime whenever the latter is available60.
Accurate studies of the Hubbard model in the correlated
regime have been possible by means of various Monte
Carlo methods at half filling61–63, where the notorious
fermionic sign problem is absent, and, more recently, with
the development of advanced numerical technique, at non-
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zero doping values60,64–68. Nonetheless, achieving full
control over systematic errors in numerical studies of the
doped Hubbard model in the correlated regime is still
a very difficult problem67 and a reliable phase diagram
at non-zero values of U is currently available only in a
very limited region of the parameter space60. In the con-
text of ongoing development and testing of new numeric
techniques for the Hubbard model at strong correlations,
accurate results in limiting cases are indispensable.
However, even in the weak-coupling limit U → 0 a

complete phase diagram in the full range of filling factors
0 < n < 2 and most relevant next-nearest-neighbour hop-
ping amplitudes 0 ≤ t′ ≤ 0.5 is still missing. Moreover,
recent results in this parameter range24,25 are in conflict
with each other. A detailed analysis of the nodal structure
of the Cooper-pairing order parameter for each symme-
try sector in the phase diagram has not yet been carried
out. Furthermore, in the context of high-temperature
superconductivity, it would be of significant importance
to identify regions of the phase diagram where the effec-
tive coupling strength is highest. Our paper is aimed at
addressing all these issues.
We report the numerically exact in the limit U → 0

ground-state phase diagram of the Hubbard model on the
square lattice in the range of 0 ≤ t′ ≤ 0.5 and 0 < n < 2.
Our method consists of semi-analytical treatment of the
weak Cooper instability developing in the Landau Fermi
liquid (FL) at temperatures much (exponentially) smaller
than the Fermi energy EF . We identify twelve different
superconducting phases, differentiated by the number
of nodes of the superfluid order parameter, with every
allowed symmetry of the order parameter represented,
and study how the shape of the order parameter trans-
forms across the boundaries between the phases in the
parameter space. We perform an analysis of the effective
coupling strength and identify regions of the parameter
space where high-Tc superconductivity might be expected
at higher values of the coupling U . Our results fix errors
in and reconcile previous studies as well as provide more
detail on the structure of the order parameter in a wider
range of parameters, thereby serving as solid grounds for
benchmarking of new non-perturbative methods. Since
obtaining controlled numeric results at essentially non-
zero values of U is extremely computationally expensive,
our work provides a valuable guide for such studies in
the search for high-Tc superconductivity in the Hubbard
model.
The paper is organised as follows: In Section IIA we

review the method for obtaining the phase diagram by
tracing the development of instability in each particular
channel. Section IIB presents a brief overview of the
symmetry adapted basis states on the square lattice. Sec-
tion IIC addresses competition between magnetic and
superconducting instabilities along the line in the (t′, n)
plane where the Van Hove singularity is at the Fermi sur-
face. We present the obtained phase diagram in Section
IIIA, and discuss the behaviour of the effective coupling
strength in the Cooper channel, which controls the super-

fluid Tc, in Section III B. In Section III C we compare our
results to previous work, while Section IV gives general
concluding remarks.

II. METHOD

A. Perturbative treatment of the Fermi liquid

Our derivations follow the standard perturbative ap-
proach, adopted, e.g., in Refs. 24 and 25.

The dispersion relation on the square lattice reads (kx
and ky are the momentum components of k)

ε(k) = −2t (cos kx + cos ky) + 4t′ cos kx cos ky. (2)

The Green’s function G(k, ξ) can be obtained from the
Dyson’s equation

G(k, ξn) = 1
ıξn − ε(k) + µ− Σ(k, ξn) (3)

where µ is the chemical potential, ξn = (2n+1)π/β are the
Matsubara frequencies and Σ(k, ξn) is the self-energy (in
the following we adopt the units of the hopping amplitude
t).
In the weak-coupling limit at sufficiently low temper-

atures T � EF the system is a Fermi liquid with a
well-defined Fermi surface. The quasiparticle Green’s
function in the vicinity of the Fermi surface |ξ| � EF
and |k − kF (k̂)| � kF (k̂) takes on the form:

G(k, ξ) ≡ z(k̂)
iξ − vF (k̂)× [k− kF (k̂)]

(4)

Here the Fermi surface is parametrised in terms of the
Fermi momentum kF (k̂) in the direction k̂ of the vector
k. Comparing Eq. 3 and Eq. 4 we obtain the Fermi
velocity vF (k̂) = z(k̂)∇kF(ε(kF) + ΣR(kF, ξn)) and the
quasiparticle residue z(k̂) = (1− limξn→0

ΣI(kF,ξn)
ξn

)−1.
As the temperature is lowered further, the development

of the Cooper instability is marked by divergence of the
pairing susceptibility at the critical temperature Tc, which
is exponentially smaller than EF . The instability is due

−p2−p1

p2p1

F̂ pp =

−p2−p1

p2p1

Γ̂pp +

−p2−p1 −p3

p2p1 p3

Γ̂pp F̂ pp

FIG. 1. The Bethe-Salpeter equation for Γpp with pi ≡ (ξi,ki).
Summation over ξi and integration over ki is assumed.

to weak attraction between fermions, which in our case
is an emergent low-energy many-body property. Math-
ematically, the effective interaction is described by the
irreducible in the particle-particle channel four-point ver-
tex Γpp, which in general is a sum of all possible four-point
diagrams that cannot be split into disconnected pieces by
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cutting two particle lines. The Cooper pairing susceptibil-
ity is proportional to the full effective vertex F pp, which
diverges at Tc and is related to Γpp via the Bethe-Salpeter
equation shown diagrammatically in Fig. 1. From the
Bethe-Salpeter equation we see that the smallness of the
attractive part of Γpp is a natural condition preventing
F pp from dramatic growth at T � EF . Indeed, in the
FL regime, the leading contribution to the integral over
k3 in the second term on the r.h.s. of Fig. 1 comes from
the close vicinity to the Fermi surface,∫

d k3
∑
ξ3

G(p3)G(−p3) ≈ ln cEf
T

∫ d s
2π

z2(k̂)
2πvF

, (5)

where d s is the Fermi surface element. Only the finite
temperature (i.e., discreteness of Matsubara frequency
ξ3) prevents the integral in the r.h.s. from logarithmic
divergence. With logarithmic accuracy at T � EF , we
have

F pp
k̂1,k̂2

≈ Γpp
k̂1,k̂2

+ ln cEf
T

∫
Γpp
k̂1,k̂3

Qk̂3
F pp
k̂3,k̂2

d k̂3 (6)

where Fk̂1,k̂2
and Γk̂1,k̂2

are F pp and Γpp at vanishing
frequencies projected to the Fermi surface:

F pp
k̂1,k̂2

≡ F pp(k1 = kF (k̂1), ξ1 → 0; k2 = kF (k̂2), ξ2 → 0)
(7)

and Qk̂ is the product of z2(k̂) and the density of states
at the k-point on the Fermi surface.

Qk̂ = kF (k̂)z2(k̂)
2π vF (k̂)

(8)

Switching to matrix notations F pp
k̂1,k̂2

→ F̂ pp, Γpp
k̂1,k̂2

→
Γ̂pp, Qk̂2

→ Q̂ we find

F̂ pp ≈
[
1− ln(EF

T
)Γ̂ppQ̂

]−1
Γ̂pp, (9)

implying that F̂ pp, and thus the static response function
in the Cooper channel, diverges at the critical temperature

Tc = cEF e
−1/λ (10)

where λ is the largest positive eigenvalue of Γ̂ppQ̂. Solving
the problem with logarithmic accuracy (which is guaran-
teed in the U → 0 limit due to λ→ 0 and the correspond-
ing exponential smallness of Tc) amounts to finding the
eigenvalues/eigenvectors of a real symmetric matrix

Tk̂1,k̂2
ψk̂2

= λψk̂1
, Tk̂1,k̂2

= Q
1
2
k̂1

Γk̂1,k̂2
Q

1
2
k̂2

(11)

where the eigenvector ψk̂ is the wave function of the
Cooper pair in the momentum representation.

The effective vertex Γ̂pp can be computed as a diagram-
matic expansion in the bare coupling U . In this expansion

−p2−p1 −p3

p2p1 p3

FIG. 2. The second-order diagram contributing to Γ̂pp. The
wavy lines are the interaction vertices U , the straight lines with
arrows are the non-interacting propagators G0. Integration
over internal momenta is assumed.

the first order diagram is a negative constant −U , which
by itself can never lead to a diverging denominator in Eq.
9. The first non-vanishing contribution to Cooper pairing
comes from the second order in U diagram, shown in
Fig. 2, which features non-trivial momentum dependence
giving rise to positive eigenvalues of the matrix Tk̂1,k̂2

ψk̂2
.

All the diagrams beyond second order are vanishing in
the limit U → 0, and can be neglected. With the same
accuracy, the propagator lines in the diagram in Fig. 2
are given by the bare non-interacting Green’s function G0,
i.e. the self-energy contribution in Eq. 3 can be neglected
giving

G0(k, ξn) = 1
ıξn − ε(k) + µ

. (12)

Correspondingly, in Eq. 4, the quasiparticle residue z(k̂) =
1. Thus, the diagram Fig. 2 is given by

Γk̂1,k̂2
≈ χphk̂1,k̂2

= −
∫ dd q

(2π)d
ν(ε(k + q))− ν(ε(k))

ε(k + q)− ε(k) ,

(13)

where ν(ε) = [1 + exp((ε − µ)/T )]−1 is the Fermi-Dirac
distribution function. In two dimensions it is convenient
to parametrise k̂ with the polar angle θ and to write the
eigenvalue/eigenvector problem explicitly as∫ 2π

0

d θ2

2π Tθ1,θ2ψθ2 = g ψθ1 , Tθ1,θ2 = Q
1
2
θ1

Γθ1,θ2Q
1
2
θ2
.

(14)

Note that this parametrisation only works for connected
Fermi surfaces, which is the case for all of parameter space
in our model for values t′ ≤ 0.5.

We employ the following protocol to obtain the ground
state phase diagram:

1. For a given set of parameters (t′, n), the Fermi
surface is found as the pole of G0, Eg. 12, in the
limit T → 0, which gives vF (k̂) and kF (k̂).

2. The matrix Γθ1,θ2 is computed using Eq. 13 by
Monte Carlo numerical integration.

3. The eigenvalue problem, Eq. 14, is solved in the basis
given by the point symmetry group (as explained
below).

4. The largest eigenvalue λ and the corresponding
eigenvector determines the superfluid ground state
realised at the given set of parameters.
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m A1 A2 B1 B2 E1(a) E1(b)
0 s(0) g(8) d

(4)
xy d

(4)
x2−y2 p

(2)
x p

(2)
y

1 s(8) g(16) d
(12)
xy d

(12)
x2−y2 p

(6)
x p

(6)
y

2 s(16) g(24) d
(20)
xy d

(20)
x2−y2 p

(10)
x p

(10)
y

FIG. 3. The form of basis functions in the Brillouin zone
(red, blue and white colours correspond to positive, negative
values and nodes respectively) categorised by irreducible rep-
resentation and the order of harmonic m. (See Eqs. 15 -
19).

B. Classification of basis states on the square
lattice

The symmetry operations on the square lattice form
the point group D4 (the two-dimensional point group
corresponding to D4h). The operations are the identity
(E), two rotations by ±π/2 (C4) and one rotation by π
(C2) in the main symmetry axis (perpendicular to the
plane) as well as two rotations by π around the horizon-
tal/vertical in-plane axes (C ′2) and two π rotations around
the diagonal in-plane axes (C ′′2 ).

The D4 symmetry dictates that the matrix Γθ1,θ2 splits
into four independent singlet blocks, known as s, g, dxy
and dx2−y2 , which correspond to one-dimensional irre-
ducible representations A1, A2, B1, B2, and the doubly
degenerate triplet block p, which corresponds to the two-
dimensional irreducible representation E1. The E1-sector
further splits into px and py eigenvalues/eigenfunctions,
which are related to each other by a ±π/2 rotation. For
each of the six sectors, the symmetry properties of the
corresponding eigenvectors Ψ(θ) are readily seen from
their Fourier expansions (with integer values of m)

A1 : Ψs(θ) =
∞∑
m=0

Am cos (4mθ) (15)

A2 : Ψg(θ) =
∞∑
m=0

Bm sin ((4m+ 4) θ) (16)

B1 : Ψdxy
=
∞∑
m=0

Cm cos ((4m+ 2) θ) (17)

B2 : Ψdx2−y2 (θ) =
∞∑
m=0

Dm sin ((4m+ 2) θ) (18)

E1 :
{

Ψpx(θ) =
∑∞
m=0Em cos ((2m+ 1) θ)

Ψpy
(θ) =

∑∞
m=0Em sin ((2m+ 1) θ)

(19)

The eigenfunctions Ψs are invariant under all symmetry
operations of the point group. The eigenfunctions Ψg are
invariant under E, C4 and C2, but change sign under C ′2
and C ′′2 . Both Ψdxy

and Ψdx2−y2 change signs under C4,
while only Ψdxy

changes sign under C ′2 and only Ψdx2−y2

changes sign under C ′′2 . Finally Ψpx
and Ψpy

transform
into each other under C4 and into a linear combination
thereof under all the other symmetry operations. We refer
to the m = 0 contribution to each eigenfunction in Eqs.
15 - 19 as the corresponding fundamental mode and all
the eigenfunctions with m > 0 as higher harmonics. We
assign a number in the superscript to each eigenfunction,
which signifies the amount of zeros of the function. An
example of the fundamental mode and the first two higher
harmonics projected onto the Brillouin zone of the square
lattice is given in Fig. 3. It must be noted that identifying
the largest coefficient in the expansion in Eqs. 15 - 19
for each eigenfunction is not always sufficient to classify
the eigenfunction in terms of the number of nodes it
features since the sub-leading components can have a
significant net contribution that can change the nodal
structure. We therefore classify each state in the phase
diagram by explicitly counting the number of zeros in the
eigenfunction that corresponds to the largest eigenvalue.

(a) (b) (c) (d) (e) (f) (g) (h)

FIG. 4. The change of Fermi surface topology in the range of
parameters 0 ≤ n ≤ 2 and 0 ≤ t′ ≤ 0.7. The Van Hove line
(dashed), second line of nesting (dot-dashed) and line beneath
which a Fermi pocket exists (dotted) are plotted; see text for
definitions of the lines. Characteristic Fermi surfaces in the
first Brillouin zone (kx, ky ∈ [−π, π)) are shown for specific
points in the parameter space: (a) the antiferromagnetic point
{n = 1, t′ = 0}, (b) the ferromagnetic point {n = 0, t′ = 0.5},
(c)an arbitrary point along the Van Hove line {n = 0.78,
t′ = 0.25} (d), above the Van Hove line {n = 1.60, t′ = 0.4},
(e) below the Van Hove line {n = 0.58, t′ = 0.1}, (f) below
the second line of nesting {n = 0.27, t′ = 0.65}, (g) above
the second line of nesting {n = 0.76, t′ = 0.65}, in the region
where a Fermi pocket exists around (kx, ky) = (0, 0), (h) on
the second line of nesting {n = 0.61, t′ = 0.6}.
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C. Instabilities along the Van Hove singularity line

In the weak-coupling limit, the superfluid phase is re-
alised in the ground state in the whole parameter range
with the exception of two points. Both of them lie on the
line in the (t′, n) plane where the density of states at the
Fermi surface diverges due to the Van Hove singularity.
This line (referred to as Van Hove line) is defined by the
condition µ = 4t′. At t′ = 0 and n = 1, due to nesting of
the Fermi surface with the momentum QAFM = (π, π),
the spin ordering instability dominates, and the ground
state is an antiferromagnet. At t′ = 0.5, n = 0 the ferro-
magnetic instability with the nesting vector QFM = (0, 0)
is leading. Generally, along the line, the particle-hole
susceptibility χph diverges double logarithmically69 at
momentum transfer Q = (π, π) and logarithmically at
q = (0, 0) as:

χph(q) ∼
(

1
2π2

)
1√

1− 4t′2
ln
(

1
Λ

)
(20)

χph(Q) ∼
(

1
2π2

)
ln
(

1 +
√

1− 4t′2
)

ln
(

1
Λ

)
(21)

where Λ is the infrared energy cutoff. The particle-particle
susceptibility also diverges at q and Q:

χpp(q) ∼
(

1
4π2

)
1√

1− 4t′2
ln2
(

1
Λ

)
(22)

χpp(Q) ∼
(

1
2π2

) tan−1
(

2t′√
1−4t′2

)
√

1− 4t′2
ln
(

1
Λ

)
(23)

Since both particle-particle and particle-hole channels
are divergent along the Van Hove line, the magnetic and
superfluid instabilities fuel each other and a simple Bethe-
Salpeter analysis is insufficient. The behaviour in this
regime has been extensively studied by means of RG39

and parquet approximation70. In particular, it was shown
that d(4)

x2−y2 state is dominant along the Van Hove line
at small U . Larger values of U were also addressed in
these studies, but the methods are not controlled there
and exact results are still due. At hopping values t′ ≥ 0.5
another line of special interest exists, which is defined by
the Van Hove singularity crossing the Fermi surface nested
with the momentum q = (k, k), k = ± cos−1( 1

2|t′| )
54. The

line starts from the ferromagnetic point and is given by
the equation µ = − 1

t′ . It appears that the physics in the
vicinity of t′ = 0.5, even for t′ ≤ 0.5, is largely influenced
by this line (see below). Above this line there is a finite
region where the Fermi surface has a Fermi pocket around
(kx, ky) = (0, 0). All the aforementioned lines as well as
the corresponding Fermi surfaces for all regions within
parameter space of 0 ≤ n ≤ 2 and 0 ≤ t′ ≤ 0.7 are shown
in Fig. 4.

III. RESULTS

A. Phase diagram

FIG. 5. top: Phase diagram for the parameter range of 0 <
n < 2 and 0 < t′ < 0.5. bottom: same parameter range by
leading irreducible representation. The presence of a Van Hove
singularity is portrayed by the black dashed line.

Our main result, the ground-state phase diagram in the
U → 0 limit for the range of density 0 < n < 2 and the
next-nearest-neighbour hopping amplitude 0 ≤ t′ ≤ 0.5,
is presented in Fig. 5. The diagram turns out to be very
rich with twelve different states, which we characterise by
the number of nodes of the superfluid order parameter,
realised with the corresponding symmetries of each of
the five irreducible representations. Controlled results at
essentially non-zero U for t′ = 060 suggest that phases
with a high number of nodes, i.e. higher than that in
the fundamental mode of the corresponding irreducible
representation, tend to disappear as U is increased. In
particular, the authors demonstrate that the p(6) phase,
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n = 0.05 n = 0.10 n = 0.15 n = 0.20 n = 0.25 n = 0.30 n = 0.35

p(2) p(6) p(6) p(6) p(10) p(10) (g(8)) p(14)

FIG. 6. The transition between the first four waves of the E1 irreducible representation are seen along the line of 0.05 ≤ n ≤ 0.35
at t′ = 0.375. The type of wave is identified below each figure. It has to be noted that the point at n = 0.30 the leading wave is
g(8), however we have decided to include the point for completeness reasons. Individual Fermi surfaces are drawn in black.

which occupies a significant region in the U → 0 limit
(seen in Fig. 5 at t′ = 0, n ∼ 0.6) vanishes already at
U = 0.08. Therefore, it is possible that this diversity of
phases and especially the presence of higher-harmonic
states may be a weak-coupling limit artefact.

We only study positive values of t′, since for t′ < 0 the
phase diagram is obtained by reflection symmetry about
the point (t′ = 0, n = 1), which is due to the mapping of
the Hamiltonian onto itself upon replacing all the particles
with holes.

To obtain the phase diagram in Fig. 5, we introduce a
grid in the (t′, n) plane and find the leading instability
by the approach described in Secs. II A-II B at each point
of the grid. The horizontal grid step is ∆t′ = 0.025 in
regions with multiple phase boundaries in close proximity
and ∆t′ = 0.05 everywhere else. The vertical grid step
is ∆n = 0.05 everywhere, except in the vicinity of the
Van Hove line, where results for densities nV H ± 0.001
were obtained. This high resolution, which required a
substantial computational effort, was necessary to obtain
a reliable phase diagram that can be used as a benchmark
for further investigations.
Clearly, the region beneath half filling (n = 1) is far

richer than the region above. This can be related to the
presence of the Van Hove line in that part of the diagram.
Indeed, most higher-order harmonics are to be found in
the vicinity of this line. All irreducible representations
have at least one higher-order wave realised over a finite
region of the phase diagram. These are, with the exception
of E1, only small regions, mostly at the borders between
two or more phases belonging to different irreducible
representations. White regions are due to very small
values of λ (< 10−6) at which it is difficult to reliably
claim which phase is realised. These regions, however,
are not immediately relevant for future studies of high-Tc
superconductivity.
In the following, we discuss the phases classified by

their symmetries corresponding to each of the irreducible
representations.

A1: The contribution of the fundamental mode s(0)

to the vertex Γpp is negative71–73, and therefore there is
no Cooper instability in the lowest-order s-wave chan-
nel. Higher harmonics, on the other hand, have positive

eigenvalues and the corresponding phases are realised over
some regions of the parameter space. In particular, it
may appear surprising that the s(16) harmonic is domi-
nant in a finite region around t′ = 0.5 and n = 0.7 over
the lower-order s(8) harmonic. This may be due to the
presence of a second nested line at t′ > 0.5.

A2: The g(8) harmonic dominates at low fillings (n <
0.5) and intermediate values of hopping (0.1 < t′ < 0.4).
A small region of the g(16) harmonic was found around t′ =
0.25 and n = 0.45. This is a region on the border between
the g(8) and p(6) phases and might also be influenced by
the d(4)

x2−y2 region at higher doping values. It is thus most
likely realised as a frustrated intermediate state on the
crossover between those phases.

B1: A similar scenario happens at the crossover be-
tween d(4)

x2−y2-and d(4)
xy regions at n = 1.45: the crossover

between the two is via a strip of the d(12)
xy phase. It is

interesting to note that the boundary between d(4)
x2−y2 and

d
(4)
xy appears at essentially the same doping independent of

the value of t′. This happens mainly because the shape of
the Fermi surface at high values of doping is only weakly
dependent on the hoping amplitude. Except for the region
of high doping n > 1.45 another region of d(4)

xy exists at
small values of t′ < 0.15 and fillings n < 0.55, which is
essentially a continuation of the first region reflected at
the symmetry point of the phase diagram. Finally a tiny
region of d(12)

xy was found at t′ = 0.475 and n = 0.25 inside
of a region dominated by the E1 irreducible representation.
It seems to be a consequence of frustration between p(6),
p(10) and p(14) as it sits exactly at the boundary between
those phases. It is possible that there are multiple such
tiny regions spread over the phase diagram that are below
our resolution.

B2: The d
(4)
x2−y2 state dominates in a wide region

around half filling. A relatively small region of the d(12)
x2−y2

state was found on the boundary between d
(4)
x2−y2 and

s(16). Similarly to the case of s(16), we attribute the exis-
tence of this d(12)

x2−y2 phase to the proximity to the line of
Fermi surface nesting at t′ > 0.5 discussed above.

E1: This irreducible representation displays the rich-
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est variety of phases as all first five p-type waves are
realised in the phase diagram. However, apart from a
few exceptions, the geometry of the order parameter is
not highly symmetric, compared to examples of p-waves
in Fig. 3, and some of the nodes are separated by only
small intervals. This often happens to a degree where
it is difficult to identify the exact number of nodes and
the crossovers between the corresponding states. The
dominant wave in most regions is either p(6) or p(10), and
not the fundamental p(2) harmonic, which can be found
only in the low density regions. It seems that the E1
phase has the tendency to go towards the p(2) harmonic
as n→ 0. Whether this is true for all values of t′ within
the E1 region is unclear as in practice we have only com-
puted the leading instability down to n = 0.05 which is
the minimal value of density within our resolution.

We see that at low values of t′ the p(6) state dominates
with the exception of a small region of p(10) on the bound-
ary of g(8) and d

(4)
xy . Another region of p(6) phase is at

relatively low fillings 0.1 < n < 0.25 and t′ > 0.2. It
transitions smoothly into p(10), then turns into p(14) at
values of around n ∼ 0.3. As a typical example, we show
the transformation of the p-wave order parameter at a
fixed t′ = 0.375 as the density is increased from 0.05 to
0.35 in Fig. 6.

As one approaches the Van Hove line at yet higher val-
ues of doping and t′ the phase diagram becomes patched
with both p(6) and p(10) regions present. Interestingly,
just below the Van Hove line the p(6) phase becomes
clearly dominant again. Above the line there are multiple
E1 regions, with p(10) up to about t′ > 0.38, followed by a
region of p(14), a small region of p(18), and, finally, again
p(6) as the line approaches the FM point at t′ ≥ 0.47.
Also, at values of t′ > 0.4 and around quarter filling
we obtain regions of the high harmonic p(18), similarly
to other high-order phases realised in the region (s(16)

and d(12)
x2−y2). We suspect that the high order of the lead-

ing harmonic is influenced by the aforementioned line of
nesting at t′ ≥ 0.5.

Along the Van Hove line it is possible to identify a
separation between regions influenced by the FM and
AFM points. Close to the AFM point the singlet d(4)

x2−y2

phase dominates as it corresponds to the symmetry of
the AFM-type spin configuration. In the vicinity of the
FM point the triplet p(6) phase dominates corresponding
to the symmetry of the FM configuration. The respec-
tive boundary between B2 and E1 has been analytically
calculated to be at t′ = 2/e ≈ 0.184 in Ref. 25. We iden-
tified the leading phase to be p(6) for values t′ ≥ 0.285.
For smaller values of t′ the region of densities where p(6)

dominates must be too small to be captured within our
resolution. It is also worth noting that even close to the
FM point p(6) is the leading state instead of p(2).

B. Effective coupling strength

The value of the highest effective coupling strength
across the parameter space, irrespective of the irreducible
representation it belongs to, is plotted in Fig. 8. There are
two maxima around the FM and AFM points. The peak
at the FM point is sharper than at the AFM point. This
is due to the fact that both the particle-hole susceptibility
χph (Eq. 13) and the density of states diverge at the same
vector q = (0, 0). However, this does not immediately
imply that the critical temperature is also high in this
regime — at low fillings Tc actually becomes low due to
the lattice system approaching the continuum limit with
a small value of EF .

Interestingly, at t′ = 0.5 the effective coupling constant
is relatively large close to quarter-filling n = 0.5. This is
due to the presence of the line of Van Hove singularity pass-
ing through this point at higher next-nearest-neighbour
hoping parameters (t′ > 0.5), as mentioned earlier. As an
illustration, we computed the effective coupling strength
at two points outside of our range of parameters close
to this line at t′ = 0.55 and n = {0.55, 0.60} obtaining
λ = {0.062, 0.0218} respectively, which demonstrates the
rapid growth of the effective coupling on approach to
the nested point t′ = 0.5, n = 0.5. To show that at
t′ = 0.5 the magnitude of λ is comparable to that in the
region around the AFM point we have calculated two
points at t′ = {0.55, 0.60} with λ/U2 = {0.0620, 0.0218}
respectively. We found that the effective coupling around
t′ = 0.5, n = 0.5 is comparable to the values near the
AFM point (to be compared with λ/U2 = 0.0481 at
t′ = 0.01, n = 1.0 ). A substantial increase in the leading
λ is seen in the vicinity of the whole Van Hove line. This
effect is strongest close to points with nesting, but can be
observed even at intermediate values of t′.

In Fig. 7 we plot the leading eigenvalues by irreducible
representation for t′ = {0, 0.1, 0.2, 0.3} as function of den-
sity n. The maximal values for λ correspond to the Van
Hove densities, located at nV H = {1, 0.918, 0.830, 0.726},
respectively.
In Fig. 9, we show contour maps of the leading eigen-

value for each of the irreducible representations in the
whole range of parameters. Near the AFM point only B2
harmonics see a drastic increase in the effective coupling
strength, whilst there is also a slight increase observed
for A2. In contrast, the coupling strength for A1 and
B1 exhibits a drop near the AFM point. The E1 har-
monics have a relatively high eigenvalue along the whole
Van Hove line. A clear increase in coupling strength for
all representations near the FM point is observed, which
spreads for all the representations except B1 up to quarter
filling (n = 0.5) at t′ = 0.5.

C. Comparison to previous work

Ref. 24 has presented a weak-coupling phase diagram
in a somewhat smaller range of parameters, where the
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FIG. 7. The leading eigenvalue for each of the irreducible representations is given as a function of n at t′ = {0, 0.1, 0.2, 0.3}.
Dashed lines correspond to Van Hove densities at nV H = {1, 0.918, 0.830, 0.726}, respectively. The closest measurements to the
Van Hove points were performed at nV H ± 0.001.

phases are distinguished by their symmetry in terms of the
irreducible representations without details of the nodal
structure of the order parameter. Our results in Fig. 5
(bottom) are mostly consistent with Ref. 24. The main
difference is the B1 phase (d(12)

xy harmonic) which we find
inside the E1 dominated region at t′ = 0.475 and n = 0.25,
and which is absent in Ref. 24. Also, there are two small
regions mentioned in Ref. 24 — for which the exact
positions and extent were not provided — which we were
not able to confirm within out resolution. These are a B1-
type phase close to the s(16)/E1 boundary and an E1-type
phase close to the d(4)

xy /g(8). It is possible that multiple
other tiny phases of this type might exist throughout the
phase diagram, yet they would prove extremely difficult
to capture.
At the level of differentiating between particular har-

monics within each irreducible representation the phase
diagram becomes far richer. We stress the importance of
including high-order harmonics in the analysis because
phases of a particular symmetry can be seen to be dom-
inant only at a high expansion order in Eqs. 15 - 19.

In particular, the previously overlooked B1-type phase,
which is found between multiple higher harmonics of the
E1-type phase, is realised as d(12)

xy . Similarly, the p(6)

phase at t′ = 0 was overlooked in Ref. 25 due to a low
number of harmonics allowed in the analysis, but was
found in this work as well as in Ref. 24 and is consistent
with recently obtained controlled results at essentially
finite U60.
The only other analysis of the effective coupling

strength was presented is Ref. 25. In particular, the paper
shows a plot of Veff — which corresponds to λ divided by
the density of states (ρ) — as a function of density n at
t′ = 0 and t′ = 0.3. Figures in Ref. 25 obtain qualitatively
similar results to Fig.7, however it appears that the values
for Veff in Ref. 25 are missing a factor of density of states,
which essentially changes the result. In fact, we were
able to exactly reproduce Fig. 4 of Ref. 25 by deliberately
dividing λ from our calculation by the density of states
twice. This mistake overestimated the effective coupling
strength in Ref. 25 by a factor of ∼ 40 close to half filling
(and by a factor ∼ 20 compared to the maximum λ that
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FIG. 8. Plot of highest effective coupling constant λmax

irrespective of type of wave. Inset shows a 3D version of
the same plot. Clear maxima can be seen at the FM and AFM
point as well as an increase in coupling strength in the vicinity
of the Van Hove line.

we found at the Van Hove filling). Moreover, the g(8)

and p(2) states are missing altogether in Figs. 2 and 4 of
Ref. 25 despite being the leading instabilities at particular
densities n.

IV. CONCLUSIONS

We have performed a perturbative analysis of the re-
pulsive single-band Hubbard model with next-nearest-
neighbour hopping t′, addressing the Cooper-pairing in-
stability in the Fermi liquid regime in a wide range of
t′ and density n. Our results are asymptotically exact
within the given resolution in the limit U → 0. We have
obtained the ground-state phase diagram and classified
phases by their symmetry in terms of the corresponding
irreducible representation as well as the nodal structure
of the gap function, which resulted in a far richer phase
diagram compared to previous works. We have also per-
formed an analysis of the effective coupling strength in
the Cooper channel, which controls the superfluid critical
temperature. We have observed that the divergence of
the density of states at the Fermi surface due to the Van
Hove singularity has an influence on both the type of
realised superfluid order as well as the effective interac-
tion strength. Besides the widely discussed region near
the AFM point, we have identified another region with
high effective coupling around quarter filling n = 0.5 and
t′ = 0.5, which most likely extends to higher values of
t′. This suggests that a detailed study of the model at
higher values of next-nearest-neighbour hoppings is of
substantial interest in the context of high-Tc supercon-
ductivity. In general the phase diagram enables further

work to start from intuition about the location and extent
of regions with high effective coupling. Potentially, the
Fermi-Hubbard model with next-nearest-neighbour hop-
ping could be realised experimentally in optical lattices —
as has been done with multiple other extended Hubbard
models75 — and provide actual transition temperatures
values. Importantly, our results enable us to identify and
correct some of the mistakes of previous works. Our work
can serve as a solid foundation for application of accurate
advanced methods to the model at essentially finite val-
ues of coupling U . The provided results can be used as
a starting point for the construction of a phase diagram
in the (n, t′, U) parameter space. Instead of calculating a
computationally expensive grid of points it is possible to
follow individual phase transition lines to higher values of
coupling U , as has been done at t′ = 0 by Deng et al.60. It
has to be noted that the landscape of the diagram might
change dramatically for non-vanishing values of U and
especially higher harmonics, which exist on the boundary
between phases belonging to different irreducible repre-
sentations are likely to disappear as it happened for the
p(6) harmonic at t′ = 0, which vanished at U = 0.08.
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